Gene Summary

Gene:IRAK1; interleukin 1 receptor associated kinase 1
Aliases: IRAK, pelle
Summary:This gene encodes the interleukin-1 receptor-associated kinase 1, one of two putative serine/threonine kinases that become associated with the interleukin-1 receptor (IL1R) upon stimulation. This gene is partially responsible for IL1-induced upregulation of the transcription factor NF-kappa B. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:interleukin-1 receptor-associated kinase 1
Source:NCBIAccessed: 29 August, 2019


What does this gene/protein do?
Show (50)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IRAK1 (cancer-related)

Li N, Wang J, Yu W, et al.
MicroRNA‑146a inhibits the inflammatory responses induced by interleukin‑17A during the infection of Helicobacter pylori.
Mol Med Rep. 2019; 19(2):1388-1395 [PubMed] Related Publications
Helicobacter pylori (H. pylori) infection is the major cause of chronic active gastritis and peptic ulcer disease. Upregulation of IL‑17A is associated with H. pylori infection in the gastric mucosa; however, the factors involved in the regulation of interleukin (IL)‑17A‑induced inflammatory responses in H. pylori‑associated gastritis remain unknown. MicroRNAs (miRNAs) serve as key post‑transcriptional regulators of gene expression and are associated with the H. pylori infection. The present study aimed to analyze the effects of IL‑17A on the expression of miR‑146a upon infection with H. pylori, as well as to identify the possible impact of miR‑146a dysregulation on the inflammatory response in vivo and in vitro. Reverse transcription‑quantitative polymerase chain reaction analysis was used to determine the expression levels of miR‑146a in gastric epithelial cells upon IL‑17A stimulation. The effects of miR‑146a mimics on IL‑17A‑induced inflammatory responses in SGC‑7901 cells were evaluated. The effects of miR‑146a mimics on the expression levels of IL‑1 receptor‑associated kinase 1 (IRAK1) and tumor necrosis factor receptor‑associated factor 6 (TRAF6) upon IL‑17A treatment were analyzed, and the IL‑17A‑stimulated inflammation following the silencing of IRAK1 and TRAF6 was observed. In addition, the correlation between miR‑146a and IL‑17A in human gastric mucosa with H. pylori was examined. The results indicated that IL‑17A‑induced miR‑146a may regulate the inflammatory response during the infection of H. pylori in a nuclear factor‑κB‑dependent manner. Furthermore, the expression of miR‑146a and IL‑17A are positively correlated in human gastric mucosa infected with H. pylori. These data suggested that miR‑146a may serve as a biomarker or therapeutic target in gastritis therapy.

Kirchmeyer M, Servais FA, Hamdorf M, et al.
Cytokine-mediated modulation of the hepatic miRNome: miR-146b-5p is an IL-6-inducible miRNA with multiple targets.
J Leukoc Biol. 2018; 104(5):987-1002 [PubMed] Related Publications
Interleukin-6 (IL-6)-type cytokines play important roles in liver (patho-)biology. For instance, they regulate the acute phase response to inflammatory signals and are involved in hepatocarcinogenesis. Much is known about the regulation of protein-coding genes by cytokines whereas their effects on the miRNome is less well understood. We performed a microarray screen to identify microRNAs (miRNAs) in human hepatocytes which are modulated by IL-6-type cytokines. Using samples of 2 donors, 27 and 68 miRNAs (out of 1,733) were found to be differentially expressed upon stimulation with hyper-IL-6 (HIL-6) for up to 72 h, with an overlap of 15 commonly regulated miRNAs. qPCR validation revealed that miR-146b-5p was also consistently up-regulated in hepatocytes derived from 2 other donors. Interestingly, miR-146b-5p (but not miR-146a-5p) was induced by IL-6-type cytokines (HIL-6 and OSM) in non-transformed liver-derived PH5CH8 and THLE2 cells and in Huh-7 hepatoma cells, but not in HepG2 or Hep3B hepatoma cells. We did not find evidence for a differential regulation of miR-146b-5p expression by promoter methylation, also when analyzing the TCGA data set on liver cancer samples. Inducible overexpression of miR-146b-5p in PH5CH8 cells followed by RNA-Seq analysis revealed effects on multiple mRNAs, including those encoding IRAK1 and TRAF6 crucial for Toll-like receptor signaling. Indeed, LPS-mediated signaling was attenuated upon overexpression of miR-146b-5p, suggesting a regulatory loop to modulate inflammatory signaling in hepatocytes. Further validation experiments suggest DNAJC6, MAGEE1, MPHOSPH6, PPP2R1B, SLC10A3, SNRNP27, and TIMM17B to be novel targets for miR-146b-5p (and miR-146a-5p).

Hu Q, Song J, Ding B, et al.
miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6.
Oncol Rep. 2018; 39(6):3015-3024 [PubMed] Related Publications
Cervical cancer is the third most common type of cancer in women, and microRNAs play an important role in this type of cancer. The elevated expression of miR-146a is involved in the pathogenesis of cancers generally, but its role in cervical cancer has not been fully elucidated. In the present study, we assessed the expression of miR-146a in G>C polymorphisms and confirmed that the overexpression of miR-146a promoted cervical cancer cell viability. The recombinant expression plasmids pre-miR-146a-G or pre-miR-146a-C including single nucleotide polymorphisms (SNP) were successfully constructed. Pre-miR-146a-G or pre-miR-146a-C was transfected into cervical cancer cells or immortalized non-tumorigenic cells and the expression of miR-146a was evaluated by real-time PCR. The cell viability, cell-cycle analysis and apoptosis were assessed using Cell Counting Kit-8 assay (CCK-8), flow cytometry and cleaved caspase-3 protein expression, respectively. The expression of interleukin 1 receptor associated kinase 1 (IRAK1), TNF receptor-associated factor 6 (TRAF6) and cyclin D1 was assessed following the transfection with a miR-146a mimic or a negative control. The cell viability and the number of S-phase cells increased after transfection with miR-146a mimic or an IRAK1 or TRAF6 interference fragment. After transfection, IRAK1 and TRAF6 protein expression was downregulated and the expression of cyclin D1 was upregulated, however apoptosis and cleaved caspase-3 were not affected. Polymorphisms in miR-146a precursor may be linked to the expression of miR-146a and may be a potential target for cervical cancer therapy.

Rastegar R, Akbari Javar H, Khoobi M, et al.
Evaluation of a novel biocompatible magnetic nanomedicine based on beta-cyclodextrin, loaded doxorubicin-curcumin for overcoming chemoresistance in breast cancer.
Artif Cells Nanomed Biotechnol. 2018; 46(sup2):207-216 [PubMed] Related Publications
Codelivery of chemo-sensitizers with chemotherapeutics using combo nanomedicine is a promising platform for overcoming chemoresistance in breast cancer. However, tumor accumulation of nano-carriers based on enhanced permeability and retention (EPR) effect is confounded by heterogeneity in tumor microenvironment. Adsorption of protein corona on surface of nanoparticle boost up clearance by reticulo-endothelial system. In this study, a surface functionalized magnetic nanocomposite (NC) for codelivery of doxorubicin (DOX) and curcumin (CUR) is developed. NCs were coated with hydroxyapatite and were also cross linked with β-cyclodextrin. NCs efficiently encapsulated DOX and CUR. Release of CUR and DOX were in a sustained pH-depended pattern. β-cyclodextrin functionalization reduced protein corona according sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. As shown by flowcytometric and confocal microscopy analyses, NCs internalized efficiently by human breast carcinoma cells MCF-7 and adriamycin resistant MCF-7 (MCF-7/adr) cells. 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) test demonstrated superior cytotoxicity of DOX-CUR loaded NCs. Anti-tumor efficacy analyses confirmed reduction in relative tumor volume size (RTV%) compared to control group. Western blot analyses demonstrated marginal CUR mediated P-glycoprotein (P-gp) down regulation. DOX-CUR loaded NCs efficiently accumulated into the tumor via external magnet guidance. Nevertheless, the increased tumor accumulation did not correlate with pharmacologic responses such as RTV% and significant superiority over free DOX was not observed.

Cheng BY, Lau EY, Leung HW, et al.
IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma.
Cancer Res. 2018; 78(9):2332-2342 [PubMed] Related Publications
Frequent relapse and drug resistance in patients with hepatocellular carcinoma (HCC) can be attributed to the existence of tumor-initiating cells (TIC) within the tumor bulk. Therefore, targeting liver TICs may improve the prognosis of these patients. From transcriptome sequencing of 16 pairs of clinical HCC samples, we report that interleukin-1 receptor-associated kinase 1 (IRAK1) in the TLR/IRAK pathway is significantly upregulated in HCC. IRAK1 overexpression in HCC was further confirmed at the mRNA and protein levels and correlated with advanced tumor stages and poor patient survival. Interestingly, IRAK4, an upstream regulator of IRAK1, was also consistently upregulated. IRAK1 regulated liver TIC properties, including self-renewal, tumorigenicity, and liver TIC marker expression. IRAK1 inhibition sensitized HCC cells to doxorubicin and sorafenib treatment

Jordi M, Marty J, Mordasini V, et al.
IRAK4 is essential for TLR9-induced suppression of Epstein-Barr virus BZLF1 transcription in Akata Burkitt's lymphoma cells.
PLoS One. 2017; 12(10):e0186614 [PubMed] Free Access to Full Article Related Publications
Burkitt's lymphoma (BL) is the most common childhood cancer in equatorial Africa, and is endemic to areas where people are chronically co-infected with Epstein-Barr virus (EBV) and the malaria pathogen Plasmodium falciparum. The contribution of these pathogens in the oncogenic process remains poorly understood. We showed earlier that the activation of Toll-like receptor (TLR) 9 by hemozoin, a disposal product formed from the digestion of blood by P. falciparum, suppresses the lytic reactivation of EBV in BL cells. EBV lytic reactivation is regulated by the expression of transcription factor Zta (ZEBRA), encoded by the EBV gene BZLF1. Here, we explore in the BL cell line Akata, the mechanism involved in repression by TLR9 of expression of BZLF1. We show that BZLF1 repression is mediated upon TLR9 engagement by a mechanism that is largely independent of de novo protein synthesis. By CRISPR/Cas9-induced inactivation of TLR9, MyD88, IRAK4 and IRAK1 we confirm that BZLF1 repression is dependent on functional TLR9 and MyD88 signaling, and identify IRAK4 as an essential element for TLR9-induced repression of BZLF1 expression upon BCR cross-linking. Our results unprecedentedly show that TLR9-mediated inhibition of lytic EBV is largely independent of new protein synthesis and demonstrate the central roles of MyD88 and IRAK4 in this process contributing to EBV's persistence in the host's B-cell pool.

Qiu Z, Li H, Wang J, Sun C
miR-146a and miR-146b in the diagnosis and prognosis of papillary thyroid carcinoma.
Oncol Rep. 2017; 38(5):2735-2740 [PubMed] Free Access to Full Article Related Publications
The present study investigated the relationship between the expression of miR-146a and miR‑146b with the occurrence and prognosis of papillary thyroid carcinoma. Experiments in vitro were also used to explore the effect of the knocked down expression of the miRNAs on growth and migration of papillary thyroid carcinoma cells. A total of 73 patients with papillary thyroid carcinoma admitted to Yidu Central Hospital of Weifang from September 2013 to September 2015 were enrolled in the study. Carcinoma samples were obtained from each patient, and adjacent tissues were used as control samples to determine expression levels of miR-146a and miR146b by semi-quantitative RT-PCR. An analysis was conducted to find possible correlations between the miRNAs expression levels and clinicopathological features in the patients followed up for one year after diagnosis. Additionally, to examine the function of miR-146a and miR‑146b on TPC-1 cells, the expression of miRNAs was knocked down using specific siRNAs. MTT and Transwell assays were used to evaluate cell proliferation and migration, respectively, in the miRNA cell lines. Finally, western blot analysis was used to analyze the expression of IRAK1 in PTC cancer cells. Our results showed that the expression levels of miR-146a and miR-146b in carcinoma tissues were significantly higher than the levels in cancer-free tissues (p<0.01). The relative expression levels of miR-146a and miR-146b in cancerous tissues could be associated with the pathological type and presence or absence of lymph node metastasis (p<0.05). Compared with the siRNA-control cell, MTT and Transwell assays showed that the cell growth and migration of TPC-1 cells were decreased in miR-146a and miR-146b low expression cells (p<0.01). Western blot analysis showed that the expression of IRAK1 in papillary thyroid carcinoma was higher than in adjacent tissue (p<0.01). Based on our findings, the expression of miR-146a and miR-146b correlates with the occurrence and prognosis of papillary thyroid carcinoma, and the expression levels of miR-146a and miR-146b seem to affect the cell proliferation and migration and regulate the expression of IRAK1 protein in cancer cells. Further studies are needed to validate our results to provide new targets for prevention and treatment of papillary thyroid carcinoma.

Kumari P, Saha I, Narayanan A, et al.
Essential role of HCMV deubiquitinase in promoting oncogenesis by targeting anti-viral innate immune signaling pathways.
Cell Death Dis. 2017; 8(10):e3078 [PubMed] Free Access to Full Article Related Publications
Cancer is a multifactorial disease and virus-mediated carcinogenesis is one of the crucial factors, which is poorly understood. Human cytomegalovirus (HCMV) is a herpesvirus and its components have been evidenced to be associated with cancer of different tissue origin. However, its role in cancer remains unknown. Here, we identified a conserved herpesviral tegument protein known as pUL48 of HCMV, encoding deubiquitinase enzyme, as having a key role in carcinogenesis. We show using deubiquitinase sufficient- and deficient-HCMV that HCMV deubiquitinase is a key in inducing enhanced cellular metabolic activity through upregulation of several anti-apoptotic genes and downregulation of several pro-apoptotic genes expression. Furthermore, HCMV deubiquitinase acquires pro-tumor functions by inhibiting PRR-mediated type I interferon via deubiquitination of TRAF6, TRAF3, IRAK1, IRF7 and STING. Taken together, our results suggest that HCMV infection may promote oncogenesis by inhibiting innate immunity of the host.

Wang Y, Wang Y, Duan X, et al.
Interleukin-1 receptor-associated kinase 1 correlates with metastasis and invasion in endometrial carcinoma.
J Cell Biochem. 2018; 119(3):2545-2555 [PubMed] Related Publications
Endometrial carcinoma (EC) is one of the most common malignancies in the world. Previous studies have investigated the altered expression of interleukin-1 receptor-associated kinase 1 (IRAK1) in various cancers. We aimed at exploring the biological function and the underlying molecular mechanism of IRAK1 in EC. In this study, IRAK1 was found elevated in EC compared with normal tissues. Further, high IRAK1 expression level was correlated with higher tumor stage, lymph node metastasis, myometrial invasion, and lower survival rate. Knockdown of IRAK1 in two EC cell lines, HEC-1-B and JEC, significantly inhibited cell proliferation in vitro and in vivo. We also found that down-regulation of IRAK1 in EC cells notably induced cell cycle arrest and apoptois, and also inhibited cell migration and invasion. Gene set enrichment analysis on The Cancer Genome Atlas dataset showed that Kyoto Encyclopedia of Genes and Genomes (KEGG) mitotic cell cycle and cell division pathways were correlative with the IRAK1 expression, which was further confirmed in EC cells by Western blot. The expression of mitotic cell cycle (CDK1 and Cdc45) and cell division pathway (Cdc7 and MCM2) related factors was significantly suppressed by IRAK1 knockdown. These collective data indicated that IRAK1 overexpression promotes EC tumorigenesis by activating mitotic cell cycle and cell division pathways, and IRAK1 may serve as a promising therapeutic strategy for EC.

Magilnick N, Reyes EY, Wang WL, et al.
Proc Natl Acad Sci U S A. 2017; 114(34):E7140-E7149 [PubMed] Free Access to Full Article Related Publications

De Santi C, Pucci P, Bonotti A, et al.
Mesothelin promoter variants are associated with increased soluble mesothelin-related peptide levels in asbestos-exposed individuals.
Occup Environ Med. 2017; 74(6):456-463 [PubMed] Related Publications
BACKGROUND: Soluble mesothelin-related peptide (SMRP) is a promising diagnostic biomarker for malignant pleural mesothelioma (MPM), but various confounders hinder its usefulness in surveillance programmes. We previously showed that a single nucleotide polymorphism (SNP) within the 3'untranslated region (3'UTR) of the
OBJECTIVES: To focus on SNPs located within
METHODS: The association between SMRP and SNPs was tested in 689 non-MPM subjects and 70 patients with MPM. Reporter plasmids carrying the four most common haplotypes were compared in a dual luciferase assay, and in silico analyses were performed to investigate the putative biological role of the SNPs.
RESULTS: We found a strong association between serum SMRP and variant alleles of rs3764247, rs3764246 (in strong linkage disequilibrium with rs2235504) and rs2235503 in non-MPM subjects. Inclusion of the genotype information led to an increase in SMRP specificity from 79.9% to 85.5%. Although not statistically significant, the group with MPM showed the same trend of association. According to the in vitro luciferase study, rs3764247 itself had a functional role. In silico approaches showed that the binding sites for transcription factors such as Staf and ZNF143 could be affected by this SNP. The other SNPs were shown to interact with each other in a more complex way.
CONCLUSIONS: These data support the suggestion that SMRP performance is affected by individual (ie, genetic) variables and that

Hunter ZR, Yang G, Xu L, et al.
Genomics, Signaling, and Treatment of Waldenström Macroglobulinemia.
J Clin Oncol. 2017; 35(9):994-1001 [PubMed] Related Publications
Next-generation sequencing has revealed recurring somatic mutations in Waldenström macroglobulinemia (WM). Commonly recurring mutations include MYD88 (95% to 97%), CXCR4 (30% to 40%), ARID1A (17%), and CD79B (8% to 15%). Diagnostic discrimination of WM from overlapping B-cell malignancies is aided by MYD88 mutation status. Transcription is affected by MYD88 and CXCR4 mutations and includes overexpression of genes involved in VDJ recombination, CXCR4 pathway signaling, and BCL2 family members. Among patients with MYD88 mutations, those with CXCR4 mutations show transcriptional silencing of tumor suppressors associated with acquisition of mutated MYD88. Deletions involving chromosome 6q are common and include genes that modulate nuclear factor-κB, BCL2, BTK, apoptosis, differentiation, and ARID1B. Non-chromosome 6q genes are also frequently deleted and include LYN, a regulator of B-cell receptor signaling. MYD88 and CXCR4 mutations affect WM disease presentation and treatment outcome. Patients with wild-type MYD88 show lower bone marrow disease burden and serum immunoglobulin M levels but show an increased risk of death. Patients with CXCR4 mutations have higher bone marrow disease burden, and those with nonsense CXCR4 mutations have higher serum immunoglobulin M levels and incidence of symptomatic hyperviscosity. Mutated MYD88 triggers BTK, IRAK1/IRAK4, and HCK growth and survival signaling, whereas CXCR4 mutations promote AKT and extracellular regulated kinase-1/2 signaling and drug resistance in the presence of its ligand CXCL12. Ibrutinib is active in patients with WM and is affected by MYD88 and CXCR4 mutation status. Patients with mutated MYD88 and wild-type CXCR4 mutation status exhibit best responses to ibrutinib. Lower response rates and delayed responses to ibrutinib are associated with mutated CXCR4 in patients with WM. MYD88 and CXCR4 mutation status may be helpful in treatment selection for symptomatic patients. Novel therapeutic approaches under investigation include therapeutics targeting MYD88, CXCR4, and BCL2 signaling.

Liang K, Volk AG, Haug JS, et al.
Therapeutic Targeting of MLL Degradation Pathways in MLL-Rearranged Leukemia.
Cell. 2017; 168(1-2):59-72.e13 [PubMed] Free Access to Full Article Related Publications
Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.

Rothschild DE, Zhang Y, Diao N, et al.
Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-M.
EBioMedicine. 2017; 15:36-47 [PubMed] Free Access to Full Article Related Publications
Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD) and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m

Chou CK, Chi SY, Huang CH, et al.
IRAK1, a Target of miR-146b, Reduces Cell Aggressiveness of Human Papillary Thyroid Carcinoma.
J Clin Endocrinol Metab. 2016; 101(11):4357-4366 [PubMed] Related Publications
CONTEXT: MicroRNA (miR)-146b is overexpressed in papillary thyroid carcinoma (PTC) and is associated with extrathyroidal invasion, advanced tumor stage, and poor prognosis. However, the underlying mechanism of miR-146b in relation to its oncogenic behavior in PTC and its putative targets remain unknown.
OBJECTIVE: The purpose was to investigate IL-1 receptor-associated kinase 1 (IRAK1) as the potential miR-146b target gene and its involvement in PTC.
DESIGN: We used genome-wide microarray, computational analysis, and 3' UTR reporter gene assays to identify IRAK1 as a miR-146b target gene. In vitro gain/loss-of-function experiments were further performed to determine the effects of IRAK1 on proliferation, colony formation, and wound-healing in PTC cancer cell lines. Expression levels of miR-146b and IRAK1 of 50 cases of PTC and its adjacent normal thyroid specimens were assessed via qRT-PCR.
RESULTS: Microarray expression profile revealed that the mRNA level of IRAK1 gene was down-regulated by miR-146b. The 3' UTR of IRAK1 mRNA was found to be a molecular target of miR-146b posttranscriptional repression in BCPAP cells by reporter gene assays. MiR-146b promoted the migration and proliferation of PTC cells by down-regulating IRAK1 expression, whereas restoration of IRAK1 expression reversed this effect. In addition, the expression of IRAK1 mRNA was significantly lower in PTC clinical tissue samples than normal adjacent thyroid specimens and showed a strong inverse correlation with the expression of miR-146b in PTC specimens.
CONCLUSION: Our results demonstrated that IRAK1 is a direct target of miR-146b and has functional roles to inhibit various aggressive PTC cell activities. In conjunction with current therapeutic regimens, targeting the miR-146b-IRAK1 axis may provide a potential approach for PTC management.

Zhang D, Li L, Jiang H, et al.
Constitutive IRAK4 Activation Underlies Poor Prognosis and Chemoresistance in Pancreatic Ductal Adenocarcinoma.
Clin Cancer Res. 2017; 23(7):1748-1759 [PubMed] Free Access to Full Article Related Publications

Li N, Jiang J, Fu J, et al.
Targeting interleukin-1 receptor-associated kinase 1 for human hepatocellular carcinoma.
J Exp Clin Cancer Res. 2016; 35(1):140 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Interleukin-1 receptor associated kinase 1 (IRAK1), as a down-stream of toll-like receptor (TLR) signaling, plays important roles in series of malignancies. However, the role of IRAK1 in hepatocellular carcinoma (HCC) remains little known.
METHODS: In our study, reverse transcription-PCR (RT-PCR), Western Blot, and immunohistochemical staining were used to assess the mRNA and protein levels of IRAK1 in clinical samples and cell lines. Cell counting assay and flow cytometry were employed to analyze the effect of IRAK1 on cell cycle and apoptosis. Transwell assay was used to study the role of IRAK1 in cell migration. Moreover, subcutaneous xenograft tumor models predict the efficacy of targeting IRAK1 against HCC in vivo.
RESULTS: IRAK1 was over-expressed in HCC tissues and cell lines. Suppression of IRAK1 by small interference RNA (siRNA) or a pharmaceutical IRAK1/4 inhibitor impeded cell growth, induced apoptosis and lessened HCC xenograft tumor growth. Particularly, IRAK1/4 inhibitor treatment caused G1/S cell cycle arrest and apoptosis, confirming IRAK1 as a new therapeutic target for HCC.
CONCLUSION: IRAK1 promotes cell proliferation and protects against apoptosis in HCC, and can be a novel target for HCC treatment.

Willems M, Dubois N, Musumeci L, et al.
IκBζ: an emerging player in cancer.
Oncotarget. 2016; 7(40):66310-66322 [PubMed] Free Access to Full Article Related Publications
IκBζ, an atypical member of the nuclear IκB family of proteins, is expressed at low levels in most resting cells, but is induced upon stimulation of Toll-like/IL-1 receptors through an IRAK1/IRAK4/NFκB-dependent pathway. Like its homolog Bcl3, IκBζ can regulate the transcription of a set of inflamatory genes through its association with the p50 or p52 subunits of NF-κB. Long studied as a key component of the immune response, IκBζ emerges as an important regulator of inflammation, cell proliferation and survival. As a result, growing evidence support the role of this transcription factor in the pathogenesis number of human hematological and solid malignancies.

Sticca T, Caberg JH, Wenric S, et al.
Genomic studies of multiple myeloma reveal an association between X chromosome alterations and genomic profile complexity.
Genes Chromosomes Cancer. 2017; 56(1):18-27 [PubMed] Related Publications
The genomic profile of multiple myeloma (MM) has prognostic value by dividing patients into a good prognosis hyperdiploid group and a bad prognosis nonhyperdiploid group with a higher incidence of IGH translocations. This classification, however, is inadequate and many other parameters like mutations, epigenetic modifications, and genomic heterogeneity may influence the prognosis. We performed a genomic study by array-based comparative genomic hybridization on a cohort of 162 patients to evaluate the frequency of genomic gains and losses. We identified a high frequency of X chromosome alterations leading to partial Xq duplication, often associated with inactive X (Xi) deletion in female patients. This partial X duplication could be a cytogenetic marker of aneuploidy as it is correlated with a high number of chromosomal breakages. Patient with high level of chromosomal breakage had reduced survival regardless the region implicated. A higher transcriptional level was shown for genes with potential implication in cancer and located in this altered region. Among these genes, IKBKG and IRAK1 are members of the NFKB pathway which plays an important role in MM and is a target for specific treatments. © 2016 Wiley Periodicals, Inc.

Kang H, Tan M, Bishop JA, et al.
Whole-Exome Sequencing of Salivary Gland Mucoepidermoid Carcinoma.
Clin Cancer Res. 2017; 23(1):283-288 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. To explore the genetic origins of MEC, we performed systematic genomic analyses of these tumors.
EXPERIMENTAL DESIGN: Whole-exome sequencing and gene copy-number analyses were performed for 18 primary cancers with matched normal tissue. FISH was used to determine the presence or absence of the MECT1-MAML2 translocation in 17 tumors.
RESULTS: TP53 was the most commonly mutated gene in MEC (28%), and mutations were found only in intermediate- and high-grade tumors. Tumors with TP53 mutations had more mutations overall than tumors without TP53 mutations (P = 0.006). POU6F2 was the second most frequently mutated gene, found in three low-grade MECs with the same in-frame deletion. Somatic alterations in IRAK1, MAP3K9, ITGAL, ERBB4, OTOGL, KMT2C, and OBSCN were identified in at least two of the 18 tumors sequenced. FISH analysis confirmed the presence of the MECT1-MAML2 translocation in 15 of 17 tumors (88%).
CONCLUSIONS: Through these integrated genomic analyses, MECT1-MAML2 translocation and somatic TP53 and POU6F2 mutations appear to be the main drivers of MEC. Clin Cancer Res; 23(1); 283-8. ©2016 AACR.

Pellé L, Cipollini M, Tremmel R, et al.
Association between CYP2E1 polymorphisms and risk of differentiated thyroid carcinoma.
Arch Toxicol. 2016; 90(12):3099-3109 [PubMed] Related Publications
Differentiated thyroid carcinoma (DTC) results from complex interactions between genetic and environmental factors. Known etiological factors include exposure to ionizing radiations, previous thyroid diseases, and hormone factors. It has been speculated that dietary acrylamide (AA) formed in diverse foods following the Maillard's reaction could be a contributing factor for DTC in humans. Upon absorption, AA is biotransformed mainly by cytochrome P450 2E1 (CYP2E1) to glycidamide (GA). Considering that polymorphisms within CYP2E1 were found associated with endogenous levels of AA-Valine and GA-Valine hemoglobin adducts in humans, we raised the hypothesis that specific CYP2E1 genotypes could be associated with the risk of DTC. Analysis of four haplotype tagging SNPs (ht-SNPs) within the locus in a discovery case-control study (N = 350/350) indicated an association between rs2480258 and DTC risk. This ht-SNP resides within a linkage disequilibrium block spanning intron VIII and the 3'-untranslated region. Extended analysis in a large replication set (2429 controls and 767 cases) confirmed the association, with odds ratios for GA and AA genotypes of 1.24 (95 % confidence interval (CI) 1.03-1.48) and 1.56 (95 % CI, 1.06-2.30), respectively. Functionally, the minor allele was associated with low levels of CYP2E1 mRNA and protein expression as well as lower enzymatic activity in a series of 149 human liver samples. Our data support the hypothesis that inter-individual differences in CYP2E1 activity could modulate the risk of developing DTC suggesting that the exposure to specific xenobiotics, such as AA, could play a role in this process.

Adams AK, Bolanos LC, Dexheimer PJ, et al.
IRAK1 is a novel DEK transcriptional target and is essential for head and neck cancer cell survival.
Oncotarget. 2015; 6(41):43395-407 [PubMed] Free Access to Full Article Related Publications
The chromatin-binding DEK protein was recently reported to promote the growth of HPV+ and HPV- head and neck squamous cell carcinomas (HNSCCs). Relevant cellular and molecular mechanism(s) controlled by DEK in HNSCC remain poorly understood. While DEK is known to regulate specific transcriptional targets, global DEK-dependent gene networks in HNSCC are unknown. To identify DEK transcriptional signatures we performed RNA-Sequencing (RNA-Seq) in HNSCC cell lines that were either proficient or deficient for DEK. Bioinformatic analyses and subsequent validation revealed that IRAK1, a regulator of inflammatory signaling, and IRAK1-dependent regulatory networks were significantly repressed upon DEK knockdown in HNSCC. According to TCGA data, 14% of HNSCC specimens overexpressed IRAK1, thus supporting possible oncogenic functions. Furthermore, genetic or pharmacologic inhibition of IRAK1 in HNSCC cell lines was sufficient to attenuate downstream signaling such as ERK1/2 and to induce HNSCC cell death by apoptosis. Finally, targeting DEK and IRAK1 simultaneously enhanced cell death as compared to targeting either alone. Our findings reveal that IRAK1 promotes cell survival and is an attractive therapeutic target in HNSCC cells. Thus, we propose a model wherein IRAK1 stimulates tumor signaling and phenotypes both independently and in conjunction with DEK.

Wu C, Chen Y, Wang F, et al.
Pelle Modulates dFoxO-Mediated Cell Death in Drosophila.
PLoS Genet. 2015; 11(10):e1005589 [PubMed] Free Access to Full Article Related Publications
Interleukin-1 receptor-associated kinases (IRAKs) are crucial mediators of the IL-1R/TLR signaling pathways that regulate the immune and inflammation response in mammals. Recent studies also suggest a critical role of IRAKs in tumor development, though the underlying mechanism remains elusive. Pelle is the sole Drosophila IRAK homolog implicated in the conserved Toll pathway that regulates Dorsal/Ventral patterning, innate immune response, muscle development and axon guidance. Here we report a novel function of pll in modulating apoptotic cell death, which is independent of the Toll pathway. We found that loss of pll results in reduced size in wing tissue, which is caused by a reduction in cell number but not cell size. Depletion of pll up-regulates the transcription of pro-apoptotic genes, and triggers caspase activation and cell death. The transcription factor dFoxO is required for loss-of-pll induced cell death. Furthermore, loss of pll activates dFoxO, promotes its translocation from cytoplasm to nucleus, and up-regulates the transcription of its target gene Thor/4E-BP. Finally, Pll physically interacts with dFoxO and phosphorylates dFoxO directly. This study not only identifies a previously unknown physiological function of pll in cell death, but also shed light on the mechanism of IRAKs in cell survival/death during tumorigenesis.

Fonte E, Agathangelidis A, Reverberi D, et al.
Toll-like receptor stimulation in splenic marginal zone lymphoma can modulate cell signaling, activation and proliferation.
Haematologica. 2015; 100(11):1460-8 [PubMed] Free Access to Full Article Related Publications
Recent studies on splenic marginal zone lymphoma identified distinct mutations in genes belonging to the B-cell receptor and Toll-like receptor signaling pathways, thus pointing to their potential implication in the biology of the disease. However, limited data is available regarding the exact role of TLRs. We aimed at characterizing the expression pattern of TLRs in splenic marginal zone lymphoma cells and their functional impact on the activation, proliferation and viability of malignant cells in vitro. Cells expressed significant levels of TLR1, TLR6, TLR7, TLR8, TLR9 and TLR10 mRNA; TLR2 and TLR4 showed a low, variable pattern of expression among patients whereas TLR3 and TLR5 mRNAs were undetectable; mRNA specific for TLR signaling molecules and adapters was also expressed. At the protein level, TLR1, TLR6, TLR7, TLR9 and TLR10 were detected. Stimulation of TLR1/2, TLR2/6 and TLR9 with their respective ligands triggered the activation of IRAK kinases, MAPK and NF-κB signaling pathways, and the induction of CD86 and CD25 activation molecules, although in a heterogeneous manner among different patient samples. TLR-induced activation and cell viability were also inhibited by a specific IRAK1/4 inhibitor, thus strongly supporting the specific role of TLR signaling in these processes. Furthermore, TLR2/6 and TLR9 stimulation also significantly increased cell proliferation. In conclusion, we demonstrate that splenic marginal zone lymphoma cells are equipped with functional TLR and signaling molecules and that the stimulation of TLR1/2, TLR2/6 and TLR9 may play a role in regulating disease pathobiology, likely promoting the expansion of the neoplastic clone.

Guo ZL, Yu B, Ning BT, et al.
Genetically modified "obligate" anaerobic Salmonella typhimurium as a therapeutic strategy for neuroblastoma.
J Hematol Oncol. 2015; 8:99 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Neuroblastoma currently has poor prognosis, therefore we proposed a new strategy by targeting neuroblastoma with genetically engineered anaerobic Salmonella (Sal-YB1).
METHODS: Nude and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) orthotopic mouse models were used, and Sal-YB1 was administered via tail vein. The therapeutic effectiveness, bio-safety, and mechanisms were studied.
RESULTS: No mice died of therapy-related complications. Tumor size reduction was 70 and 30% in nude and NOD-SCID mice, respectively. No Salmonella was detected in the urine; 75% mice had positive stool culture if diaminopimelic acid was added, but all turned negative subsequently. Tumor tissues had more Sal-YB1 infiltration, necrosis, and shrinkage in Sal-YB1-treated mice. Significantly higher expression of TLR4, TNF-stimulated gene 6 protein (TSG6), and cleaved caspase 1, 3, 8, and 9 was found in the tumor masses of the Sal-YB1-treated group with a decrease of interleukin 1 receptor-associated kinase (IRAK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα). There was a high release of TNFα both in human macrophages and mouse tumor tissues with Sal-YB1 treatment. The antitumor effect of the supernatant derived from macrophages treated with Sal-YB1 could be reversed with TNFα and pan-caspase inhibitors.
CONCLUSIONS: This new approach in targeting neuroblastoma by bio-engineered Salmonella with the assistance of macrophages indirectly may have a clinical therapeutic impact in the future.

Wang L, Li G, Yao ZQ, et al.
MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV.
Rev Med Virol. 2015; 25(5):320-41 [PubMed] Related Publications
MicroRNAs (miRNAs) function as key regulators in immune responses and cancer development. In the contexts of infection with oncogenic viruses, miRNAs are engaged in viral persistence, latency establishment and maintenance, and oncogenesis. In this review, we summarize the potential roles and mechanisms of viral and cellular miRNAs in the host-pathogen interactions during infection with selected tumor viruses and HIV, which include (i) repressing viral replication and facilitating latency establishment by targeting viral transcripts, (ii) evading innate and adaptive immune responses via toll-like receptors, RIG-I-like receptors, T-cell receptor, and B-cell receptor pathways by targeting signaling molecules such as TRAF6, IRAK1, IKKε, and MyD88, as well as downstream targets including regulatory cytokines such as tumor necrosis factor α, interferon γ, interleukin 10, and transforming growth factor β, (iii) antagonizing intrinsic and extrinsic apoptosis pathways by targeting pro-apoptotic or anti-apoptotic gene transcripts such as the Bcl-2 family and caspase-3, (iv) modulating cell proliferation and survival through regulation of the Wnt, PI3K/Akt, Erk/MAPK, and Jak/STAT signaling pathways, as well as the signaling pathways triggered by viral oncoproteins such as Epstein-Barr Virus LMP1, by targeting Wnt-inhibiting factor 1, SHIP, pTEN, and SOCSs, and (v) regulating cell cycle progression by targeting cell cycle inhibitors such as p21/WAF1 and p27/KIP1. Further elucidation of the interaction between miRNAs and these key biological events will facilitate our understanding of the pathogenesis of viral latency and oncogenesis and may lead to the identification of miRNAs as novel targets for developing new therapeutic or preventive interventions.

Dussiau C, Trinquand A, Lhermitte L, et al.
Targeting IRAK1 in T-cell acute lymphoblastic leukemia.
Oncotarget. 2015; 6(22):18956-65 [PubMed] Free Access to Full Article Related Publications
T-cell acute lymphoblastic leukemia (T-ALL) represents expansion of cells arrested at specific stages of thymic development with the underlying genetic abnormality often determining the stage of maturation arrest. Although their outcome has been improved with current therapy, survival rates remain only around 50% at 5 years and patients may therefore benefit from specific targeted therapy. Interleukin receptor associated kinase 1 (IRAK1) is a ubiquitously expressed serine/threonine kinase that mediates signaling downstream to Toll-like (TLR) and Interleukin-1 Receptors (IL1R). Our data demonstrated that IRAK1 is overexpressed in all subtypes of T-ALL, compared to normal human thymic subpopulations, and is functional in T-ALL cell lines. Genetic knock-down of IRAK1 led to apoptosis, cell cycle disruption, diminished proliferation and reversal of corticosteroid resistance in T-ALL cell lines. However, pharmacological inhibition of IRAK1 using a small molecule inhibitor (IRAK1/4-Inh) only partially reproduced the results of the genetic knock-down. Altogether, our data suggest that IRAK1 is a candidate therapeutic target in T-ALL and highlight the requirement of next generation IRAK1 inhibitors.

Lee J, Tian Y, Chan ST, et al.
TNF-α Induced by Hepatitis C Virus via TLR7 and TLR8 in Hepatocytes Supports Interferon Signaling via an Autocrine Mechanism.
PLoS Pathog. 2015; 11(5):e1004937 [PubMed] Free Access to Full Article Related Publications
Invasion by infectious pathogens can elicit a range of cytokine responses from host cells. These cytokines provide the initial host defense mechanism. In this report, we demonstrate that TNF-α, a pro-inflammatory cytokine, can be induced by hepatitis C virus (HCV) in its host cells in a biphasic manner. The initial induction of TNF-α by HCV was prompt and could be blocked by the antibody directed against the HCV E2 envelope protein and by chemicals that inhibit endocytosis, indicating the specificity of endocytic uptake of HCV in this induction. Further studies indicated that the induction of TNF-α was dependent on toll-like receptors 7 and 8 (TLR7/8) but not on other intracellular pattern recognition receptors. Consistently, siRNA-mediated gene silencing of the downstream effectors in the TLR7/8 signaling pathway including MyD88, IRAK1, TRAF6, TAK1 and p65 NF-κB suppressed the expression of TNF-α. The role of p65 NF-κB in the induction of TNF-α via transcriptional up-regulation was further confirmed by the chromatin immunoprecipitation assay. TNF-α induced by HCV could activate its own receptor TNFR1 on hepatocytes to suppress HCV replication. This suppressive effect of TNF-α on HCV was due to its role in supporting interferon signaling, as the suppression of its expression led to the loss of IFNAR2 and impaired interferon signaling and the induction of interferon-stimulated genes. In conclusion, our results indicate that hepatocytes can sense HCV infection via TLR7/8 to induce the expression of TNF-α, which inhibits HCV replication via an autocrine mechanism to support interferon signaling.

Liu R, Liu C, Chen D, et al.
FOXP3 Controls an miR-146/NF-κB Negative Feedback Loop That Inhibits Apoptosis in Breast Cancer Cells.
Cancer Res. 2015; 75(8):1703-13 [PubMed] Free Access to Full Article Related Publications
FOXP3 functions not only as the master regulator in regulatory T cells, but also as an X-linked tumor suppressor. The tumor-suppressive activity of FOXP3 has been observed in tumor initiation, but its role during tumor progression remains controversial. Moreover, the mechanism of FOXP3-mediated tumor-suppressive activity remains largely unknown. Using chromatin immunoprecipitation (ChIP) sequencing, we identified a series of potential FOXP3-targeted miRNAs in MCF7 cells. Notably, FOXP3 significantly induced the expression of miR-146a/b. In vitro, FOXP3-induced miR-146a/b prevented tumor cell proliferation and enhanced apoptosis. Functional analyses in vitro and in vivo revealed that FOXP3-induced miR-146a/b negatively regulates NF-κB activation by inhibiting the expression of IRAK1 and TRAF6. In ChIP assays, FOXP3 directly bound the promoter region of miR-146a but not of miR-146b, and FOXP3 interacted directly with NF-κB p65 to regulate an miR-146-NF-κB negative feedback regulation loop in normal breast epithelial and tumor cells, as demonstrated with luciferase reporter assays. Although FOXP3 significantly inhibited breast tumor growth and migration in vitro and metastasis in vivo, FOXP3-induced miR-146a/b contributed only to the inhibition of breast tumor growth. These data suggest that miR-146a/b contributes to FOXP3-mediated tumor suppression during tumor growth by triggering apoptosis. The identification of a FOXP3-miR-146-NF-κB axis provides an underlying mechanism for disruption of miR-146 family member expression and constitutive NF-κB activation in breast cancer cells. Linking the tumor suppressor function of FOXP3 to NF-κB activation reveals a potential therapeutic approach for cancers with FOXP3 defects.

Liu R, Yi B, Wei S, et al.
FOXP3-miR-146-NF-κB Axis and Therapy for Precancerous Lesions in Prostate.
Cancer Res. 2015; 75(8):1714-24 [PubMed] Free Access to Full Article Related Publications
The tumor-suppressive activity of FOXP3 has been observed in tumor initiation, but the underlying mechanism still remains largely unknown. Here, we identified a FOXP3-microRNA-146 (miR-146)-NF-κB axis in vitro and in vivo in prostate cancer cells. We observed that FOXP3 dramatically induced the expression of miR-146a/b, which contributed to transcriptional inhibition of IRAK1 and TRAF6, in prostate cancer cell lines. Tissue-specific deletion of Foxp3 in mouse prostate caused a significant reduction of miR-146a and upregulation of NF-κB activation. In addition, prostatic intraepithelial neoplasia lesions were observed in miR-146a-mutant mice as well as in Foxp3-mutant mice. Notably, the NF-κB inhibitor bortezomib inhibited cell proliferation and induced apoptosis in prostate epithelial cells, attenuating prostatic intraepithelial neoplasia formation in Foxp3-mutant mice. Our data suggest that the FOXP3-miR-146-NF-κB axis has a functional role during tumor initiation in prostate cancer. Targeting the miR-146-NF-κB axis may provide a new therapeutic approach for prostate cancers with FOXP3 defects.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IRAK1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999