MIR1271

Locus Summary

Gene:MIR1271; microRNA 1271
Aliases: MIRN1271, hsa-mir-1271
Location:5q35.2
Summary:microRNAs (miRNAs) are short (20-24 nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. miRNAs are transcribed by RNA polymerase II as part of capped and polyadenylated primary transcripts (pri-miRNAs) that can be either protein-coding or non-coding. The primary transcript is cleaved by the Drosha ribonuclease III enzyme to produce an approximately 70-nt stem-loop precursor miRNA (pre-miRNA), which is further cleaved by the cytoplasmic Dicer ribonuclease to generate the mature miRNA and antisense miRNA star (miRNA*) products. The mature miRNA is incorporated into a RNA-induced silencing complex (RISC), which recognizes target mRNAs through imperfect base pairing with the miRNA and most commonly results in translational inhibition or destabilization of the target mRNA. The RefSeq represents the predicted microRNA stem-loop. [provided by RefSeq, Sep 2009]
Databases:miRBase, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 16 March, 2017

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

MicroRNA Function

Numbers shown below represent number of publications held in OncomiRDB database for Oncogenic and Tumor-Suppressive MicroRNAs.

TissueTarget Gene(s)Regulator(s)MIR1271 Function in CancerEffect
liver (1)
-hepatocellular carcinoma (1)
GPC3 (1)
inhibit cell growth (1)
induce cell death (1)
tumor-suppressive (1)

Source: OncomiRDB Wang D. et al. Bioinformatics 2014, 30(15):2237-2238.

Latest Publications: MIR1271 (cancer-related)

Liu H, Wang H, Liu X, Yu T
miR-1271 inhibits migration, invasion and epithelial-mesenchymal transition by targeting ZEB1 and TWIST1 in pancreatic cancer cells.
Biochem Biophys Res Commun. 2016; 472(2):346-52 [PubMed] Related Publications
Pancreatic cancer (PC) remains one of the most lethal types of cancer in adults. The purpose of this study was to determine the role of miR-1271 in regulation of epithelial mesenchymal transition (EMT) and metastasis of pancreatic cancer cells. miR-1271 was identified to be significantly down-regulated in PC tissues by miRNA array. Also, an increase of EMT-regulators ZEB1 and TWIST1 expression level is accompanied by a decrease of miR-1271. We showed that expression of miR-1271 was significantly down-regulated in PC tissues as compared with that in normal tissues. In addition, our results showed that miR-1271 expression levels were decreased while ZEB1 and TWIST1 expression levels were increased in detected PC cell lines. Moreover, ectopic expression of miR-1271 suppressed and antagomiR-1271 promoted proliferation, migration, and invasion in SW1990 and PANC-1 cells. Bioinformatics coupled with luciferase and Western blot assays also revealed that miR-1271 inhibited expression of ZEB1 and TWIST1, which are master regulators of tumor metastasis. Our study first indicates that miR-1271 functions as a suppressor in regulating of pancreatic cancer EMT by targeting ZEB1 and TWIST1, and it promise as a therapeutic target and prognostic marker for metastatic pancreatic cancer.

Liu X, Ma L, Rao Q, et al.
MiR-1271 Inhibits Ovarian Cancer Growth by Targeting Cyclin G1.
Med Sci Monit. 2015; 21:3152-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ovarian cancer is the most lethal gynecological malignant cancer in the female genital system. The dysfunction of miRNA contributes to ovarian cancer development.
MATERIAL AND METHODS: The miR-1271 level in ovarian cancer tissues and cells was assayed by qRT-PCR. The miR-1271 expression in cells was overexpressed by miRNA-mimic transfection and reduced by miRNA-antisense-oligonucleotide (ASO) transfection. Cell proliferation was analyzed by an MTT assay. The targeted genes were predicted by a bioinformatics algorithm and confirmed by a dual luciferase reporter assay. The protein level was assayed by Western blotting.
RESULTS: The ovarian cancer tissue and cell lines showed low levels of miR-1271. Low levels of miR-1271 in ovarian cancer tissues were correlated with a low rate of patient survival, and the overexpression of miR-1271 inhibited the proliferation of ovarian cancer cells. The 3' UTR of cyclin G1 (CCNG1) was targeted by miR-1271.
CONCLUSIONS: Low levels of miR-1271 in ovarian cancer tissues promoted cancer cell growth. MiR-1271 may be a new predictor of prognosis in ovarian cancer. MiR-1271 exerted its role by targeting CCNG1.

Xiang XJ, Deng J, Liu YW, et al.
MiR-1271 Inhibits Cell Proliferation, Invasion and EMT in Gastric Cancer by Targeting FOXQ1.
Cell Physiol Biochem. 2015; 36(4):1382-94 [PubMed] Related Publications
BACKGROUND/AIMS: FOXQ1 overexpression has been reported to enhance tumor growth and invasion. However, the biological function of FOXQ1 and the mechanism underlying its upregulation in gastric cancer (GC) remain unknown.
METHODS: QPCR was used to detect the expression of miR-1271 and FOXQ1 in specimens from GC patients. FOXQ1-siRNA, and miR- 1271 mimics and inhibitor were transfected into human MGC-803 and SGC-7901 cells. The transwell assay was used to examine the cell invasive ability. The regulation mechanism was confirmed by luciferase reporter assay. Markers of epithelial-mesenchymal transition (EMT) were detected by western blot analysis.
RESULTS: MiR-1271 was downregulated in both GC tissues and GC cell lines. The expression of miR-1271 was inversely correlated with tumor size (P = 0.017), tumor stage (P = 0.035), lymph node metastasis (P = 0.018), and TNM stage (P = 0.025). Ectopic expression of miR-1271 dramatically suppressed GC cell proliferation, invasion, and EMT. Furthermore, FOXQ1 was identified as a direct target of miR-1271. Knockdown of FOXQ1 inhibited GC cell malignant behavior, whereas FOXQ1 overexpression partially restored the suppression effects of miR-1271. Additionally, miR-1271 expression was negatively correlated with FOXQ1 in GC tissues.
CONCLUSIONS: MiR-1271 inhibits cell proliferation, invasion, and EMT in GC by directly suppressing FOXQ1 expression.

Scaravilli M, Porkka KP, Brofeldt A, et al.
MiR-1247-5p is overexpressed in castration resistant prostate cancer and targets MYCBP2.
Prostate. 2015; 75(8):798-805 [PubMed] Related Publications
BACKGROUND: Recently, there has been increasing attention on the role of microRNAs (miRNAs) in cancer development. Several expression profiling studies have provided evidence of aberrant expression of miRNAs in prostate cancer and have highlighted the potential use of specific miRNA expression signatures as prognostic or predictive markers. Here we report an expression analysis of miR-1247-5p, miR-1249, miR-1269a, miR-1271-5p, miR-1290, miR-1291, and miR-1299.
METHODS: qRT-PCR was performed to validate the differential expression of miRNAs in clinical samples, and the effect of miR-1247-5p was studied in prostate cancer cell lines transiently transfected with a miR-1247-5p mimic. The expression of miR-1247-5p's putative target MYCBP2 was evaluated by qRT-PCR and Western blotting, and the interaction of the miRNA with the target gene was assessed using a luciferase assay.
RESULTS: We found a significant up-regulation of miR-1247-5p in castration-resistant prostate cancer (CRPC) samples compared to non-malignant prostate. The expression of miR-1247-5p was subsequently studied in prostate cancer (PC) cell lines where an up-regulation of miR-1247-5p was observed in the androgen-independent PC-3 model. Target prediction analysis for miR-1247-5p performed online revealed that MYCBP2 (myc-binding protein 2) was a high-scoring potential target. Functional studies in vitro performed using PC-3 and LNCaP models confirmed the down-regulation of MYCBP2 at the mRNA and protein levels, and a luciferase assay showed interaction between the miRNA and target gene.
CONCLUSION: miR-1247-5p is overexpressed in CRPC and targets MYCBP2.

Wang Y, Xu L, Jiang L
miR-1271 promotes non-small-cell lung cancer cell proliferation and invasion via targeting HOXA5.
Biochem Biophys Res Commun. 2015; 458(3):714-9 [PubMed] Related Publications
MicroRNAs (miRNAs) are short, non-coding RNAs (∼ 22 nt) that play important roles in the pathogenesis of human diseases by negatively regulating numerous target genes at posttranscriptional level. However, the role of microRNAs in lung cancer, particularly non-small-cell lung cancer (NSCLC), has remained elusive. In this study, two microRNAs, miR-1271 and miR-628, and their predicted target genes were identified differentially expressed in NSCLC by analyzing the miRNA and mRNA expression data from NSCLC tissues and their matching normal controls. miR-1271 and its target gene HOXA5 were selected for further investigation. CCK-8 proliferation assay showed that the cell proliferation was promoted by miR-1271 in NSCLC cells, while miR-1271 inhibitor could significantly inhibited the proliferation of NSCLC cells. Interestingly, migration and invasion assay indicated that overexpression of miR-1271 could significantly promoted the migration and invasion of NSCLC cells, whereas miR-1271 inhibitor could inhibited both cell migration and invasion of NSCLC cells. Western blot showed that miR-1271 suppressed the protein level of HOXA5, and luciferase assays confirmed that miR-1271 directly bound to the 3'untranslated region of HOXA5. This study indicated indicate that miR-1271 regulates NSCLC cell proliferation and invasion, via the down-regulation of HOXA5. Thus, miR-1271 may represent a potential therapeutic target for NSCLC intervention.

Yang M, Shan X, Zhou X, et al.
miR-1271 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R, IRS1, mTOR, and BCL2.
Anticancer Agents Med Chem. 2014; 14(6):884-91 [PubMed] Related Publications
Numerous studies showed that drug resistance of gastric cancer cells could be modulated by the abnormal expression of microRNAs (miRNAs) which target multiple cell signaling pathways. The possible function of miR-1271 in the formation of cisplatin resistance in gastric cancer cells has been investigated in this study. miR-1271 was significantly down-regulated in gastric cancer tissues and various gastric cancer cell lines. Moreover, it was down-regulated in the cisplatin-resistant gastric cancer cell line SGC7901/cisplatin (DDP) and the down-regulation of miR-1271 in SGC7901/DPP cells was accompanied by the up-regulation of insulin-like growth factor 1 receptor (IGF1R)/insulin receptor substrate 1 (IRS1) pathway-related proteins, i.e., IGF1R, IRS1, serine/threonine-protein kinase mTOR (mTOR), and the apoptosis regulator Bcl-2 (BCL2), compared with the parental SGC7901 cells. Over-expression of miR-1271 sensitized SGC7901/DDP cells to cisplatin. Changes in the luciferase activity of reporter constructs harboring the 3'-untranslated region of the above proteins in SGC7901/DDP cells suggested that IGF1R, IRS1, mTOR, and BCL2 were target genes of miR-1271. Enforced miR-1271 expression repressed the protein levels of its targets, inhibited proliferation of SGC7901/DDP cells, and sensitized SGC7901/DDP cells to DDP-induced apoptosis. Overall, on the basis of the results of our study, we proposed that miR-1271 could regulate cisplatin resistance in human gastric cancer cells, at least partially, via targeting the IGF1R/IRS1 pathway.

Wang L, Zhu MJ, Ren AM, et al.
A ten-microRNA signature identified from a genome-wide microRNA expression profiling in human epithelial ovarian cancer.
PLoS One. 2014; 9(5):e96472 [PubMed] Free Access to Full Article Related Publications
Epithelial ovarian cancer (EOC) is the most common gynecologic malignancy. To identify the micro-ribonucleic acids (miRNAs) expression profile in EOC tissues that may serve as a novel diagnostic biomarker for EOC detection, the expression of 1722 miRNAs from 15 normal ovarian tissue samples and 48 ovarian cancer samples was profiled by using a quantitative real-time polymerase chain reaction (qRT-PCR) assay. A ten-microRNA signature (hsa-miR-1271-5p, hsa-miR-574-3p, hsa-miR-182-5p, hsa-miR-183-5p, hsa-miR-96-5p, hsa-miR-15b-5p, hsa-miR-182-3p, hsa-miR-141-5p, hsa-miR-130b-5p, and hsa-miR-135b-3p) was identified to be able to distinguish human ovarian cancer tissues from normal tissues with 97% sensitivity and 92% specificity. Two miRNA clusters of miR183-96-183 (miR-96-5p, and miR-182, miR183) and miR200 (miR-141-5p, miR200a, b, c and miR429) are significantly up-regulated in ovarian cancer tissue samples compared to those of normal tissue samples, suggesting theses miRNAs may be involved in ovarian cancer development.

Maurel M, Jalvy S, Ladeiro Y, et al.
A functional screening identifies five microRNAs controlling glypican-3: role of miR-1271 down-regulation in hepatocellular carcinoma.
Hepatology. 2013; 57(1):195-204 [PubMed] Related Publications
UNLABELLED: Hepatocellular carcinoma (HCC) is the major primary liver cancer. Glypican-3 (GPC3), one of the most abnormally expressed genes in HCC, participates in liver carcinogenesis. Based on data showing that GPC3 expression is posttranscriptionally altered in HCC cells compared to primary hepatocytes, we investigated the implication of microRNAs (miRNAs) in GPC3 overexpression and HCC. To identify GPC3-regulating miRNAs, we developed a dual-fluorescence FunREG (functional, integrated, and quantitative method to measure posttranscriptional regulations) system that allowed us to screen a library of 876 individual miRNAs. Expression of candidate miRNAs and that of GPC3 messenger RNA (mRNA) was measured in 21 nontumoral liver and 112 HCC samples. We then characterized the phenotypic consequences of modulating expression of one candidate miRNA in HuH7 cells and deciphered the molecular mechanism by which this miRNA controls the posttranscriptional regulation of GPC3. We identified five miRNAs targeting GPC3 3'-untranslated region (UTR) and regulating its expression about the 876 tested. Whereas miR-96 and its paralog miR-1271 repressed GPC3 expression, miR-129-1-3p, miR-1291, and miR-1303 had an inducible effect. We report that miR-1271 expression is down-regulated in HCC tumor samples and inversely correlates with GPC3 mRNA expression in a particular subgroup of HCC. We also report that miR-1271 inhibits the growth of HCC cells in a GPC3-dependent manner and induces cell death.
CONCLUSION: Using a functional screen, we found that miR-96, miR-129-1-3p, miR-1271, miR-1291, and miR-1303 differentially control GPC3 expression in HCC cells. In a subgroup of HCC, the up-regulation of GPC3 was associated with a concomitant down-regulation of its repressor miR-1271. Therefore, we propose that GPC3 overexpression and its associated oncogenic effects are linked to the down-regulation of miR-1271 in HCC.

Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, et al.
Differential microRNA expression and identification of putative miRNA targets and pathways in head and neck cancers.
Int J Mol Med. 2011; 28(3):327-36 [PubMed] Related Publications
MicroRNAs (miRNAs) are small noncoding RNAs that involved in various cancer-related cellular processes. Diverse studies on expression profiling of miRNAs have been performed and the data showed that some miRNAs are up-regulated or down-regulated in cancer. Until now, there are no data published on the miRNA expression in head and neck cancers from Malaysia. Hence, this study aimed to investigate potentially crucial miRNAs in head and neck cancer patients from Malaysian populations. A global miRNA profiling was performed on 12 samples of head and neck cancer tissue using microarray analysis followed by validation using real-time RT-PCR. Microarray analysis identified 10 miRNAs that could distinguish malignant head and neck cancer lesions from normal tissues; 7 miRNAs (hsa-miR-181a-2*, hsa-miR-29b-1*, hsa-miR-181a, hsa-miR-181b, hsa-miR-744, hsa-miR-1271 and hsa-miR-221*) were up-regulated while 3 miRNAs (hsa-miR-141, hsa-miR-95 and hsa-miR-101) were down-regulated. These miRNAs may contribute in a simple profiling strategy to identify individuals at higher risk of developing head and neck cancers, thus helping in the elucidation of the molecular mechanisms involved in head and neck cancer pathogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MicroRNA miR-1271, Cancer Genetics Web: http://www.cancer-genetics.org/MIR1271.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999