Gene Summary

Gene:PPP2CA; protein phosphatase 2 catalytic subunit alpha
Aliases: RP-C, PP2Ac, PP2CA, PP2Calpha
Summary:This gene encodes the phosphatase 2A catalytic subunit. Protein phosphatase 2A is one of the four major Ser/Thr phosphatases, and it is implicated in the negative control of cell growth and division. It consists of a common heteromeric core enzyme, which is composed of a catalytic subunit and a constant regulatory subunit, that associates with a variety of regulatory subunits. This gene encodes an alpha isoform of the catalytic subunit. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (42)
Pathways:What pathways are this gene/protein implicaed in?
Show (18)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Enzyme Activation
  • Membrane Proteins
  • Apoptosis
  • Cell Proliferation
  • Cervical Cancer
  • Wilms Tumour
  • Skin Cancer
  • Prostate Cancer
  • Colonic Neoplasms
  • src-Family Kinases
  • Melanoma
  • Mutation
  • Synaptotagmin I
  • ral GTP-Binding Proteins
  • Gene Expression Profiling
  • Lung Cancer
  • Molecular Targeted Therapy
  • Breast Cancer
  • Up-Regulation
  • Biomarkers, Tumor
  • p38 Mitogen-Activated Protein Kinases
  • Oligonucleotide Array Sequence Analysis
  • Cell Cycle
  • Messenger RNA
  • Trypan Blue
  • Signal Transduction
  • Western Blotting
  • Phosphorylation
  • Telomere
  • Case-Control Studies
  • X-Linked Inhibitor of Apoptosis Protein
  • Immunohistochemistry
  • G1 Phase
  • Single Nucleotide Polymorphism
  • Cancer Gene Expression Regulation
  • Autoantigens
  • Neoplastic Cell Transformation
  • Protein Subunits
  • Protein Phosphatase 2
  • Chromosome 5
  • Down-Regulation
  • Tumor Suppressor Proteins
  • Risk Factors
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PPP2CA (cancer-related)

Yang CC, Kuai XX, Gao WB, et al.
Morroniside-Induced PP2A Activation Antagonizes Tau Hyperphosphorylation in a Cellular Model of Neurodegeneration.
J Alzheimers Dis. 2016; 51(1):33-44 [PubMed] Related Publications
BACKGROUND: An accumulation of hyperphosphorylated tau in the brain is a hallmark of Alzheimer's disease (AD). Deficits in protein phosphatase 2A (PP2A) are associated with tau hyperphosphorylation in AD.
OBJECTIVE: To investigate the effects of morroniside (MOR), isolated from Cornus officinalis, on tau hyperphosphorylation and its underlying mechanisms related to PP2A.
METHODS: SK-N-SH cells were pretreated with 50-200 μM MOR for 24 h followed by 20 nM okadaic acid (OA) for 6 h. PP2Ac siRNA was transfected into HEK293 cells to determine the direct interaction of MOR with PP2A. Western blotting was used to measure the expression of proteins and enzymes. PP2A activity was measured by molybdenum blue spectrophotometry.
RESULTS: Pretreatment with MOR improved the cellular morphological damage and inhibited tau hyperphosphorylation in SK-N-SH cells induced by OA, a PP2A inhibitor. Moreover, MOR increased PP2A activity, concurrent with a decrease in the expression of demethylated PP2A at Leu309 and phosphorylated PP2A at Tyr307. MOR decreased protein phosphatase methylesterase 1 (PME-1) expression and the ratio of PME-1/leucine carboxyl methyltransferase 1 (LCMT-1). Furthermore, MOR treatment decreased the phosphorylation of Src at Tyr416, which regulates the phosphorylation of PP2A. MOR had no effect on PP2Ac expression and tau hyperphosphorylation in PP2Ac siRNA-transfected cells.
CONCLUSION: MOR attenuated OA-induced tau hyperphosphorylation via PP2A activation, and its mechanism might be related to the regulation of PP2Ac post-translational modification and upstream enzymes such as Src and PME-1.

Tao M, Liu L, Shen M, et al.
Inflammatory stimuli promote growth and invasion of pancreatic cancer cells through NF-κB pathway dependent repression of PP2Ac.
Cell Cycle. 2016; 15(3):381-93 [PubMed] Free Access to Full Article Related Publications
Previous studies have indicated that inflammatory stimulation represses protein phosphatase 2A (PP2A), a well-known tumor suppressor. However, whether PP2A repression participates in pancreatic cancer progression has not been verified. We used lipopolysaccharide (LPS) and macrophage-conditioned medium (MCM) to establish in vitro inflammation models, and investigated whether inflammatory stimuli affect pancreatic cancer cell growth and invasion PP2A catalytic subunit (PP2Ac)-dependently. Via nude mouse models of orthotopic tumor xenografts and dibutyltin dichloride (DBTC)-induced chronic pancreatitis, we evaluated the effect of an inflammatory microenvironment on PP2Ac expression in vivo. We cloned the PP2Acα and PP2Acβ isoform promoters to investigate the PP2Ac transcriptional regulation mechanisms. MCM accelerated pancreatic cancer cell growth; MCM and LPS promoted cell invasion. DBTC promoted xenograft growth and metastasis, induced tumor-associated macrophage infiltration, promoted angiogenesis, activated the nuclear factor-κB (NF-κB) pathway, and repressed PP2Ac expression. In vitro, LPS and MCM downregulated PP2Ac mRNA and protein. PP2Acα overexpression attenuated JNK, ERK, PKC, and IKK phosphorylation, and impaired LPS/MCM-stimulated cell invasion and MCM-promoted cell growth. LPS and MCM activated the NF-κB pathway in vitro. LPS and MCM induced IKK and IκB phosphorylation, leading to p65/RelA nuclear translocation and transcriptional activation. Overexpression of the dominant negative forms of IKKα attenuated LPS and MCM downregulation of PP2Ac, suggesting inflammatory stimuli repress PP2Ac expression NF-κB pathway-dependently. Luciferase reporter gene assay verified that LPS and MCM downregulated PP2Ac transcription through an NF-κB-dependent pathway. Our study presents a new mechanism in inflammation-driven cancer progression through NF-κB pathway-dependent PP2Ac repression.

Gong SJ, Feng XJ, Song WH, et al.
Upregulation of PP2Ac predicts poor prognosis and contributes to aggressiveness in hepatocellular carcinoma.
Cancer Biol Ther. 2016; 17(2):151-62 [PubMed] Free Access to Full Article Related Publications
Protein phosphatase 2A (PP2A) is a heterotrimeric protein phosphatase consisting of a 36-kD catalytic C subunit (PP2Ac). This study aimed to explore the prognostic and biological significance of PP2Ac in human hepatocellular carcinoma (HCC). High PP2Ac expression was significantly (P < 0.01) associated with serum hepatitis B surface antigen positivity, serum hepatitis B e antigen positivity, liver cirrhosis, moderate to poor differentiation grade, advanced disease stage, intrahepatic metastasis, and early recurrence in HCC. Multivariate analysis revealed PP2Ac as an independent prognostic factor for overall survival. Enforced expression of hepatitis B virus X protein (HBx) and its carboxyl-terminal truncated isoform induced PP2Ac expression in HCC cells. Co-immunoprecipitation assay revealed a direct interaction between PP2Ac and HBx. Small interfering RNA-mediated knockdown of PP2Ac significantly inhibited in vitro cell proliferation, colony formation, migration, and invasion and reduced tumor growth in an xenograft mouse model. In contrast, overexpression of PP2Ac promoted HCC cell proliferation, colony formation, and tumorigenesis. Additionally, silencing of PP2Ac impaired the growth-promoting effects on HepG2 HCC cells elicited by overexpression of carboxyl-terminal truncated HBx. Gene expression profiling analysis showed that PP2Ac downregulation modulated the expression of numerous genes involved in cell cycle and apoptosis regulation. Collectively, PP2Ac upregulation has a poor prognostic impact on the overall survival of HCC patients and contributes to the aggressiveness of HCC. PP2Ac may represent a potential therapeutic target for HCC.

Gutiérrez-Monreal MA, Villela L, Baltazar S, et al.
A PER3 polymorphism is associated with better overall survival in diffuse large B-cell lymphoma in Mexican population.
Cancer Biomark. 2015; 15(5):699-705 [PubMed] Related Publications
BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of malignant lymphoma. Presently, one of the most important clinical predictors of survival in DLBCL patients is the International Prognostic Index (IPI). Circadian rhythms are the approximate 24 hour biological rhythms with more than 10 genes making up the molecular clock.
OBJECTIVE: Determine if functional single nucleotide polymorphism in circadian genes may contribute to survival status in patients diagnosed with diffuse large B-cell lymphoma.
METHODS: Sixteen high-risk non-synonymous polymorphisms in circadian genes (CLOCK, CRY2, CSNK1E, CSNK2A1, NPAS2, PER1, PER2, PER3, PPP2CA, and TIM) were genotyped by screening PCR. Results were visualized by agarose gel electrophoresis and confirmed by two-direction sequencing. Clinical variables were compared between mutated and non-mutated groups. LogRank survival analysis and Kaplan-Meier method were used to calculate the overall survival.
RESULTS: PER3 rs10462020 variant showed significant difference in overall survival between patients containing mutated genotypes and those with non-mutated genotypes (p = 0.047). LDH levels (p = 0.021) and IPI score (p < 0.001) also showed differences in overall survival. No clinical differences were observed in mutated vs. non-mutated patients.
CONCLUSIONS: This work suggests a role of PER3 rs10462020 in predicting a prognosis in DLBCL overall survival of patients.

Shen M, Wu MY, Chen LP, et al.
Cantharidin represses invasion of pancreatic cancer cells through accelerated degradation of MMP2 mRNA.
Sci Rep. 2015; 5:11836 [PubMed] Free Access to Full Article Related Publications
Cantharidin is an active constituent of mylabris, a traditional Chinese medicine, and is a potent and selective inhibitor of protein phosphatase 2A (PP2A) that plays an important role in cell cycle control, apoptosis, and cell-fate determination. In the present study, we found that cantharidin repressed the invasive ability of pancreatic cancer cells and downregulated matrix metalloproteinase 2 (MMP2) expression through multiple pathways, including ERK, JNK, PKC, NF-κB, and β-catenin. Interestingly, transcriptional activity of the MMP2 promoter increased after treatment with PP2A inhibitors, suggesting the involvement of a posttranscriptional mechanism. By using an mRNA stability assay, we found accelerated degradation of MMP2 mRNA after treatment of cantharidin. Microarray analyses revealed that multiple genes involved in the 3' → 5' decay pathway were upregulated, especially genes participating in cytoplasmic deadenylation. The elevation of these genes were further demonstrated to be executed through ERK, JNK, PKC, NF-κB, and β-catenin pathways. Knockdown of PARN, RHAU, and CNOT7, three critical members involved in cytoplasmic deadenylation, attenuated the downregulation of MMP2. Hence, we present the mechanism of repressed invasion by cantharidin and other PP2A inhibitors through increased degradation of MMP2 mRNA by elevated cytoplasmic deadenylation.

Fico A, Alfano D, Valentino A, et al.
c-Myc modulation: a key role in melanoma drug response.
Cancer Biol Ther. 2015; 16(9):1375-86 [PubMed] Free Access to Full Article Related Publications
Understanding molecular mechanisms involved in melanoma resistance to drugs is a big challenge. Experimental evidences suggested a correlation between mutational status in B-RAF and melanoma cell susceptibility to drugs, such as paclitaxel, doxorubicin and temozolomide, which generate an accumulation of hydrogen peroxide (H2O2) in the cells. We investigated the survival phenotype and the protein level of c-myc, a B-RAF target molecule, in melanoma cells, carrying a different mutational status in B-RAF, upon paclitaxel, doxorubicin and H2O2 treatment. For the first time, we reported c-myc modulation is critical for melanoma drug response. It appeared drug-specific and post-transcriptionally driven through PP2A; in correlation, cell pre-treatment with okadaic acid (OA), a specific PP2A inhibitor, as well as PP2A silencing of melanoma cells, was able to increase melanoma cell drug-sensitivity and c-myc protein level. This is relevant for designing efficacious therapeutic strategies in melanoma.

Pallai R, Bhaskar A, Barnett-Bernodat N, et al.
Leucine-rich repeat-containing protein 59 mediates nuclear import of cancerous inhibitor of PP2A in prostate cancer cells.
Tumour Biol. 2015; 36(8):6383-90 [PubMed] Related Publications
Using yeast two-hybrid analysis, we identified several novel protein interactions for the oncoprotein Cancerous Inhibitor of PP2A (CIP2A) and confirmed a subset of these interactions in human cancer cell lines. Analysis of the interaction in prostate carcinoma cells between CIP2A and leucine-rich repeat-containing protein 59 (LRRC59) suggests that CIP2A is translocated into the nucleus at G2/M through its association with LRRC59. Recent work by others has demonstrated that nuclear CIP2A disrupts mitotic checkpoints, which promotes deregulation of the cell cycle and increases cancerous phenotypes. Thus, we provide a novel therapeutic mechanism for inhibiting CIP2A function in cancerous cells via targeting the CIP2A-LRRC59 interaction.

Chun YJ
Knockdown of clusterin expression increases the in vitro sensitivity of human prostate cancer cells to paclitaxel.
J Toxicol Environ Health A. 2014; 77(22-24):1443-50 [PubMed] Related Publications
Clusterin/apolipoprotein J is a secreted heterodimeric glycoprotein that is implicated in several pathophysiological processes, including tissue remodeling, reproduction, lipid transport, and apoptosis. Although previous studies demonstrated that clusterin is able to protect against apoptosis, the role of the clusterin in cellular proliferation remains elusive. To determine whether clusterin plays an important role in cellular proliferation, the function of clusterin was examined using a small interfering RNA (siRNA) in PC3 human prostate cancer cells. Transient transfection with clusterin siRNA resulted in significant suppression of clusterin mRNA and protein expression. Clusterin knockdown resulted in a decrease in protein expression of phospho-Akt and an increase in expression of proteins phosphatase type 2AC (PP2AC) and phosphorylation of p38. However, treatment with PP2AC siRNA exerted minimal effects on clusterin expression. Interestingly, clusterin mRNA expression was reduced in paclitaxel-treated cells, and the cytotoxic effect of paclitaxel was more potent when cells were incubated with clusterin siRNA. In addition, co-treatment with paclitaxel and clusterin siRNA significantly enhanced PP2AC levels. Taken together, these results indicate that clusterin plays a crucial role in PC3 cell proliferation and that clusterin depletion may contribute to enhanced sensitivity of PC3 cells to anticancer agents such as paclitaxel.

Li J, Yang XF, Ren XH, et al.
Stable SET knockdown in breast cell carcinoma inhibits cell migration and invasion.
Biochem Biophys Res Commun. 2014; 453(1):7-12 [PubMed] Related Publications
Breast cancer is the most malignant tumor for women, however, the mechanisms underlying this devastating disease remain unclear. SET is an endogenous inhibitor of protein phosphatase 2A (PP2A) and involved in many physiological and pathological processes. SET could promote the occurrence of tumor through inhibiting PP2A. In this study, we explore the role of SET in the migration and invasion of breast cancer cells MDA-MB-231 and ZR-75-30. The stable suppression of SET expression through lentivirus-mediated RNA interference (RNAi) was shown to inhibit the growth, migration and invasion of breast cancer cells. Knockdown of SET increases the activity and expression of PP2Ac and decrease the expression of matrix metalloproteinase 9 (MMP-9). These data demonstrate that SET may be involved in the pathogenic processes of breast cancer, indicating that SET can serve as a potential therapeutic target for the treatment of breast cancer.

Tan X, Chen M
MYLK and MYL9 expression in non-small cell lung cancer identified by bioinformatics analysis of public expression data.
Tumour Biol. 2014; 35(12):12189-200 [PubMed] Related Publications
Gene expression microarrays are widely used to investigate molecular targets in cancers, including lung cancer. In this study, we analyzed online non-small cell lung cancer (NSCLC) microarray databases, to screen the key genes and pathways related to NSCLC by bioinformatics analyses. And then, the expression levels of two selected genes in the down-regulated co-pathways, myosin light chain kinase (MYLK) and myosin regulatory light chain 9 (MYL9), were determined in tumor, paired paraneoplastic, and normal lung tissues. First, gene set enrichment analysis and meta-analysis were conducted to identify key genes and pathways that contribute to NSCLC carcinogenesis. Second, using the total RNA and protein extracted from lung cancer tissues (n = 240), adjacent non-cancer tissues (n = 240), and normal lung tissues (n = 300), we examined the MYLK and MYL9 expression levels by quantitative real-time PCR and Western blot. Finally, we explored the correlations between mRNA and protein expressions of these two genes and the clinicopathological parameters of NSCLC. Fifteen up-regulated and nine down-regulated co-pathways were observed. A number of differentially expressed genes (CALM1, THBS1, CSF3, BMP2, IL6ST, MYLK, ROCK2, IL3RA, MYL9, PPP2CA, CSF2RB, CNAQ, GRIA2, IL10RA, IL10RB, IL11RA, LIFR, PLCB4, and RAC3) were identified (P < 0.01) in the down-regulated co-pathways. The expression levels of MYLK and MYL9, which act downstream of the vascular smooth muscle contraction signal pathway and focal adhesion pathway, were significantly lower in cancer tissue than those in the paraneoplastic and normal tissues (P < 0.05). Moreover, the expression levels of these two genes in stages III and IV NSCLC were significantly increased, when compared to stages I and II, and expressions levels in NSCLC with lymphatic metastasis were higher than that without lymphatic metastasis (P < 0.05). Additionally, significant lower expression levels of the two genes were found in smokers than in nonsmokers (P < 0.05). In contrast, gender, differentiated degrees, and pathohistological type appeared to have no impact on these gene expressions (P > 0.05). These findings suggested that low MYLK and MYL9 expressions might be associated with the development of NSCLC. These genes may be also relevant to NSCLC metastasis. Future investigations with large sample sizes needed to verify these findings.

Luo DJ, Feng Q, Wang ZH, et al.
Knockdown of phosphotyrosyl phosphatase activator induces apoptosis via mitochondrial pathway and the attenuation by simultaneous tau hyperphosphorylation.
J Neurochem. 2014; 130(6):816-25 [PubMed] Related Publications
Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and the AD transgenic mouse models. Here, we investigated whether down-regulation of PTPA affects cell viability and the underlying mechanisms. We found that PTPA was located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines. PTPA knockdown decreased mitochondrial membrane potential and induced Bax translocation into the mitochondria with a simultaneous release of Cyt C, activation of caspase-3, cleavage of poly (DNA ribose) polymerase (PARP), and decrease in Bcl-xl and Bcl-2 protein levels. Over-expression of Protein phosphatase 2A (PP2A) catalytic subunit (PP2AC ) did not rescue the apoptosis induced by PTPA knockdown, and PTPA knockdown did not affect the level of and their phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that PP2A and MAPKs were not involved in the apoptosis induced by PTPA knockdown. In the cells with over-expression of tau, PTPA knockdown induced PP2A inhibition and tau hyperphosphorylation but did not cause significant cell death. These data suggest that PTPA deficit causes apoptotic cell death through mitochondrial pathway and simultaneous tau hyperphosphorylation attenuates the PTPA-induced cell death. Phosphotyrosyl phosphatase activator (PTPA) is decreased in the brains of Alzheimer's disease (AD) and AD transgenic mouse models. Here, we investigated whether down-regulation of PTPA affects cell viability. We found that PTPA located in the integral membrane of mitochondria, and knockdown of PTPA induced cell apoptosis in HEK293 and N2a cell lines by decreasing mitochondrial membrane potential, which leads to translocation of Bax and a simultaneous release of Cyt C. In the cells with tau over-expression, PTPA knockdown inactivated PP2A to phosphorylate tau to avoid cell apoptosis which induced by PTPA knockdown.

Bhardwaj A, Singh S, Srivastava SK, et al.
Restoration of PPP2CA expression reverses epithelial-to-mesenchymal transition and suppresses prostate tumour growth and metastasis in an orthotopic mouse model.
Br J Cancer. 2014; 110(8):2000-10 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Emergence of castration-resistance in prostate cancer (PCa) is invariably associated with aggressive and metastatic disease. Previously, we reported promotion of castration-resistance upon downregulation of PPP2CA (encoding catalytic subunit of protein phosphatase 2A (PP2A), α-isoform); however, its role in PCa growth and metastasis remained undetermined.
METHODS: PPP2CA was overexpressed/silenced in PCa cells by stable transfection. Gene expression was examined by reverse transcription polymerase chain reaction, immunoblot and immunofluorescence analyses, and transcriptional activity measured by luciferase-based promoter-reporter assay. Effect on PCa phenotype was studied in vitro and in orthotopic mouse model, and immunohistochemical/histological analyses performed to assess proliferation/apoptosis and confirm metastatic lesions.
RESULTS: An inverse association of PPP2CA expression was observed with epithelial-to-mesenchymal transition (EMT) and aggressive PCa phenotype. PPP2CA restoration resulted in decreased nuclear accumulation and transcriptional activity of β-catenin/NF-κB, and restitution of their activity abrogated PPP2CA-induced EMT reversal and suppression of PCa invasiveness. Akt mediated PPP2CA loss-induced nuclear accumulation of β-catenin/NF-κB through inactivation of Gsk3-β and IκB-α, respectively. Animal studies revealed a suppressive effect of PPP2CA expression on PCa growth and metastasis.
CONCLUSIONS: Our findings suggest that PPP2CA downregulation serves as a molecular link between gain of castration-resistance and aggressive PCa phenotype, and its restoration could be an effective preventive/therapeutic approach against the advanced disease.

Zwick C, Held G, Auth M, et al.
Over one-third of African-American MGUS and multiple myeloma patients are carriers of hyperphosphorylated paratarg-7, an autosomal dominantly inherited risk factor for MGUS/MM.
Int J Cancer. 2014; 135(4):934-8 [PubMed] Related Publications
As hyperphosphorylated paratarg-7 (pP-7) carrier state was shown to be the first molecularly defined autosomal dominantly inherited risk factor for monoclonal gammopathy of unknown significance (MGUS) and multiple myeloma (MM) in a European population, the prevalence of pP-7 carrier state among African-Americans who have a significantly higher incidence of MGUS/MM is of interest. We therefore determined pP-7 carrier state and paraproteins with specificity for P-7 in African-American, European and Japanese patients with MGUS/MM and healthy controls. By isoelectric focusing and ELISA, a paratarg-7-specific paraprotein and the associated pP-7 carrier state was observed in 30/81 (37.0%) African-American, 42/252 (16.7%) European and 7/176 (4.0%) Japanese MGUS/MM patients (p < 0.001). A pP-7 carrier state was found in 11/100 (11.0%) African-American, 8/550 (1.5%) European and 1/278 (0.4%) Japanese healthy controls (p < 0.001), resulting in an odds ratio for MGUS/MM of 4.8 (p < 0.001) among African-American, 13.6 among European (p < 0.001) and 11.5 (p = 0.023) among Japanese carriers of pP-7. We conclude that pP-7 carriers are most prevalent among African-Americans, but a pP-7 carrier state is the strongest molecularly defined single risk factor for MGUS/MM known to date in all three ethnic groups. The high prevalence of pP-7 carriers among African-American patients emphasizes a predominant role of this genetic factor in the pathogenesis of these diseases. The large number of pP7 African-American patients and controls should facilitate the identification of the SNP or mutation underlying the pP-7 carrier state.

Yang R, Yang L, Qiu F, et al.
Functional genetic polymorphisms in PP2A subunit genes confer increased risks of lung cancer in southern and eastern Chinese.
PLoS One. 2013; 8(10):e77285 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Protein phosphatase-2A (PP2A) is one of the major cellular serine-threonine phosphatases and functions as a tumor suppressor that negatively regulates the activity of some oncogenic kinases. Recent studies have reported that PP2A expression was suppressed during lung carcinogenesis, we there hypothesized that the single nucleotide polymorphisms (SNPs) in PP2A subunit genes may affect PP2A function and thus contribute to lung cancer susceptibility. In a two-stage case-control study with a total of 1559 lung cancer patients and 1679 controls, we genotyped eight putative functional SNPs and one identified functional SNP (i.e., rs11453459) in seven major PP2A subunits (i.e., PPP2R1A, PPP2R1B, PPP2CA, PPP2R2A, PPP2R2B, PPP2R5C, PPP2R5E) in southern and eastern Chinese. We found that rs11453459G (-G/GG) variant genotypes of PPP2R1A and the rs1255722AA variant genotype of PPP2R5E conferred increased risks of lung cancer (rs11453459, -G/GG vs. -: OR = 1.31, 95% CI = 1.13-1.51; rs1255722, AA vs.
AG/GG: OR = 1.27, 95% CI = 1.07-1.51). After combined the two variants, the number of the adverse genotypes was positively associated with lung cancer risk in a dose-response manner (P trend = 5.63 × 10(-6)). Further functional assay showed that lung cancer tissues carrying rs1255722AA variant genotype had a significantly lower mRNA level of PPP2R5E compared with tissues carrying GG/GA genotypes. However, such effect was not observed for the other SNPs and other combinations. Our findings suggested that the two functional variants in PPP2R1A and PPP2R5E and their combination are associated with lung cancer risk in Chinese, which may be valuable biomarkers to predict risk of lung cancer.

Khanna A, Kauko O, Böckelman C, et al.
Chk1 targeting reactivates PP2A tumor suppressor activity in cancer cells.
Cancer Res. 2013; 73(22):6757-69 [PubMed] Free Access to Full Article Related Publications
Checkpoint kinase Chk1 is constitutively active in many cancer cell types and new generation Chk1 inhibitors show marked antitumor activity as single agents. Here we present a hitherto unrecognized mechanism that contributes to the response of cancer cells to Chk1-targeted therapy. Inhibiting chronic Chk1 activity in cancer cells induced the tumor suppressor activity of protein phosphatase protein phosphatase 2A (PP2A), which by dephosphorylating MYC serine 62, inhibited MYC activity and impaired cancer cell survival. Mechanistic investigations revealed that Chk1 inhibition activated PP2A by decreasing the transcription of cancerous inhibitor of PP2A (CIP2A), a chief inhibitor of PP2A activity. Inhibition of cancer cell clonogenicity by Chk1 inhibition could be rescued in vitro either by exogenous expression of CIP2A or by blocking the CIP2A-regulated PP2A complex. Chk1-mediated CIP2A regulation was extended in tumor models dependent on either Chk1 or CIP2A. The clinical relevance of CIP2A as a Chk1 effector protein was validated in several human cancer types, including neuroblastoma, where CIP2A was identified as an NMYC-independent prognostic factor. Because the Chk1-CIP2A-PP2A pathway is driven by DNA-PK activity, functioning regardless of p53 or ATM/ATR status, our results offer explanative power for understanding how Chk1 inhibitors mediate single-agent anticancer efficacy. Furthermore, they define CIP2A-PP2A status in cancer cells as a pharmacodynamic marker for their response to Chk1-targeted therapy.

Kim JA, Kim Y, Kwon BM, Han DC
The natural compound cantharidin induces cancer cell death through inhibition of heat shock protein 70 (HSP70) and Bcl-2-associated athanogene domain 3 (BAG3) expression by blocking heat shock factor 1 (HSF1) binding to promoters.
J Biol Chem. 2013; 288(40):28713-26 [PubMed] Free Access to Full Article Related Publications
Heat shock factor 1 (HSF1) enhances the survival of cancer cells under various stresses. The knock-out of HSF1 impairs cancer formation and progression, suggesting that HSF1 is a promising therapeutic target. To identify inhibitors of HSF1 activity, we performed cell-based screening with a library of marketed and experimental drugs and identified cantharidin as an HSF1 inhibitor. Cantharidin is a potent antitumor agent from traditional Chinese medicine. Cantharidin inhibited heat shock-induced luciferase activity with an IC50 of 4.2 μm. In contrast, cantharidin did not inhibit NF-κB luciferase reporter activity, demonstrating that cantharidin is not a general transcription inhibitor. When the HCT-116 colorectal cancer cells were exposed to heat shock in the presence of cantharidin, the induction of HSF1 downstream target proteins, such as HSP70 and BAG3 (Bcl-2-associated athanogene domain 3), was suppressed. HSP70 and its co-chaperone BAG3 have been reported to protect cells from apoptosis by stabilizing anti-apoptotic Bcl-2 family proteins. As expected, treating HCT-116 cancer cells with cantharidin significantly decreased the amounts of BCL-2, BCL-xL, and MCL-1 protein and induced apoptotic cell death. Chromatin immunoprecipitation analysis showed that cantharidin inhibited the binding of HSF1 to the HSP70 promoter and subsequently blocked HSF1-dependent p-TEFb recruitment. Therefore, the p-TEFb-dependent phosphorylation of the C-terminal domain of RNA polymerase II was blocked, arresting transcription at the elongation step. Protein phosphatase 2A inhibition with PP2CA siRNA or okadaic acid did not block HSF1 activity, suggesting that cantharidin inhibits HSF1 in a protein phosphatase 2A-independent manner. We show for the first time that cantharidin inhibits HSF1 transcriptional activity.

Duong FH, Dill MT, Matter MS, et al.
Protein phosphatase 2A promotes hepatocellular carcinogenesis in the diethylnitrosamine mouse model through inhibition of p53.
Carcinogenesis. 2014; 35(1):114-22 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Most HCCs develop in cirrhotic livers. Alcoholic liver disease, chronic hepatitis B and chronic hepatitis C are the most common underlying liver diseases. Hepatitis C virus (HCV)-specific mechanisms that contribute to HCC are presently unknown. Transgenic expression of HCV proteins in the mouse liver induces an overexpression of the protein phosphatase 2A catalytic subunit (PP2Ac). We have previously reported that HCV-induced PP2Ac overexpression modulates histone methylation and acetylation and inhibits DNA damage repair. In this study, we analyze tumor formation and gene expression using HCV transgenic mice that overexpress PP2Ac and liver tissues from patients with HCC. We demonstrate that PP2Ac overexpression interferes with p53-induced apoptosis. Injection of the carcinogen, diethylnitrosamine, induced significantly more and larger liver tumors in HCV transgenic mice that overexpress PP2Ac compared with control mice. In human liver biopsies from patients with HCC, PP2Ac expression was significantly higher in HCC tissue compared with non-tumorous liver tissue from the same patients. Our findings demonstrate an important role of PP2Ac overexpression in liver carcinogenesis and provide insights into the molecular pathogenesis of HCV-induced HCC.

Cao Z, Zhang R, Li J, et al.
X-linked inhibitor of apoptosis protein (XIAP) regulation of cyclin D1 protein expression and cancer cell anchorage-independent growth via its E3 ligase-mediated protein phosphatase 2A/c-Jun axis.
J Biol Chem. 2013; 288(28):20238-47 [PubMed] Free Access to Full Article Related Publications
The X-linked inhibitor of apoptosis protein (XIAP) is a well known potent inhibitor of apoptosis; however, it is also involved in other cancer cell biological behavior. In the current study, we discovered that XIAP and its E3 ligase played a crucial role in regulation of cyclin D1 expression in cancer cells. We found that deficiency of XIAP expression resulted in a marked reduction in cyclin D1 expression. Consistently, cell cycle transition and anchorage-independent cell growth were also attenuated in XIAP-deficient cancer cells compared with those of the parental wild-type cells. Subsequent studies demonstrated that E3 ligase activity within the RING domain of XIAP is crucial for its ability to regulate cyclin D1 transcription, cell cycle transition, and anchorage-independent cell growth by up-regulating transactivation of c-Jun/AP-1. Moreover, we found that E3 ligase within RING domain was required for XIAP inhibition of phosphatase PP2A activity by up-regulation of PP2A phosphorylation at Tyr-307 in its catalytic subunit. Such PP2A phosphorylation and inactivation resulted in phosphorylation and activation of its downstream target c-Jun in turn leading to cyclin D1 expression. Collectively, our studies uncovered a novel function of E3 ligase activity of XIAP in the up-regulation of cyclin D1 expression, providing significant insight into the understanding of the biomedical significance of overexpressed XIAP in cancer development, further offering a new molecular basis for utilizing XIAP E3 ligase as a cancer therapeutic target.

Pandey P, Seshacharyulu P, Das S, et al.
Impaired expression of protein phosphatase 2A subunits enhances metastatic potential of human prostate cancer cells through activation of AKT pathway.
Br J Cancer. 2013; 108(12):2590-600 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Protein phosphatase 2A (PP2A) is a dephosphorylating enzyme, loss of which can contribute to prostate cancer (PCa) pathogenesis. The aim of this study was to analyse the transcriptional and translational expression patterns of individual subunits of the PP2A holoenzyme during PCa progression.
METHODS: Immunohistochemistry (IHC), western blot, and real-time PCR was performed on androgen-dependent (AD) and androgen-independent (AI) PCa cells, and benign and malignant prostate tissues for all the three PP2A (scaffold, regulatory, and catalytic) subunits. Mechanistic and functional studies were performed using various biochemical and cellular techniques.
RESULTS: Through immunohistochemical analysis we observed significantly reduced levels of PP2A-A and -B'γ subunits (P<0.001 and P=0.0002) in PCa specimens compared with benign prostate. Contemporarily, there was no significant difference in PP2A-C subunit expression between benign and malignant tissues. Similar to the expression pattern observed in tissues, the endogenous levels of PP2A-A and B'γ subunits were abrogated from the low metastatic to high metastatic and AD to AI cell line models, without any change in the catalytic subunit expression. Furthermore, using in vitro studies we demonstrated that PP2A-Aα scaffold subunit has a role in dampening AKT, β-catenin, and FAK (focal adhesion kinase) signalling.
CONCLUSION: We conclude that loss of expression of scaffold and regulatory subunits of PP2A is responsible for its altered function during PCa pathogenesis.

Xi P, Zhou L, Wang M, et al.
Serine/threonine-protein phosphatase 2A physically interacts with human telomerase reverse transcriptase hTERT and regulates its subcellular distribution.
J Cell Biochem. 2013; 114(2):409-17 [PubMed] Related Publications
Telomerase plays fundamental roles in bypassing cellular aging and promoting cancer progression by maintaining telomere homeostasis and telomere-independent activities. However, the molecular mechanisms by which telomerase provokes aging and cancer are far from being fully understood. In a search for proteins interacting with human telomerase reverse transcriptase hTERT by the yeast two-hybrid screen using hTERT T-motif as bait, we identified PP2A scaffolding subunit PR65 alpha isoform as an hTERT interacting partner. We showed that both PP2A catalytic subunit PP2AC and scaffolding subunit PR65 interacted with hTERT in vivo and in vitro and inhibited telomerase activity. In addition, we found that PP2A prevented the interaction of hTERT with 14-3-3θ signaling protein, an hTERT binding partner that is required for nuclear localization of hTERT. Activation of PP2A by overexpression of PP2AC or PR65 led to cytoplasmic accumulation of hTERT, which was reversed by treatment with PP2A inhibitor okadaic acid. Together, these observations suggest that PP2A regulates hTERT subcellular localization, in addition to its inhibitory effects on telomerase activity.

Jackson JB, Pallas DC
Circumventing cellular control of PP2A by methylation promotes transformation in an Akt-dependent manner.
Neoplasia. 2012; 14(7):585-99 [PubMed] Free Access to Full Article Related Publications
Heterotrimeric protein phosphatase 2A (PP2A) consists of catalytic C (PP2Ac), structural A, and regulatory B-type subunits, and its dysfunction has been linked to cancer. Reversible methylation of PP2Ac by leucine carboxyl methyltransferase 1 (LCMT-1) and protein phosphatase methylesterase 1 (PME-1) differentially regulates B-type subunit binding and thus PP2A function. Polyomavirus middle (PyMT) and small (PyST) tumor antigens and SV40 small tumor antigen (SVST) are oncoproteins that block PP2A function by replacing certain B-type subunits, resulting in cellular transformation. Whereas the B-type subunits replaced by these oncoproteins seem to exhibit a binding preference for methylated PP2Ac, PyMT does not. We hypothesize that circumventing the normal cellular control of PP2A by PP2Ac methylation is a general strategy for ST- and MT-mediated transformation. Two predictions of this hypothesis are (1) that PyST and SVST also bind PP2A in a methylation-insensitive manner and (2) that down-regulation of PP2Ac methylation will activate progrowth and prosurvival signaling and promote transformation. We found that SVST and PyST, like PyMT, indeed form PP2A heterotrimers independently of PP2Ac methylation. In addition, reducing PP2Ac methylation through LCMT-1 knockdown or PME-1 overexpression enhanced transformation by activating the Akt and p70/p85 S6 kinase (S6K) pathways, pathways also activated by MT and ST oncoproteins. These results support the hypothesis that MT and ST oncoproteins circumvent cellular control of PP2A by methylation to promote transformation. They also implicate LCMT-1 as a negative regulator of Akt and p70/p85 S6K. Therefore, disruption of PP2Ac methylation may contribute to cancer, and modulation of this methylation may serve as an anticancer target.

Song IS, Jun SY, Na HJ, et al.
Inhibition of MKK7-JNK by the TOR signaling pathway regulator-like protein contributes to resistance of HCC cells to TRAIL-induced apoptosis.
Gastroenterology. 2012; 143(5):1341-51 [PubMed] Related Publications
BACKGROUND & AIMS: The TOR signaling pathway regulator-like (TIPRL) protein, the mammalian ortholog of yeast TIP41, was identified in an expression profiling screen for factors that regulate human liver carcinogenesis. We investigated the role of human TIPRL protein in hepatocellular carcinoma (HCC).
METHODS: We measured the level of TIPRL in HCC and adjacent nontumor tissues from patients. We used small interfering RNAs and zebrafish to study the function of TIPRL. We used annexin V propidium iodide staining and immunoblot analyses to measure apoptosis and activation of apoptotic signaling pathways. We used confocal microscopy, coimmunoprecipitation, and glutathione-S transferase pull-down analyses to determine interactions among mitogen-activated protein kinase kinase 7 (MKK7 or MAP2K7), TIPRL, and the protein phosphatase type 2A (PP2Ac). We studied the effects of TIPRL in tumor xenografts in mice.
RESULTS: Levels of TIPRL were higher in HCC tissues and cell lines than nontumor tissues and primary hepatocytes. Knockdown of tiprl expression in zebrafish led to large amounts of apoptosis throughout the embryos. Incubation of HCC cells, but not primary human hepatocytes, with small interfering RNA against TIPRL (siTIPRL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) caused prolonged activation (phosphorylation) of MKK7 and c-Jun N-terminal kinase (JNK) and led to apoptosis, indicated by cleavage of procaspase-8,-3 and of poly-(adenosine diphosphate-ribose) polymerase. TIPRL bound to MKK7 and PP2Ac and promoted the interaction between MKK7 and PP2Ac. In mice, injection of HCC xenograft tumors with siTIPRL and TRAIL led to tumor apoptosis and regression.
CONCLUSIONS: TIPRL is highly up-regulated in human HCC samples and cell lines, compared with noncancerous liver tissues. TIPRL prevents prolonged activation of MKK7 and JNK and TRAIL-induced apoptosis by mediating the interaction between MKK7 and PP2Ac.

Frau M, Simile MM, Tomasi ML, et al.
An expression signature of phenotypic resistance to hepatocellular carcinoma identified by cross-species gene expression analysis.
Cell Oncol (Dordr). 2012; 35(3):163-73 [PubMed] Free Access to Full Article Related Publications
BACKGROUND AND AIMS: Hepatocarcinogenesis is under polygenic control. We analyzed gene expression patterns of dysplastic liver nodules (DNs) and hepatocellular carcinomas (HCCs) chemically-induced in F344 and BN rats, respectively susceptible and resistant to hepatocarcinogenesis.
METHODS: Expression profiles were performed by microarray and validated by quantitative RT-PCR and Western blot.
RESULTS: Cluster analysis revealed two distinctive gene expression patterns, the first of which included normal liver of both strains and BN nodules, and the second one F344 nodules and HCC of both strains. We identified a signature predicting DN and HCC progression, characterized by highest expression of oncosuppressors Csmd1, Dmbt1, Dusp1, and Gnmt, in DNs, and Bhmt, Dmbt1, Dusp1, Gadd45g, Gnmt, Napsa, Pp2ca, and Ptpn13 in HCCs of resistant rats. Integrated gene expression data revealed highest expression of proliferation-related CTGF, c-MYC, and PCNA, and lowest expression of BHMT, DMBT1, DUSP1, GADD45g, and GNMT, in more aggressive rat and human HCC. BHMT, DUSP1, and GADD45g expression predicted patients' survival.
CONCLUSIONS: Our results disclose, for the first time, a major role of oncosuppressor genes as effectors of genetic resistance to hepatocarcinogenesis. Comparative functional genomic analysis allowed discovering an evolutionarily conserved gene expression signature discriminating HCC with different propensity to progression in rat and human.

Rivetti S, Lauriola M, Voltattorni M, et al.
Gene expression profile of human colon cancer cells treated with cross-reacting material 197, a diphtheria toxin non-toxic mutant.
Int J Immunopathol Pharmacol. 2011 Jul-Sep; 24(3):639-49 [PubMed] Related Publications
Cross-Reacting Material 197 (CRM197) is a diphtheria toxin non-toxic mutant that has shown antitumor activity in mice and humans. It is still unclear whether this anti-tumorigenic effect depends on its strong inflammatory-immunological property, its ability to inhibit heparin-binding epidermal growth factor (HB-EGF), or even its possible weak toxicity. CRM197 is utilized as a specific inhibitor of HB-EGF that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. In this study we evaluate the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible influence on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment (MTT modified assay), or changes in cell cycle distribution (flow cytometry), in EGFR localization, phospho-EGFR detected signals (immunohistochemistry) or in morphology (scanning electron microscopy, SEM) they show a change in the gene expression profile by microarray analysis (cDNA microarray SS-H19k8). The overexpression of genes like protein phosphatase 2, catalytic subunit, alpha isozyme (PPP2CA), guanine nucleotide-binding protein G subunit alpha-1(GNAI1) and butyrophilin, subfamily 2, member A1 (BTN2A1) has been confirmed with real-time-qPCR. This is the first study where the CRM197 treatment on HT-29 shows a possible scarce implication of endogenous HB-EGF on EGFR expression and cancer cell development. At the same time, our results show the alteration of a specific and selected number of genes.

Mannava S, Omilian AR, Wawrzyniak JA, et al.
PP2A-B56α controls oncogene-induced senescence in normal and tumor human melanocytic cells.
Oncogene. 2012; 31(12):1484-92 [PubMed] Free Access to Full Article Related Publications
Oncoprotein C-MYC is overexpressed in human metastatic melanomas and melanoma-derived cells where it is required for the suppression of oncogene-induced senescence (OIS). The genetic events that maintain high levels of C-MYC in melanoma cells and their role in OIS are unknown. Here we report that C-MYC in cells from several randomly chosen melanoma lines was upregulated at the protein level, and largely because of the increased protein stability. Of all known regulators of C-MYC stability, levels of B56α subunit of the PP2A tumor suppressor complex were substantially suppressed in all human melanoma cells compared with normal melanocytes. Accordingly, immunohistochemical analysis revealed that the lowest and the highest amounts of PP2A-B56α were predominantly detected in metastatic melanoma tissues and in primary melanomas from patients with good clinical outcome, respectively. Importantly, PP2A-B56α overexpression suppressed C-MYC in melanoma cells and induced OIS, whereas depletion of PP2A-B56α in normal human melanocytes upregulated C-MYC protein levels and suppressed BRAF(V600E)- and, less efficiently, NRAS(Q61R)-induced senescence. Our data reveal a mechanism of C-MYC overexpression in melanoma cells and identify a functional role for PP2A-B56α in OIS of melanocytic cells.

Chuang JY, Hung JJ
Overexpression of HDAC1 induces cellular senescence by Sp1/PP2A/pRb pathway.
Biochem Biophys Res Commun. 2011; 407(3):587-92 [PubMed] Related Publications
Senescence is associated with decreased activities of DNA replication, protein synthesis, and cellular division, which can result in deterioration of cellular functions. Herein, we report that the growth and division of tumor cells were significantly repressed by overexpression of histone deacetylase (HDAC) 1 with the Tet-off induced system or transient transfection. In addition, HDAC1 overexpression led to senescence through both an accumulation of hypophosphorylated active retinoblastoma protein (pRb) and an increase in the protein level of protein phosphatase 2A catalytic subunit (PP2Ac). HDAC1 overexpression also increased the level of Sp1 deacetylation and elevated the interaction between Sp1 and p300, and subsequently that Sp1/p300 complex bound to the promoter of PP2Ac, thus leading to induction of PP2Ac expression. Similar results were obtained in the HDAC1-Tet-off stable clone. Taken together, these results indicate that HDAC1 overexpression restrained cell proliferation and induced premature senescence in cervical cancer cells through a novel Sp1/PP2A/pRb pathway.

Bhardwaj A, Singh S, Srivastava SK, et al.
Modulation of protein phosphatase 2A activity alters androgen-independent growth of prostate cancer cells: therapeutic implications.
Mol Cancer Ther. 2011; 10(5):720-31 [PubMed] Free Access to Full Article Related Publications
Earlier we identified PPP2CA, which encodes for the α-isoform of protein phosphatase 2A (PP2A) catalytic subunit, as one of the downregulated genes in androgen-independent prostate cancer. PP2A is a serine/threonine phosphatase and a potent tumor suppressor involved in broad cellular functions; however, its role in prostate cancer has not yet been determined. Here, we have investigated the effect of PP2A activity modulation on the androgen-independent growth of prostate cancer cells. Our data show that the PPP2CA expression and PP2A activity is downregulated in androgen-independent (C4-2) prostate cancer cells as compared with androgen-dependent (LNCaP) cells. Downregulation of PP2A activity by pharmacologic inhibition or short interfering RNA-mediated PPP2CA silencing sustains the growth of LNCaP cells under an androgen-deprived condition by relieving the androgen deprivation-induced cell-cycle arrest and preventing apoptosis. Immunoblot analyses reveal enhanced phosphorylation of Akt, extracellular signal-regulated kinase (ERK), BAD, increased expression of cyclins (A1/D1), and decreased expression of cyclin inhibitor (p27) on PP2A downregulation. Furthermore, our data show that androgen receptor (AR) signaling is partially maintained in PP2A-inhibited cells through increased AR expression and ligand-independent phosphorylation. Pharmacologic inhibition of Akt, ERK, and AR suggest a role of these signaling pathways in facilitating the androgen-independent growth of LNCaP cells. These observations are supported by the effect of ceramide, a PP2A activator, on androgen-independent C4-2 cells. Ceramide inhibited the growth of C4-2 cells on androgen deprivation, an effect that could be abrogated by PP2A downregulation. Altogether, our findings suggest that modulation of PP2A activity may represent an alternative therapeutic approach for the treatment of advanced androgen-independent prostate cancer.

Lauenborg B, Kopp K, Krejsgaard T, et al.
Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis.
APMIS. 2010; 118(10):719-28 [PubMed] Free Access to Full Article Related Publications
The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10 is associated with serine/threonine kinases and phosphatases and modulates the extracellular signal-regulated kinase pathway suggesting a role in the regulation of cellular growth. Here we provide evidence of a constitutive expression of PDCD10 in malignant T cells and cell lines from peripheral blood of cutaneous T-cell lymphoma (Sezary syndrome) patients. PDCD10 is associated with protein phosphatase-2A, a regulator of mitogenesis and apoptosis in malignant T cells. Inhibition of oncogenic signal pathways [Jak3, Notch1, and nuclear factor-κB (NF-κB)] partly inhibits the constitutive PDCD10 expression, whereas an activator of Jak3 and NF-κB, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10 and cancer.

Wong LL, Zhang D, Chang CF, Koay ES
Silencing of the PP2A catalytic subunit causes HER-2/neu positive breast cancer cells to undergo apoptosis.
Exp Cell Res. 2010; 316(20):3387-96 [PubMed] Related Publications
Protein phosphatase 2A (PP2A), in its activated form as a phosphatase, is a tumour suppressor. However, when PP2A is phosphorylated at the tyrosine residue (pY307), it loses its phosphatase activity and becomes inactivated. In our previous study, we found a higher expression of pY307-PP2A in HER-2/neu positive breast tumour samples and significantly correlated to tumour progression, and in this context, it could function as a proto-oncogene. The above and subsequent findings led us to postulate that the critical role of PP2A in maintaining the balance between cell survival and cell death may be linked to its phosphorylation status at its Y307 residue. Hence, we further investigated the effects of knocking down the PP2A catalytic subunit which contains the Y307 amino acid residue in two HER-2/neu positive breast cancer cell lines, BT474 and SKBR3. We showed that this causes the silenced HER-2/neu breast cancer cells to undergo apoptosis and furthermore, that such apoptosis is mediated by p38 MAPK-caspase 3/PARP activation. Understanding the role of PP2A in HER2/neu positive cells might thus provide insight into new targets for breast cancer therapy.

De Toni-Costes F, Despeaux M, Bertrand J, et al.
A New alpha5beta1 integrin-dependent survival pathway through GSK3beta activation in leukemic cells.
PLoS One. 2010; 5(3):e9807 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cell survival mediated by integrin engagement has been implicated in cell adhesion-mediated drug resistance. We have recently demonstrated that the activation of glycogen synthase kinase 3 beta (GSK3beta) is a new pathway supporting the chemoresistance of leukemic cells adhered to fibronectin.
METHODOLOGY AND PRINCIPAL FINDINGS: We show here that in conditions of serum starvation, the fibronectin receptor alpha(5)beta(1) integrin, but not alpha(4)beta(1), induced activation of GSK3beta through Ser-9 dephosphorylation in adherent U937 cells. The GSK3beta-dependent survival pathway occurred in adherent leukemic cells from patients but not in the HL-60 and KG1 cell lines. In adhesion, activated GSK3beta was found in the cytosol/plasma membrane compartment and was co-immunoprecipitated with alpha(5) integrin, the phosphatase PP2A and the scaffolding protein RACK1. PP2A and its regulatory subunit B' regulated the Ser-9 phosphorylation of GSK3beta. In adherent leukemic cells, alpha(5)beta(1) integrin but not alpha(4)beta(1) upregulated the resistance to TNFalpha-induced apoptosis. Both extrinsic and intrinsic apoptotic pathways were under the control of alpha(5)beta(1) and GSK3beta.
CONCLUSIONS AND SIGNIFICANCE: Our data show that, upon serum starvation, alpha(5)beta(1) integrin engagement could regulate specific pro-survival functions through the activation of GSK3beta.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PPP2CA, Cancer Genetics Web: http://www.cancer-genetics.org/PPP2CA.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999