PRDX6

Gene Summary

Gene:PRDX6; peroxiredoxin 6
Aliases: PRX, p29, AOP2, 1-Cys, NSGPx, aiPLA2, HEL-S-128m
Location:1q25.1
Summary:The protein encoded by this gene is a member of the thiol-specific antioxidant protein family. This protein is a bifunctional enzyme with two distinct active sites. It is involved in redox regulation of the cell; it can reduce H(2)O(2) and short chain organic, fatty acid, and phospholipid hydroperoxides. It may play a role in the regulation of phospholipid turnover as well as in protection against oxidative injury. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:peroxiredoxin-6
HPRD
Source:NCBIAccessed: 25 June, 2015

Ontology:

What does this gene/protein do?
Show (12)
Pathways:What pathways are this gene/protein implicaed in?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Drug Resistance
  • p38 Mitogen-Activated Protein Kinases
  • Gene Expression
  • Flavonoids
  • Flavanones
  • Immunoenzyme Techniques
  • Cancer Gene Expression Regulation
  • Antioxidants
  • Repressor Proteins
  • Chromosome 1
  • NQO1
  • Transcription Factors
  • Cell Survival
  • Peroxiredoxin VI
  • Up-Regulation
  • Transcriptional Activation
  • Apoptosis
  • bcl-X Protein
  • Dose-Response Relationship, Drug
  • Lymphatic Metastasis
  • Oxidative Stress
  • Gene Expression Profiling
  • Peroxiredoxin III
  • Antineoplastic Agents
  • Catalase
  • Lung Cancer
  • NFE2L2
  • Transfection
  • Breast Cancer
  • Signal Transduction
  • Reactive Oxygen Species
  • Cisplatin
  • Tumor Markers
  • Xenograft Models
  • Stat3 protein, mouse
  • Transcription Factor AP-1
  • Group VI Phospholipases A2
  • Peroxiredoxins
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Ovarian Cancer
Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PRDX6 (cancer-related)

Beutler AS, Kulkarni AA, Kanwar R, et al.
Sequencing of Charcot-Marie-Tooth disease genes in a toxic polyneuropathy.
Ann Neurol. 2014; 76(5):727-37 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
OBJECTIVE: Mutations in Charcot-Marie-Tooth disease (CMT) genes are the cause of rare familial forms of polyneuropathy. Whether allelic variability in CMT genes is also associated with common forms of polyneuropathy-considered "acquired" in medical parlance-is unknown. Chemotherapy-induced peripheral neuropathy (CIPN) occurs commonly in cancer patients and is individually unpredictable. We used CIPN as a clinical model to investigate the association of non-CMT polyneuropathy with CMT genes.
METHODS: A total of 269 neurologically asymptomatic cancer patients were enrolled in the clinical trial Alliance N08C1 to receive the neurotoxic drug paclitaxel, while undergoing prospective assessments for polyneuropathy. Forty-nine CMT genes were analyzed by targeted massively parallel sequencing of genomic DNA from patient blood.
RESULTS: A total of 119 (of 269) patients were identified from the 2 ends of the polyneuropathy phenotype distribution: patients that were most and least susceptible to paclitaxel polyneuropathy. The CMT gene PRX was found to be deleteriously mutated in patients who were susceptible to CIPN but not in controls (p = 8 × 10(-3)). Genetic variation in another CMT gene, ARHGEF10, was highly significantly associated with CIPN (p = 5 × 10(-4)). Three nonsynonymous recurrent single nucleotide variants contributed to the ARHGEF10 signal: rs9657362, rs2294039, and rs17683288. Of these, rs9657362 had the strongest effect (odds ratio = 4.8, p = 4 × 10(-4)).
INTERPRETATION: The results reveal an association of CMT gene allelic variability with susceptibility to CIPN. The findings raise the possibility that other acquired polyneuropathies may also be codetermined by genetic etiological factors, of which some may be related to genes already known to cause the phenotypically related Mendelian disorders of CMT.

Guo J, Yang L, Huang J, et al.
Knocking down the expression of SYF2 inhibits the proliferation of glioma cells.
Med Oncol. 2014; 31(8):101 [PubMed] Related Publications
SYF2 is thought to be a cell cycle regulator at the G1/S transition, which encodes a nuclear protein that interacts with cyclin D-type binding-protein 1. In the present study, we investigated the role of SYF2 in human glioma progression. Immunohistochemical and Western blot analyses were performed in human glioma tissues. High SYF2 expression (located in cell nuclei) was observed in 80 samples, and its level was correlated with the grade of malignancy. A strongly positive correlation was observed between SYF2 and Ki-67 expression (P < 0.01). More importantly, high expression of SYF2 was associated with a poor outcome. In vitro, after the release of U87 cell lines from serum starvation, the expression of SYF2 was upregulated, as well as PCNA and cyclin D1. In addition, knockdown of SYF2 by small interfering RNA transfection diminished the expression of PCNA, cyclin D1 and arrested cell growth at G1 phase. These results indicate that SYF2 in glioma is essential for cell proliferation; thus, targeting SYF2 or its downstream targets may lead to novel therapies for glioblastomas.

Zhang J, Park HS, Kim JA, et al.
Flavonoids identified from Korean Scutellaria baicalensis induce apoptosis by ROS generation and caspase activation on human fibrosarcoma cells.
Am J Chin Med. 2014; 42(2):465-83 [PubMed] Related Publications
The effects of flavonoids from Korean Scutellaria baicalensis on fibrosarcoma HT1080 cells and their underlying molecular mechanism were investigated in this study. Flavonoids affected HT1080 cell proliferation by interrupting cell cycle progress, obviously augmenting the proportion of sub-G1 and diminishing that of G1 phase, and undergoing apoptosis at the tested dosage (100-400 μg/mL). In addition, the mediated apoptosis was mainly caused by total reactive oxygen species (ROS) generation and by up-regulating the ratio of Bax/Bcl-xL, triggering caspase cascades (caspase-3, -9 and -8), and inactivating PARP, dose-dependently. The proteomics results showed that AP-4, ARID 5B, HNRNP K, PLOG, Prdx6, and myosin-1, associated with cell growth, differentiation and development, and overexpressed in gastric cancer, colorectal cancer, pancreatic cancer, etc., were statistically down-regulated after the flavonoids treatment. Taken together, our data demonstrated that flavonoids from Korean S. baicalensis induced apoptosis in HT1080 cells, which involved a hierarchy of cellular pathways and multiple signal proteins, and might be a potential anticancer therapeutic agent.

Jo M, Yun HM, Park KR, et al.
Anti-cancer effect of thiacremonone through down regulation of peroxiredoxin 6.
PLoS One. 2014; 9(3):e91508 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Thiacremonone (2, 4-dihydroxy-2, 5-dimethyl-thiophene-3-one) is an antioxidant substance as a novel sulfur compound generated from High-Temperature-High-Pressure-treated garlic. Peroxiredoxin 6 (PRDX6) is a member of peroxidases, and has glutathione peroxidase and calcium-independent phospholipase A2 (iPLA2) activities. Several studies have demonstrated that PRDX6 stimulates lung cancer cell growth via an increase of glutathione peroxidase activity. A docking model study and pull down assay showed that thiacremonone completely fits on the active site (cys-47) of glutathione peroxidase of PRDX6 and interacts with PRDX6. Thus, we investigated whether thiacremonone inhibits cell growth by blocking glutathione peroxidase of PRDX6 in the human lung cancer cells, A549 and NCI-H460. Thiacremonone (0-50 μg/ml) inhibited lung cancer cell growth in a concentration dependent manner through induction of apoptotic cell death accompanied by induction of cleaved caspase-3, -8, -9, Bax, p21 and p53, but decrease of xIAP, cIAP and Bcl2 expression. Thiacremonone further inhibited glutathione peroxidase activity in lung cancer cells. However, the cell growth inhibitory effect of thiacremonone was not observed in the lung cancer cells transfected with mutant PRDX6 (C47S) and in the presence of dithiothreitol and glutathione. In an allograft in vivo model, thiacremonone (30 mg/kg) also inhibited tumor growth accompanied with the reduction of PRDX6 expression and glutathione peroxidase activity, but increased expression of cleaved caspase-3, -8, -9, Bax, p21 and p53. These data indicate that thiacremonone inhibits tumor growth via inhibition of glutathione peroxidase activity of PRDX6 through interaction. These data suggest that thiacremonone may have potentially beneficial effects in lung cancer.

Yun HM, Park KR, Lee HP, et al.
PRDX6 promotes lung tumor progression via its GPx and iPLA2 activities.
Free Radic Biol Med. 2014; 69:367-76 [PubMed] Related Publications
PRDX6 is a bifunctional protein with both glutathione peroxidase (GPx) and calcium-independent phospholipase A2 (iPLA2) activities, which are concomitantly increased with the expression of PRDX6. PRDX6 promoted lung tumor growth in an in vivo allograft model. Herein, we further studied the vital roles in tumor progression of PRDX6 in lung cancer using nude mice bearing PRDX6-overexpressing lung cancer cells. Nude mice xenografted with PRDX6 showed increases in tumor size and weight compared to control mice. Histopathological and Western blotting examination demonstrated that expression of proliferating cell nuclear antigen, vascular endothelial growth factor, metalloproteinases 2 and 9, and cyclin-dependent kinases accompanied by increased iPLA2 and GPx activities were increased in the tumor tissues of PRDX6-overexpressing nude mice. In tumor tissues of PRDX6-overexpressing mice, the activation of mitogen-activated protein kinases and AP-1 DNA binding were also increased. The growth of lung cancer cell lines (A549 and NCI-H460) was enhanced by the increase in iPLA2 and GPx activities of PRDX6. In addition, mutant PRDX6 (C47S) attenuated PRDX6-mediated p38, ERK1/2, and AP-1 activities as well as its enzyme activities in the A549 and NCI-H460 lines. Furthermore, tumor growth and p38, ERK1/2, and AP-1 activities were also inhibited in nude mice bearing mutant PRDX6 (C47S) compared to PRDX6. Therefore, our findings indicate that PRDX6 promotes lung tumor growth via increased glutathione peroxidase and iPLA2 activities.

Huang CF, Zhang L, Ma SR, et al.
Clinical significance of Keap1 and Nrf2 in oral squamous cell carcinoma.
PLoS One. 2013; 8(12):e83479 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Oxidative stress has been reported to play an important role in progression and prognostication in various kinds of cancers. However, the role and clinical significance of oxidative stress markers Keap1 and Nrf2 in oral squamous cell carcinoma (OSCC) has not been elucidated. This study aimed to investigate the correlation of oxidative stress markers Keap1 and Nrf2 expression and pathological features in OSCC by using tissue microarray. Tissue microarrays containing 17 normal oral mucosa, 7 oral epithelial dysplasia and 43 OSCC specimens were studied by immunohistochemistry. The association among these proteins and pathological features were analyzed. Expression of oxidative stress markers Keap1, Nrf2, and antioxidants PPIA, Prdx6, as well as CD147 was found to increase consecutively from normal oral mucosa to OSCC, and the Keap1, Nrf2, PPIA, Prdx6, CD147 expression in OSCC were significantly higher when compared to normal oral mucosa. Expression of Keap1, Nrf2 in tumors was not found to be significantly associated with T category, lymph node metastases, and pathological grade. Furthermore, we checked the relationship among these oxidative stress markers and found that Keap1 was significantly correlated with Nrf2, Prdx6 and CD147. Significant relationship between Nrf2 and Prdx6 was also detected. Finally, we found patients with overexpression of Keap1 and Nrf2 had not significantly worse overall survival by Kaplan-Meier analysis. These findings suggest that ROS markers are associated with carcinogenesis and progression of OSCC, which may have prognostic value and could be regarded as potential therapeutic targets in OSCC.

Rolfs F, Huber M, Gruber F, et al.
Dual role of the antioxidant enzyme peroxiredoxin 6 in skin carcinogenesis.
Cancer Res. 2013; 73(11):3460-9 [PubMed] Related Publications
The antioxidant enzyme peroxiredoxin 6 (Prdx6) is a key regulator of the cellular redox balance, particularly under stress conditions. We identified Prdx6 as an important player in different phases of skin carcinogenesis. Loss of Prdx6 in mice enhanced the susceptibility to skin tumorigenesis, whereas overexpression of Prdx6 in keratinocytes of transgenic mice had the opposite effect. The tumor-preventive effect of Prdx6, which was observed in a human papilloma virus 8-induced and a chemically induced tumor model, was not due to alterations in keratinocyte proliferation, apoptosis, or in the inflammatory response. Rather, endogenous and overexpressed Prdx6 reduced oxidative stress as reflected by the lower levels of oxidized phospholipids in the protumorigenic skin of Prdx6 transgenic mice and the higher levels in Prdx6-knockout mice than in control animals. In contrast to its beneficial effect in tumor prevention, overexpression of Prdx6 led to an acceleration of malignant progression of existing tumors, revealing a dual function of this enzyme in the pathogenesis of skin cancer. Finally, we found strong expression of PRDX6 in keratinocytes of normal human skin and in the tumor cells of squamous cell carcinomas, indicating a role of Prdx6 in human skin carcinogenesis. Taken together, our data point to the potential usefulness of Prdx6 activators or inhibitors for controlling different stages of skin carcinogenesis.

Tan Y, Qin S, Hou X, et al.
Proteomic-based analysis for identification of proteins involved in 5-fluorouracil resistance in hepatocellular carcinoma.
Curr Pharm Des. 2014; 20(1):81-7 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) has high mortality partly due to acquiring drug resistance during chemotherapy treatment. Therefore, it is necessary to explore the underlying mechanism of drug resistance.
METHODS: We used 2-DE and MALDI-TOF-MS analysis to explore the possible molecular insight into 5-FU resistance in HCC. The differentially expressed proteins were validated by Western blot analysis.
RESULTS: We identified 102 unique proteins including p16, maspin, PRDX6, PSMB7, MYL6, PHB, and HSP27 with alteration in SMMC- 7721/5-FU. Furthermore, down-regulation of PRDX6 and PSMB7 enhanced SMMC-7721/5-FU cells to 5-FU sensitivity.
CONCLUSIONS: Our study suggests that targeting drug resistant genes such as PRDX6 and PSMB7 could be a novel approach to overcome 5-FU resistance in HCC cells.

Seibold P, Hall P, Schoof N, et al.
Polymorphisms in oxidative stress-related genes and mortality in breast cancer patients--potential differential effects by radiotherapy?
Breast. 2013; 22(5):817-23 [PubMed] Related Publications
We assessed whether variants in 22 oxidative stress-related genes are associated with mortality of breast cancer patients and whether the associations differ according to radiotherapy. Using a prospective cohort of 1348 postmenopausal breast cancer patients, we estimated hazard ratios (HR) and 95% confidence intervals (CI) for 109 single nucleotide polymorphisms (SNPs) using Cox proportional hazards regression. Validation of results was attempted using two Scandinavian studies. Eleven SNPs in MT2A, NFE2L2, NQO1, PRDX1, and PRDX6 were significantly associated with overall mortality after a median follow-up of 5.7 years. Three SNPs in NQO1 (rs2917667) and in PRDX6 (rs7314, rs4916362) were consistently associated with increased risk of dying across all three study populations (pooled: HRNQO1_rs2917667 1.20, 95% CI 1.00-1.44, p = 0.051; HRPRDX6_rs7314 1.16, 95% CI 1.00-1.35, p = 0.056, HRPRDX6_rs4916362 1.14 95% CI 1.00-1.32, p = 0.062). Potential effect modification by radiotherapy was found for CAT_rs769218. In conclusion, genetic variants in NQO1 and PRDX6 may modify breast cancer prognosis.

Davis MJ, Ha BH, Holman EC, et al.
RAC1P29S is a spontaneously activating cancer-associated GTPase.
Proc Natl Acad Sci U S A. 2013; 110(3):912-7 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
RAC1 is a small, Ras-related GTPase that was recently reported to harbor a recurrent UV-induced signature mutation in melanoma, resulting in substitution of P29 to serine (RAC1(P29S)), ranking this the third most frequently occurring gain-of-function mutation in melanoma. Although the Ras family GTPases are mutated in about 30% of all cancers, mutations in the Rho family GTPases have rarely been observed. In this study, we demonstrate that unlike oncogenic Ras proteins, which are primarily activated by mutations that eliminate GTPase activity, the activated melanoma RAC1(P29S) protein maintains intrinsic GTP hydrolysis and is spontaneously activated by substantially increased inherent GDP/GTP nucleotide exchange. Determination and comparison of crystal structures for activated RAC1 GTPases suggest that RAC1(F28L)--a known spontaneously activated RAC1 mutant--and RAC1(P29S) are self-activated in distinct fashions. Moreover, the mechanism of RAC1(P29S) and RAC1(F28L) activation differs from the common oncogenic mutations found in Ras-like GTPases that abrogate GTP hydrolysis. The melanoma RAC1(P29S) gain-of-function point mutation therefore represents a previously undescribed class of cancer-related GTPase activity.

Sengupta JN, Pochiraju S, Pochiraju S, et al.
MicroRNA-mediated GABA Aα-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats.
Pain. 2013; 154(1):59-70 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
The nociceptive transmission under pathological chronic pain conditions involves transcriptional and/or translational alteration in spinal neurotransmitters, receptor expressions, and modification of neuronal functions. Studies indicate the involvement of microRNA (miRNA) - mediated transcriptional deregulation in the pathophysiology of acute and chronic pain. In the present study, we tested the hypothesis that long-term cross-organ colonic hypersensitivity in neonatal zymosan-induced cystitis is due to miRNA-mediated posttranscriptional suppression of the developing spinal GABAergic system. Cystitis was produced by intravesicular injection of zymosan (1% in saline) into the bladder during postnatal (P) days P14 through P16 and spinal dorsal horns (L6-S1) were collected either on P60 (unchallenged groups) or on P30 after a zymosan re-challenge on P29 (re-challenged groups). miRNA arrays and real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed significant, but differential, up-regulation of mature miR-181a in the L6-S1 spinal dorsal horns from zymosan-treated rats compared with saline-treated controls in both the unchallenged and re-challenged groups. The target gene analysis demonstrated multiple complementary binding sites in miR-181a for GABA(A) receptor subunit GABA(Aα-1) gene with a miRSVR score of -1.83. An increase in miR-181a concomitantly resulted in significant down-regulation of GABA(Aα-1) receptor subunit gene and protein expression in adult spinal cords from rats with neonatal cystitis. Intrathecal administration of the GABA(A) receptor agonist muscimol failed to attenuate the viscero-motor response (VMR) to colon distension in rats with neonatal cystitis, whereas in adult zymosan-treated rats the drug produced significant decrease in VMR. These results support an integral role for miRNA-mediated transcriptional deregulation of the GABAergic system in neonatal cystitis-induced chronic pelvic pain.

Zhu YY, Yu G, Zhang Y, et al.
A novel andrographolide derivative AL-1 exerts its cytotoxicity on K562 cells through a ROS-dependent mechanism.
Proteomics. 2013; 13(1):169-78 [PubMed] Related Publications
Andrographolide-lipoic acid conjugate (AL-1) is a new in-house synthesized chemical entity, which was derived by covalently linking andrographolide with lipoic acid. However, its anti-cancer effect and cytotoxic mechanism remains unknown. In this study, we found that AL-1 could significantly inhibit cell viability of human leukemia K562 cells by inducing G2/M arrest and apoptosis in a dose-dependent manner. Thirty-one AL-1-regulated protein alterations were identified by proteomics analysis. Gene ontology and ingenuity pathway analysis revealed that a cluster of proteins of oxidative redox state and apoptotic cell death-related proteins, such as PRDX2, PRDX3, PRDX6, TXNRD1, and GLRX3, were regulated by AL-1. Functional studies confirmed that AL-1 induced apoptosis of K562 cells through a ROS-dependent mechanism, and anti-oxidant, N-acetyl-L-cysteine, could completely block AL-1-induced cytotoxicity, implicating that ROS generation played a vital role in AL-1 cytotoxicity. Accumulated ROS resulted in oxidative DNA damage and subsequent G2/M arrest and mitochondrial-mediated apoptosis. The current work reveals that a novel andrographolide derivative AL-1 exerts its anticancer cytotoxicity through a ROS-dependent DNA damage and mitochondrial-mediated apoptosis mechanism.

Kalinina EV, Berezov TT, Shtil' AA, et al.
Expression of peroxiredoxin 1, 2, 3, and 6 genes in cancer cells during drug resistance formation.
Bull Exp Biol Med. 2012; 153(6):878-81 [PubMed] Related Publications
We studied the expression of peroxiredoxin genes (PRDX1, PRDX2, PRDX3, and PRDX6) in human erythroleukemia K652, human breast carcinoma MCF-7, and human ovarian carcinoma SKOV-3 cells during cisplatin resistance development. It was found that drug resistance formation was accompanied by a significant increase in the expression of PRDX1, PRDX2, PRDX3, PRDX6 genes in all cancer cell strains, which confirms the important contribution of redox-dependent mechanisms into the development of cisplatin resistance of cancer cells.

Leopoldino AM, Squarize CH, Garcia CB, et al.
SET protein accumulates in HNSCC and contributes to cell survival: antioxidant defense, Akt phosphorylation and AVOs acidification.
Oral Oncol. 2012; 48(11):1106-13 [PubMed] Related Publications
OBJECTIVES: Determination of the SET protein levels in head and neck squamous cell carcinoma (HNSCC) tissue samples and the SET role in cell survival and response to oxidative stress in HNSCC cell lineages.
MATERIALS AND METHODS: SET protein was analyzed in 372 HNSCC tissue samples by immunohistochemistry using tissue microarray and HNSCC cell lineages. Oxidative stress was induced with the pro-oxidant tert-butylhydroperoxide (50 and 250μM) in the HNSCC HN13 cell lineage either with (siSET) or without (siNC) SET knockdown. Cell viability was evaluated by trypan blue exclusion and annexin V/propidium iodide assays. It was assessed caspase-3 and -9, PARP-1, DNA fragmentation, NM23-H1, SET, Akt and phosphorylated Akt (p-Akt) status. Acidic vesicular organelles (AVOs) were assessed by the acridine orange assay. Glutathione levels and transcripts of antioxidant genes were assayed by fluorometry and real time PCR, respectively.
RESULTS: SET levels were up-regulated in 97% tumor tissue samples and in HNSCC cell lineages. SiSET in HN13 cells (i) promoted cell death but did not induced caspases, PARP-1 cleavage or DNA fragmentation, and (ii) decreased resistance to death induced by oxidative stress, indicating SET involvement through caspase-independent mechanism. The red fluorescence induced by siSET in HN13 cells in the acridine orange assay suggests SET-dependent prevention of AVOs acidification. NM23-H1 protein was restricted to the cytoplasm of siSET/siNC HN13 cells under oxidative stress, in association with decrease of cleaved SET levels. In the presence of oxidative stress, siNC HN13 cells showed lower GSH antioxidant defense (GSH/GSSG ratio) but higher expression of the antioxidant genes PRDX6, SOD2 and TXN compared to siSET HN13 cells. Still under oxidative stress, p-Akt levels were increased in siNC HN13 cells but not in siSET HN13, indicating its involvement in HN13 cell survival. Similar results for the main SET effects were observed in HN12 and CAL 27 cell lineages, except that HN13 cells were more resistant to death.
CONCLUSION: SET is potential (i) marker for HNSCC associated with cancer cell resistance and (ii) new target in cancer therapy.

Huang WS, Kuo YH, Chin CC, et al.
Proteomic analysis of the effects of baicalein on colorectal cancer cells.
Proteomics. 2012; 12(6):810-9 [PubMed] Related Publications
Baicalein is the flavonoids with multiple pharmacological activities. The aim of our study was to investigate the effects of baicalein on colorectal cancer (CRC) and to recognize the targets of baicalein treatment. To better understand baicalein's target, proteomic approaches were used to purify and identify the protein substrates using 2D difference gel electrophoresis (2D SDS-PAGE) to elucidate proteins differential display. Results from this study investigate that baicalein treatment of CRC cells results in reduced cell proliferation. As a result, differential protein displays between baicalein-treated and untreated CRC were determined and validated. There were 11 differentially expressed proteins between baicalein-treated and untreated CRC. Furthermore, we demonstrate that baicalein inhibits cancer cell proliferation and reduced reactive oxygen species (ROS) by up-regulating the levels of peroxiredoxin-6 (PRDX6). Knockdown of PRDX6 in baicalein-treated CRC cells by specific small interfering RNA resulted in ROS production and proliferation, opposite of the baicalein treatment scenario as indicated by cell cycle distribution. These results illustrate that baicalein up-regulates the expression of PRDX6, which attenuates the generation of ROS and inhibits the growth of CRC cells, whereas baicalein treatment have no effect on normal epithelial cells.

Godfrey R, Arora D, Bauer R, et al.
Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ.
Blood. 2012; 119(19):4499-511 [PubMed] Related Publications
Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by protein-tyrosine phosphatases (PTPs). We recently identified the PTP DEP-1/CD148/PTPRJ as a novel negative regulator of FLT3. This study addressed the role of DEP-1 for regulation of the acute myeloid leukemia (AML)-related mutant FLT3 internal tandem duplication (ITD) protein. Our experiments revealed that DEP-1 was expressed but dysfunctional in cells transformed by FLT3 ITD. This was caused by enzymatic inactivation of DEP-1 through oxidation of the DEP-1 catalytic cysteine. In intact cells, including primary AML cells, FLT3 ITD kinase inhibition reactivated DEP-1. DEP-1 reactivation was also achieved by counteracting the high levels of reactive oxygen species (ROS) production detected in FLT3 ITD-expressing cell lines by inhibition of reduced NAD phosphate (NADPH)-oxidases, or by overexpression of catalase or peroxiredoxin-1 (Prx-1). Interference with ROS production in 32D cells inhibited cell transformation by FLT3 ITD in a DEP-1-dependent manner, because RNAi-mediated depletion of DEP-1 partially abrogated the inhibitory effect of ROS quenching. Reactivation of DEP-1 by stable overexpression of Prx-1 extended survival of mice in the 32D cell/C3H/HeJ mouse model of FLT3 ITD-driven myeloproliferative disease. The study thus uncovered DEP-1 oxidation as a novel event contributing to cell transformation by FLT3 ITD.

Basu A, Drame A, Muñoz R, et al.
Pathway specific gene expression profiling reveals oxidative stress genes potentially regulated by transcription co-activator LEDGF/p75 in prostate cancer cells.
Prostate. 2012; 72(6):597-611 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: Lens epithelium-derived growth factor p75 (LEDGF/p75) is a stress survival transcription co-activator and autoantigen that is overexpressed in tumors, including prostate cancer (PCa). This oncoprotein promotes resistance to cell death induced by oxidative stress and chemotherapy by mechanisms that remain unclear. To get insights into these mechanisms we identified candidate target stress genes of LEDGF/p75 using pathway-specific gene expression profiling in PCa cells.
METHODS: A "Human oxidative stress and antioxidant defense" qPCR array was used to identify genes exhibiting significant expression changes in response to knockdown or overexpression of LEDGF/p75 in PC-3 cells. Validation of array results was performed by additional qPCR and immunoblotting.
RESULTS: Cytoglobin (CYGB), Phosphoinositide-binding protein PIP3-E/IPCEF-1, superoxidase dismutase 3 (SOD3), thyroid peroxidase (TPO), and albumin (ALB) exhibited significant transcript down- and up-regulation in response to LEDGF/p75 knockdown and overexpression, respectively. CYGB gene was selected for further validation based on its emerging role as a stress oncoprotein in human malignancies. In light of previous reports indicating that LEDGF/p75 regulates peroxiredoxin 6 (PRDX6), and that PRDXs exhibit differential expression in PCa, we also examined the relationship between these proteins in PCa cells. Our validation data revealed that changes in LEDGF/p75 transcript and protein expression in PCa cells closely paralleled those of CYGB, but not those of the PRDXs.
CONCLUSIONS: Our study identifies CYGB and other genes as stress genes potentially regulated by LEDGF/p75 in PCa cells, and provides a rationale for investigating their role in PCa and in promoting resistance to chemotherapy- and oxidative stress-induced cell death.

Shiota M, Yokomizo A, Kashiwagi E, et al.
Peroxiredoxin 2 in the nucleus and cytoplasm distinctly regulates androgen receptor activity in prostate cancer cells.
Free Radic Biol Med. 2011; 51(1):78-87 [PubMed] Related Publications
Currently, few therapies are effective against castration-resistant prostate cancer. Increased activation of the androgen/androgen receptor (AR) signaling pathway is thought to promote castration-resistant prostate cancer. Herein, we report that peroxiredoxin (Prx) gene expression in castration-resistant prostate cancer and hydrogen peroxide-resistant cells was upregulated. Prx2 was overexpressed in castration-resistant prostate cancer at the mRNA and protein levels and was localized to the nucleus and cytoplasm. Overexpression of Prx2 increased AR transactivation, whereas Prx2 overexpression in the nucleus suppressed AR transactivation. These effects of Prx2 on AR activity were abolished by the introduction of function-disrupting mutations into Cys⁵¹ and Cys¹⁷². Silencing Prx2 reduced the expression of androgen-regulated genes and suppressed the growth of AR-expressing prostate cancer cells by inducing cell-cycle arrest at the G1 phase. Furthermore, Prx2 knockdown also suppressed cell growth in castration-resistant prostate cancer cells. These findings indicate that Prx2 is involved in the proliferation of AR-expressing prostate cancer cells by modulating AR activity. Designing therapeutics targeting Prx2 may offer a novel strategy for developing treatments for prostate cancer, including castration-resistant prostate cancer, which is dependent on AR signaling.

Wei Q, Jiang H, Xiao Z, et al.
Sulfiredoxin-Peroxiredoxin IV axis promotes human lung cancer progression through modulation of specific phosphokinase signaling.
Proc Natl Acad Sci U S A. 2011; 108(17):7004-9 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
Oxidative stress is known to cause tumorigenesis through induction of DNA and lipid damage. It also promotes cancer progression through a largely unknown mechanism. Sulfiredoxin (Srx) is a novel oxidative stress-induced antioxidant protein whose function in tumorigenesis and cancer progression has not been well studied. We report that Srx is highly expressed in human lung cancer. Knockdown of Srx reduces anchorage-independent colony formation, cell migration, and invasion of human lung cancer cells. Srx preferentially interacts with Peroxiredoxin (Prx) IV relative to other Prxs due to its intrinsic higher binding affinity. Knockdown of Prx IV recapitulates the phenotypic changes of depleting Srx. Disruption or enhancement of the Srx-Prx IV axis leads respectively to reduction or acceleration of tumor growth and metastasis formation in vivo. Through identification and validation of the downstream mediators we unraveled the Srx-mediated signaling network that traverses AP-1-activating and other phosphokinase signaling cascades. Our work reveals that the Srx-Prx IV axis is critical for lung cancer maintenance and metastasis, suggesting that targeting the Srx-Prx IV axis may provide unique effective strategies for cancer prevention and treatment.

Gao MC, Jia XD, Wu QF, et al.
Silencing Prx1 and/or Prx5 sensitizes human esophageal cancer cells to ionizing radiation and increases apoptosis via intracellular ROS accumulation.
Acta Pharmacol Sin. 2011; 32(4):528-36 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
AIM: To investigate whether down-regulation of peroxiredoxin 1 (Prx1) and/or peroxiredoxin 5 (Prx5) sensitizes human esophageal cancer cells to ionizing radiation (IR).
METHODS: Human esophageal carcinoma cell lines Eca-109 and TE-1 were used. Prx mRNA expression profiles in Eca-109 and TE-1 cells were determined using RT-PCR. Two highly expressed isoforms of Prxs, Prx1 and Prx5, were silenced by RNA interference (RNAi). Following IR, intracellular reactive oxygen species (ROS) and apoptosis were measured using flow cytometry, the activities of catalase, superoxide dismutase and glutathione peroxidase were measured, and the radiosensitizing effect of RNAi was observed. Tumor xenograft model was also used to examine the radiosensitizing effect of RNAi in vivo.
RESULTS: Down-regulation of Prx1 and/or Prx5 by RNAi does not alter the activities of catalase, superoxide dismutase and glutathione peroxidase, but made human tumor cells more sensitive to IR-induced apoptosis both in vitro and in vivo. When the two isoforms were decreased simultaneously, intracellular ROS and apoptosis significantly increased after IR.
CONCLUSION: Silencing Prx1 and/or Prx5 by RNAi sensitizes human Eca-109 and TE-1 cells to IR, and the intracellular ROS accumulation may contribute to the radiosensitizing effect of the RNAi.

Lee KW, Lee DJ, Lee JY, et al.
Peroxiredoxin II restrains DNA damage-induced death in cancer cells by positively regulating JNK-dependent DNA repair.
J Biol Chem. 2011; 286(10):8394-404 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
The 2-Cys peroxiredoxins (Prx) belong to a family of antioxidant enzymes that detoxify reactive oxygen and nitrogen species and are distributed throughout the intracellular and extracellular compartments. However, the presence and role of 2-Cys Prxs in the nucleus have not been studied. This study demonstrates that the PrxII located in the nucleus protects cancer cells from DNA damage-induced cell death. Although the two cytosolic 2-Cys Prxs, PrxI and PrxII, were found in the nucleus, only PrxII knockdown selectively and markedly increased cell death in the cancer cells treated with DNA-damaging agents. The increased death was completely reverted by the nuclearly targeted expression of PrxII in an activity-independent manner. Furthermore, the antioxidant butylated hydroxyanisole did not influence the etoposide-induced cell death. Mechanistically, the knockdown of Prx II expression impaired the DNA repair process by reducing the activation of the JNK/c-Jun pathway. These results suggest that PrxII is likely to be attributed to a tumor survival factor positively regulating JNK-dependent DNA repair with its inhibition possibly sensitizing cancer cells to chemotherapeutic agents.

Pütz SM, Vogiatzi F, Stiewe T, Sickmann A
Malignant transformation in a defined genetic background: proteome changes displayed by 2D-PAGE.
Mol Cancer. 2010; 9:254 [PubMed] Article available free on PMC after 01/11/2015 Related Publications
BACKGROUND: Cancer arises from normal cells through the stepwise accumulation of genetic alterations. Cancer development can be studied by direct genetic manipulation within experimental models of tumorigenesis. Thereby, confusion by the genetic heterogeneity of patients can be circumvented. Moreover, identification of the critical changes that convert a pre-malignant cell into a metastatic, therapy resistant tumor cell, however, is one necessary step to develop effective and selective anti-cancer drugs. Thus, for the current study a cell culture model for malignant transformation was used: Primary human fibroblasts of the BJ strain were sequentially transduced with retroviral vectors encoding the genes for hTERT (cell line BJ-T), simian virus 40 early region (SV40 ER, cell line BJ-TE) and H-Ras V12 (cell line BJ-TER).
RESULTS: The stepwise malignant transformation of human fibroblasts was analyzed on the protein level by differential proteome analysis. We observed 39 regulated protein spots and therein identified 67 different proteins. The strongest change of spot patterns was detected due to integration of SV40 ER. Among the proteins being significantly regulated during the malignant transformation process well known proliferating cell nuclear antigen (PCNA) as well as the chaperones mitochondrial heat shock protein 75 kDa (TRAP-1) and heat shock protein HSP90 were identified. Moreover, we find out, that TRAP-1 is already up-regulated by means of SV40 ER expression instead of H-Ras V12. Furthermore Peroxiredoxin-6 (PRDX6), Annexin A2 (p36), Plasminogen activator inhibitor 2 (PAI-2) and Keratin type II cytoskeletal 7 (CK-7) were identified to be regulated. For some protein candidates we confirmed our 2D-PAGE results by Western Blot.
CONCLUSION: These findings give further hints for intriguing interactions between the p16-RB pathway, the mitochondrial chaperone network and the cytoskeleton. In summary, using a cell culture model for malignant transformation analyzed with 2D-PAGE, proteome and cellular changes can be related to defined steps of tumorigenesis.

Chua PJ, Lee EH, Yu Y, et al.
Silencing the Peroxiredoxin III gene inhibits cell proliferation in breast cancer.
Int J Oncol. 2010; 36(2):359-64 [PubMed] Related Publications
Peroxiredoxin III (Prx III), an antioxidant protein found in mitochondria, plays an essential role in mitochondrial homeostasis. Aberrant expression of Prx III has been implicated in the tumorigenesis of various cancers. In this study, we evaluated the expression of Prx III in breast cancer tissues and elucidated its role in cell proliferation, a hallmark of cancer. Breast tissue microarrays comprising 106 breast cancer sections were stained with Prx III antibody using immunohistochemisty and correlated with proliferating cell nuclear antigen (PCNA) immunostaining. To validate the role of Prx III in cell proliferation, expression of Prx III was analyzed at the mRNA and protein levels by real-time RT-PCR, Western blotting and immunofluorescence in vitro. siRNA mediated silencing of Prx III in MDA-MB-231 breast cancer cells was performed and the effect on the cell cycle was examined. Prx III expression in patient tissue microarray samples was found to be positively associated with PCNA immunostaining, a proliferative marker. Prx III was expressed in both MCF-7 and MDA-MB-231 breast cancer cell lines and transient transfection with siPrx III in MDA-MB-231 cells induced inhibition of cell proliferation and cell cycle arrest. The data suggests that Prx III has a significant role in cell cycle regulation and could be a potential proliferation marker in breast cancer.

Walsh B, Pearl A, Suchy S, et al.
Overexpression of Prdx6 and resistance to peroxide-induced death in Hepa1-6 cells: Prdx suppression increases apoptosis.
Redox Rep. 2009; 14(6):275-84 [PubMed] Related Publications
Peroxiredoxins are thiol-specific antioxidants that catalyze the reduction of cellular peroxides and protect cells from ROS-mediated damage and death. Peroxiredoxin gene expression is up-regulated in a number of cancers, suggesting a possible role in cancer cell maintenance. Prdx6, a cytoplasmic protein elevated in certain cancers, is highly expressed in liver and transcriptionally regulated by various oxidative stresses. In the present study, we found that the cancerous Hepa1-6 hepatoma cell line is significantly more resistant to peroxide-induced cytotoxicity than the non-cancerous H2.35 cell line. We also demonstrated that Hepa1-6 cells express approximately 3-fold more Prdx6 mRNA and 2.5-fold more Prdx6 protein than H2.35 cells. Treatment with mithramycin A resulted in a nearly 20% reduction in Prdx6 mRNA in Hepa1-6 cells, suggesting a possible role for Sp1 in Prdx6 up-regulation. We hypothesized that suppression of Prdx6 in Hepa1-6 cells would increase susceptibility to peroxide-induced cell death. Transient transfection of Hepa1-6 cells with Prdx6 siRNA led to a marked reduction in Prdx6 expression, and an increase in peroxide-induced cytotoxicity by apoptosis. Together, these data demonstrate an important anti-apoptotic function for Prdx6 in cancerous liver cells, and suggest that its up-regulation may be a tumor-supportive adaptation in cancerous states.

Lee SB, Ho JN, Yoon SH, et al.
Peroxiredoxin 6 promotes lung cancer cell invasion by inducing urokinase-type plasminogen activator via p38 kinase, phosphoinositide 3-kinase, and Akt.
Mol Cells. 2009; 28(6):583-8 [PubMed] Related Publications
The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

Bellodi-Privato M, Kubrusly MS, Stefano JT, et al.
Differential gene expression profiles of hepatocellular carcinomas associated or not with viral infection.
Braz J Med Biol Res. 2009; 42(12):119-1127 [PubMed] Related Publications
Chronic hepatitis B (HBV) and C (HCV) virus infections are the most important factors associated with hepatocellular carcinoma (HCC), but tumor prognosis remains poor due to the lack of diagnostic biomarkers. In order to identify novel diagnostic markers and therapeutic targets, the gene expression profile associated with viral and non-viral HCC was assessed in 9 tumor samples by oligo-microarrays. The differentially expressed genes were examined using a z-score and KEGG pathway for the search of ontological biological processes. We selected a non-redundant set of 15 genes with the lowest P value for clustering samples into three groups using the non-supervised algorithm k-means. Fisher's linear discriminant analysis was then applied in an exhaustive search of trios of genes that could be used to build classifiers for class distinction. Different transcriptional levels of genes were identified in HCC of different etiologies and from different HCC samples. When comparing HBV-HCC vs HCV-HCC, HBV-HCC/HCV-HCC vs non-viral (NV)-HCC, HBC-HCC vs NV-HCC, and HCV-HCC vs NV-HCC of the 58 non-redundant differentially expressed genes, only 6 genes (IKBKbeta, CREBBP, WNT10B, PRDX6, ITGAV, and IFNAR1) were found to be associated with hepatic carcinogenesis. By combining trios, classifiers could be generated, which correctly classified 100% of the samples. This expression profiling may provide a useful tool for research into the pathophysiology of HCC. A detailed understanding of how these distinct genes are involved in molecular pathways is of fundamental importance to the development of effective HCC chemoprevention and treatment.

Cha MK, Kim IH
Preferential overexpression of glutaredoxin3 in human colon and lung carcinoma.
Cancer Epidemiol. 2009; 33(3-4):281-7 [PubMed] Related Publications
Glutaredoxin (Glrx) uses the reducing power of glutathione to maintain and regulate the cellular redox state. Substantial evidence indicates that the alteration of cellular redox status is a critical factor involved in cell growth and death and results in tumorigenesis. We investigated levels of expression of all Glrx genes in a variety of cancers using a real-time polymerase chain reaction (RT-PCR). Among members of the Glrx, family, Glrx3 (PICOT: PKC-interacting cousin of thioredoxin) was preferentially induced in lung (55.3+/-30.1-fold induction) and colon (50.2+/-28.8-fold induction) cancer compared to their normal tissues (lung>or=colon>breast>ovary>bladder>prostate>thyroid>lymphoma>liver>or=kidney cancers). By contrast, the magnitude of induction folds in other cancer tissues was ranged from 0.83 to 4.0. Moreover, the induction folds of Glrx3 mRNA in colon and lung cancer tissues were significantly higher when compared to those of all thioredoxin (Trx) and peroxiredoxin (Prx) members. Western blot analysis of different and paired cancer tissues revealed the consistent and preferential expression of Glrx3 in lung and colon cancers. Taken together, these results suggest that Glrx3 could take a pivotal role in colon and lung cancer cells during the tumorigenesis.

Cortesi L, Barchetti A, De Matteis E, et al.
Identification of protein clusters predictive of response to chemotherapy in breast cancer patients.
J Proteome Res. 2009; 8(11):4916-33 [PubMed] Related Publications
An attempt for the identification of potential biomarkers predictive of response to chemotherapy (CHT) in breast cancer patients has been performed by the use of two-dimensional electrophoresis and mass spectrometry analysis. Since growth and progression of tumor cells depend also on stromal factors in the microenvironment, we choose to investigate the proteins secreted in Tumor Interstitial Fluid (TIF) and in Normal Interstitial Fluids (NIF). One-hundred and twenty-two proteins have been analyzed and a comparison was also made between the proteomic profile of responders versus nonresponders to CHT. At baseline, proteins isolated in TIF and NIF of all the 28 patients show significant differences in expression. Two clusters of proteins, differentially expressed in TIF with respect to NIF were found. Most significant is the decreased expression in TIF of CRYAB. In the protein metabolism group, also FIBB was found decreased. Some proteins involved in energy pathways were overexpressed (PGAM-1, ALDO A, PGK1, G3Pcn), while some other were down-regulated (CAH2, G3Pdx, PRDX6, TPIS). The same trend was observed for signal transduction proteins, with 14-3-3-Z overexpressed, and ANXA2 and PEBP 1 down-regulated. Moreover, an analysis has been conducted comparing protein expression in interstitial fluids of responders and nonresponders, irrespective of TIF or NIF source. This analysis lead us to identify two clusters of proteins with a modified expression, which might be predictive of response to CHT. In responders, an increase in expression of LDHA, G3Pdx, PGK1sx (energy pathways), VIME (cell growth and maintenance) and 14-3-3-Z (signal transduction), coupled with a decreased expression of TPIS, CAH 2, G3Psx, PGK 1dx (energy pathways), TBB5 (cell growth and maintenance), LDHB and FIBB (protein metabolism), was found. We observed that CHT modifies the expression of these cluster proteins since, after treatment, their expression in TIF of responder is generally decreased. Patients not responding to CHT show an unchanged expression pattern in TIF, with the exception of protein 14-3-3-Z, which is overexpressed, and a decreased expression in NIF of several cluster proteins. In conclusion, the identification of protein clusters associated with response to CHT might be important for predicting the efficacy of a specific antineoplastic drug and for the development of less empiric strategies in choosing the therapy to be prescribed to the single patient.

Luo Y, Pang H, Li S, et al.
Production and radioimmunoimaging of novel fully human phage display recombinant antibodies and growth inhibition of lung adenocarcinoma cell line overexpressing Prx I.
Cancer Biol Ther. 2009; 8(14):1369-77 [PubMed] Related Publications
The Peroxiredoxin I (Prx I) is a member of the Peroxiredoxin family, which is overexpressed in many diverse tumor types and is an anti-apoptosis protein for tumor cell proliferation and survival. Therapeutic strategies targeting the Prx I may therefore be effective broad-spectrum anticancer agents. We constructed a phage display single-chain variable fragment (scFv) antibody library and sieve out the fully human, lung adenocarcinoma-sepcific monoclonal antibodies. The selection on Prx I was performed using above-mentioned lung adenocarcinoma-sepcific monoclonal antibodies with high affinity to Prx I overexpressing lung adenocarcinoma cells. The candidate scFv sequences, based on enzyme-linked immunosorbent assay (ELISA) screening data, were chosen for soluble expression, and a 30 kDa band was observed on polyacrylamide gel electrophoresis as predicted. The purified antibodies were characterized by immunoblotting and showed high specificity to Prx I-overexpressing lung adenocarcinoma cells A549. Radioimmunoimaging was taken to evaluate specificity and distribution of antibodies in vivo. The radiolocalization index (RI) of tumor/serum and tumor/muscle gradually increased, reaching its peak (4.06 +/- 0.13 and 5.17 +/- 0.97, respectively) at 48 h postadministration. Single photon emission computed tomography (SPECT) imaging showed the radioactivity was aggregated in tumor locations and tumor imaging was clearly observed. The internalized scFv resulted in antibody-mediated cell apoptosis and downregulation of Prx I expression. These results demonstrate that the scFv possesses strong antitumor activity on lung adenocarcinoma and may therefore be an effective therapeutic candidate for the treatment of cancers that are dependent on Prx I for growth and survival.

Vivas-Mejía PE, Ozpolat B, Chen X, Lopez-Berestein G
Downregulation of the c-MYC target gene, peroxiredoxin III, contributes to arsenic trioxide-induced apoptosis in acute promyelocytic leukemia.
Int J Cancer. 2009; 125(2):264-75 [PubMed] Related Publications
Arsenic trioxide (ATO) induces differentiation and apoptosis in acute promyelocytic leukemia (APL). Several reports indicate that in APL cells apoptosis occurs mainly by a mechanism that involves the inhibition of glutathione peroxidase, one of the enzymes that regulates mitochondrial levels of H(2)O(2). Peroxiredoxin (Prx) III, a c-MYC target gene, is also a mitochondria-specific H(2)O(2)-scavenger enzyme. We studied here the role of Prx III during ATO-induced apoptosis in APL-derived NB4 cells, since these cells express high levels of Prx III. The protein and mRNA levels of Prx III decreased during ATO-induced apoptosis of NB4 cells. The downregulation of Prx III occurred before reactive oxygen species accumulation, reduction in the mitochondrial membrane potential and apoptosis. Depletion of Prx III enhanced mitochondrial-dependent apoptosis events. In contrast, overexpression of Prx III led to reduced levels of ATO-induced apoptosis. c-MYC was also downregulated in ATO-treated NB4 cells. Furthermore, depletion of c-MYC also reduced the Prx-III expression levels. Finally chromatin immunoprecipitation and luciferase reporter assays confirmed that downregulation of Prx-III was caused by the reduction of c-MYC levels during ATO-induced apoptosis of NB4 cells. These findings demonstrate a novel apoptotic-response pathway whereby downregulation of Prx-III potentiates ATO-induced apoptosis in APL cells.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PRDX6, Cancer Genetics Web: http://www.cancer-genetics.org/PRDX6.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999