Gene Summary

Gene:SELENOP; selenoprotein P
Aliases: SeP, SELP, SEPP, SEPP1
Summary:This gene encodes a selenoprotein that is predominantly expressed in the liver and secreted into the plasma. This selenoprotein is unique in that it contains multiple selenocysteine (Sec) residues per polypeptide (10 in human), and accounts for most of the selenium in plasma. It has been implicated as an extracellular antioxidant, and in the transport of selenium to extra-hepatic tissues via apolipoprotein E receptor-2 (apoER2). Mice lacking this gene exhibit neurological dysfunction, suggesting its importance in normal brain function. Sec is encoded by the UGA codon, which normally signals translation termination. The 3' UTRs of selenoprotein mRNAs contain a conserved stem-loop structure, designated the Sec insertion sequence (SECIS) element, that is necessary for the recognition of UGA as a Sec codon, rather than as a stop signal. The mRNA for this selenoprotein contains two SECIS elements. The use of alternative polyadenylation sites, one located in between the two SECIS elements, results in two populations of mRNAs containing either both (predominant) or just the upstream SECIS element (PMID:27881738). Alternatively spliced transcript variants have also been found for this gene. [provided by RefSeq, Oct 2018]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:selenoprotein P
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (11)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Follow-Up Studies
  • Colorectal Cancer
  • Cohort Studies
  • Chromosome 5
  • Alleles
  • Selenoprotein P
  • Single Nucleotide Polymorphism
  • Thioredoxin-Disulfide Reductase
  • Glutathione Peroxidase
  • Selenium
  • Selenoproteins
  • Thioredoxin Reductase 1
  • Liver Cancer
  • Esophageal Cancer
  • SELENOF protein, human
  • Adenoma
  • Immunohistochemistry
  • Polymorphism
  • TXNRD1 protein, human
  • GPX2 protein, human
  • Prostate
  • Western Blotting
  • Breast Cancer
  • Genetic Predisposition
  • Genotype
  • Ireland
  • Gene Expression
  • Neoplasm Recurrence, Local
  • Prostate Cancer
  • Ethnic Groups
  • Proportional Hazards Models
  • TXNRD3 protein, human
  • Case-Control Studies
  • Lymphatic Metastasis
  • Gene Expression Regulation
  • SELENOP protein, human
  • Tissue Array Analysis
  • Young Adult
  • Genetic Markers
  • Czech Republic
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SELENOP (cancer-related)

Sun S, Hu Z, Huang S, et al.
REG4 is an indicator for KRAS mutant lung adenocarcinoma with TTF-1 low expression.
J Cancer Res Clin Oncol. 2019; 145(9):2273-2283 [PubMed] Related Publications
OBJECTIVES: Recent research has classified lung adenocarcinoma patients with KRAS mutation into three subtypes by co-occurring genetic events in TP53 (KP subgroup), STK11/LKB1 (KL subgroup) and CDKN2A/B inactivation plus TTF-1 low expression (KC subgroup). The aim of this study was to identify valuable biomarkers by searching the candidate molecules that contribute to lung adenocarcinoma pathogenesis, especially KC subtype.
MATERIALS AND METHODS: We analyzed the publicly available database and identified the candidate REG4 using the E-GEOD-31210 dataset, and then confirmed by TCGA dataset. In addition, an independent cohort of 55 clinical samples was analyzed by quantitative real-time PCR analysis. Functional studies and RNA sequencing were performed after silencing the REG4 expression.
RESULTS: REG4, an important regulator of gastro-intestinal carcinogenesis, was highly expressed in KRAS mutant lung adenocarcinoma with low expression of TTF-1 (KC subtype). The results were validated both by gene expression analysis and immunohistochemistry study in an independent 55 clinical samples from Fudan University Shanghai Cancer Center. Further in vitro and in vivo functional assays revealed silencing REG4 expression significantly reduces cancer cell proliferation and tumorigenesis. Moreover, RNA sequencing and GSEA analysis displayed that REG4 knockdown might induce cell cycle arrest by regulating G2/M checkpoint and E2F targets.
CONCLUSION: Our results indicate that REG4 plays an important role in KRAS-driven lung cancer pathogenesis and is a novel biomarker of lung adenocarcinoma subtype. Future studies are required to clarify the underlying mechanisms of REG4 in the division and proliferation of KC tumors and its potential therapeutic value.

Pak S, Kim W, Kim Y, et al.
Dihydrotestosterone promotes kidney cancer cell proliferation by activating the STAT5 pathway via androgen and glucocorticoid receptors.
J Cancer Res Clin Oncol. 2019; 145(9):2293-2301 [PubMed] Related Publications
PURPOSE: Androgen receptors (ARs) are expressed on a variety of cell types, and AR signaling plays an important role in tumor development and progression in several cancers. This in vitro study evaluated the effect of dihydrotestosterone (DHT) on the proliferation of renal cell carcinoma (RCC) cells in relation to AR status.
METHODS: Steroid hormone receptor expression was evaluated using RT-PCR and Western blotting. The effect of DHT on cell proliferation and STAT5 phosphorylation was evaluated in RCC cell lines (Caki-2, A498, and SN12C) and primary RCC cells using cell viability assays and Western blotting. ARs and glucocorticoid receptors (GRs) were knocked down with small interfering RNAs before assessing changes in cell proliferation and STAT5 activation.
RESULTS: DHT treatment promoted cell proliferation and increased STAT5 phosphorylation regardless of AR status. The AR antagonist bicalutamide reduced kidney cancer cell proliferation, regardless of AR status. AR and GR knockdown blocked STAT5 activation and reduced cell proliferation in all RCC cell lines. In patient-derived primary cells, DHT enhanced cell proliferation and this effect was diminished by treatment with the AR antagonists bicalutamide and enzalutamide and the GR antagonist mifepristone.
CONCLUSION: DHT promotes cell proliferation through STAT5 activation in RCC cells, regardless of AR status. DHT appears to utilize the AR and GR pathways to activate STAT5, and the inhibition of AR and GR showed antitumor activity in RCC cells. These data suggest that targeting AR and GR may be a promising new approach to the treatment of RCC.

Zhang X, Liu N, Zhou M, et al.
DNA Nanorobot Delivers Antisense Oligonucleotides Silencing c-Met Gene Expression for Cancer Therapy.
J Biomed Nanotechnol. 2019; 15(9):1948-1959 [PubMed] Related Publications
Antisense oligonucleotides are considered to be a promising strategy for cancer therapy because of their high specificity and minimal side effects. They can bind specifically to mRNA silencing the expression of target genes. However, ssDNA cannot enter cells in large quantities, which limits its applications. Tetrahedral framework nucleic acids (tFNA) are considered to be optimal nanoscopic drug carriers because of their editability and biocompatibility. Most importantly, they can be modified with functional molecules. The over-expression of c-Met is associated with a wide variety of tumor occurrences, developments, drug resistance and prognoses. Activation of HGF/c-Met signaling pathways can promote cell migration and invasion in cancer. Therefore, blocking the expression of c-Met is a valid technique for cancer therapy. In this study, we used tFNA as carriers to deliver antisense oligonucleotides, which can bind to c-Met mRNA with high specificity and affinity, into cells resulting in the inhibition of c-Met expression for cancer therapy.

Vakili Saatloo M, Aghbali AA, Koohsoltani M, Yari Khosroushahi A
Akt1 and Jak1 siRNA based silencing effects on the proliferation and apoptosis in head and neck squamous cell carcinoma.
Gene. 2019; 714:143997 [PubMed] Related Publications
Based on Akt1 and Jak1 key roles in apoptosis and proliferation of many cancers, the aim of this study was to find a new gene therapy strategy by silencing of these main anti-apoptotic genes for HNSCC treatment. Cancerous HN5 and normal HUVEC cell lines were treated with Akt1 and Jak1 siRNAs alone or with each other combined with/without cisplatin. The MTS, flow cytometry, 4',6-diamidino-2-phenylindole staining, real-time PCR and ELISA methods were utilized in this study. The highest percentage of apoptosis was observed in the treatment of Jak1 siRNA/cisplatin group in cancerous HN5 cells (96.5%) where this treatment showed 12.84% apoptosis in normal HUVEC cell line. Cell viability reduced significantly to 64.57% after treatment with Akt1 siRNA in HN5 treated group. Knocking down Akt1 and Jak1 genes using siRNAs could increase levels of apoptosis and reduce proliferation rate in HNSCC indicating the powerful effects of these genes siRNAs with or without chemotherapeutic agents in HNSCC treatment. In conclusion, the combination of siRNA-mediated gene-silencing strategy can be considered as a valuable and safe approach for sensitizing cancer cells to chemotherapeutic agents thus proposed further studies regarding this issue to approve some siRNA based therapeutics for using in clinic.

Li B, Pu K, Ge L, Wu X
Diagnostic significance assessment of the circulating cell-free DNA in ovarian cancer: An updated meta-analysis.
Gene. 2019; 714:143993 [PubMed] Related Publications
BACKGROUND: Recently, disagreements remain in increasing evidence about the potential value of circulating cell-free DNA (cfDNA) as a noninvasive diagnostic biomarker for ovarian cancer (OC). Here, this update meta-analysis was performed to further assess the diagnostic performance of circulating cfDNA in discriminating OC from non-cancerous individuals.
METHODS: We performed a systemic literature search of PubMed, Embase, Web of Science, Cochrane Library, OVID, Chinese National Knowledge Infrastructure (CNKI) and Wanfang databases to obtain 22 eligible articles including a total of 1125 patients and 1244 controls. The pooled sensitivity, specificity, diagnostic odds ratio (DOR) and area under receiver operating characteristics curves (AUROC) of the included studies for cfDNA in diagnosing OC patients were used to estimate the diagnostic value. The clinical utility of cfDNA was evaluated by Fagan nomogram. Heterogeneity was explored utilizing subgroup analysis and meta-regression.
RESULTS: The pooled sensitivity and specificity were 73% and 90%, the DOR and AUROC were 25.29 and 0.90, respectively. Subgroup analyses and meta-regression, according to patients' region, study design, clinical stage, specimen types, detection indicators, simple size, publication year revealed there were no significant sources of heterogeneity. Additionally, subgroup analyses showed qualitative detection (methylation detection); TNM stage I-IV, publication year 2011-2018, serum-based cfDNA assays exhibited better diagnostic performance as compared to quantitative detection, TNM stage III-IV, publication year 2002-2010; plasma-based cfDNA assays, and more participants and prospective studies manifested superior diagnostic accuracy. The result of sensitivity analysis indicated no study exclusively contributed to the heterogeneity and Deeks' funnel plot suggested no evidence of significant publication bias.
CONCLUSIONS: Our meta-analysis found the qualitative detection (methylation); TNM stage I-IV, publication year 2011-2018 were related to more effective diagnostic accuracy for OC. However, serum-based cell-free DNA detection should be cautiously interpreted due to unclear factors. Hence, further large-scale longitudinal studies are required to validate the diagnostic potential of cell-free DNA. The present study provides to accrue knowledge of cell-free DNA levels for future researches.

Liu L, Qi X, Gui Y, et al.
Overexpression of circ_0021093 circular RNA forecasts an unfavorable prognosis and facilitates cell progression by targeting the miR-766-3p/MTA3 pathway in hepatocellular carcinoma.
Gene. 2019; 714:143992 [PubMed] Related Publications
Increasing studies have demonstrated the important roles of circular RNAs (circRNAs) in human malignancies. Nevertheless, the molecular mechanisms and functions of circRNAs in hepatocellular carcinoma (HCC) are still not fully understood. In the present study, we evaluated circ_0021093 expression in 82 pairs of HCC tissues and 5 cell lines by qRT-PCR. The clinical implications of circ_0021093 were evaluated. In addition, the viability, apoptosis, migration and invasion capacities of different HCC cells were evaluated by gain-/loss-of-function experiments. Target prediction and dual-luciferase reporter experiments were performed to identify the molecular mechanisms of circ_0021093. Upregulation of circ_0021093 was found in HCC tumor samples and cells. Additionally, upregulated circ_0021093 was related to adverse clinical characteristics and an unfavorable prognosis. Furthermore, downregulated circ_0021093 attenuated cell growth, migration and invasion but increased cell apoptosis. By contrast, ectopically expressed circ_0021093 enhanced the abovementioned malignant biological behaviors. For mechanism exploration, circ_0021093 sponges of miR-766-3p were used in HCC cells. In addition, we found that metastasis-associated protein 3 (MTA3) was a direct target of miR-766-3p and that the oncogenic function of circ_0021093 was partly dependent on the miR-766-3p/MTA3 axis according to rescue assays. In conclusion, the circ_0021093/miR-766-3p/MTA3 regulatory axis may be an effective therapeutic target for HCC.

Huang D, Wei Y, Zhu J, Wang F
Long non-coding RNA SNHG1 functions as a competitive endogenous RNA to regulate PDCD4 expression by sponging miR-195-5p in hepatocellular carcinoma.
Gene. 2019; 714:143994 [PubMed] Related Publications
Long non-coding RNA (lncRNA) potentially regulates tumorigenesis. LncRNA small nucleolar RNA host gene 1 (SNHG1) expression remains high in hepatocellular carcinoma cells; however, its biological mechanism in hepatocellular carcinoma remains unknown. In this study, SNHG1 expression in hepatocellular carcinoma cells was detected by qRT-PCR. Proliferative and migratory potentials of hepatocellular carcinoma cells were determined by CCK-8 and Transwell assay, respectively. Then, the nude mice model of xenograft was employed to verify the effect of SNHG1 on tumor formation in vivo. We identified the potential target of SNHG1 through bioinformatics and dual-luciferase reporter gene. Furthermore, Western blot and RIP assay was used for clarifying their interaction and functions in regulating the development of hepatocellular carcinoma. Our results indicated a high expression of SNHG1 in hepatocellular carcinoma cells. Downregulation of SNHG1 inhibited proliferative and migratory potentials of hepatocellular carcinoma cells in vitro and in vivo. Moreover, the expression of programmed cell death 4 (PDCD4) was positively regulated by SNHG1 through competing with miR-195-5p. These results indicated that SNHG1 participated in the development of hepatocellular carcinoma as a ceRNA to competitively bind to miR-195-5p and thus mediate PDCD4 expression.

Tokgun PE, Tokgun O, Kurt S, et al.
MYC-driven regulation of long non-coding RNA profiles in breast cancer cells.
Gene. 2019; 714:143955 [PubMed] Related Publications
AIM: MYC deregulation contributes to breast cancer development and progression. Deregulated expression levels of long non-coding RNAs (lncRNA) have been demonstrated to be critical players in development and/or maintenance of breast cancer. In this study we aimed to evaluate lncRNA expressions depending on MYC overexpression and knockdown in breast cancer cells.
MATERIALS AND METHODS: Cells were infected with lentiviral vectors by either knockdown or overexpression of c-MYC. LncRNA cDNA was transcribed from total RNA samples and lncRNAs were evaluated by qRT-PCR.
RESULTS: Our results indicated that some of the lncRNAs having tumor suppressor (GAS5, MEG3, lincRNA-p21) and oncogenic roles (HOTAIR) are regulated by c-MYC.
CONCLUSION: We observed that c-MYC regulates lncRNAs that have important roles on proliferation, cell cycle and etc. Further studies will give us a light to identify molecular mechanisms related to MYC-lncRNA regulatory pathways in breast cancer.

Ito M, Miyata Y, Hirano S, et al.
Synchronicity of genetic variants between primary sites and metastatic lymph nodes, and prognostic impact in nodal metastatic lung adenocarcinoma.
J Cancer Res Clin Oncol. 2019; 145(9):2325-2333 [PubMed] Related Publications
PURPOSE: Nodal positive lung adenocarcinoma includes wide range of survival. Several methods for the classification of nodal-positive lung cancer have been proposed. However, classification considering the impact of targetable genetic variants are lacking. The possibility of genetic variants for the better stratification of nodal positive lung adenocarcinoma was estimated.
METHODS: Mutations of 36 genes between primary sites and metastatic lymph nodes (LNs) were compared using next-generation sequencing. Subsequently, mutations in EGFR and BRAF, rearrangements in ALK and ROS1 were evaluated in 69 resected pN1-2M0 adenocarcinoma cases. Recurrence-free survival (RFS), post-recurrence survival (PRS), and overall survival (OS) were evaluated with respect to targetable variants and tyrosine kinase inhibitor (TKI) therapy after recurrence.
RESULTS: About 90% of variants were shared and allele frequencies were similar between primary and metastatic sites. In 69 pN1-2M0 cases, EGFR/ALK were positive in primary sites of 39 cases and same EGFR/ALK variants were confirmed in metastatic LNs of 96.7% tissue-available cases. Multivariate analyses indicated positive EGFR/ALK status was associated with worse RFS (HR 2.366; 95% CI 1.244-4.500; P = 0.009), and PRS was prolonged in cases receiving TKI therapy (no post-recurrence TKI therapies, HR 3.740; 95% CI 1.449-9.650; P = 0.006). OS did not differ with respect to targetable variants or TKI therapy.
CONCLUSIONS: Cases harbouring targetable genetic variants had a higher risk of recurrence, but PRS was prolonged by TKI therapy. Classification according to the targetable genetic status provides a basis for predicting recurrence and determining treatment strategies after recurrence.

Böhm J, Muenzner JK, Caliskan A, et al.
Loss of enhancer of zeste homologue 2 (EZH2) at tumor invasion front is correlated with higher aggressiveness in colorectal cancer cells.
J Cancer Res Clin Oncol. 2019; 145(9):2227-2240 [PubMed] Related Publications
PURPOSE: Enhancer of zeste homolog 2 (EZH2) is associated with epigenetic gene silencing and aggressiveness in many tumor types. However, the prognostic impact of high EZH2 expression is controversially discussed for colorectal cancer. For this reason, we immunohistochemically analyzed EZH2 expression in 105 specimens from colon cancer patients separately for tumor center and invasion front.
METHODS: All sections from tissue microarrays were evaluated manually and digitally using Definiens Tissue Studio software (TSS). To mirror-image the EZH2 status at the tumor invasion front, we treated HCT116 colon cancer cells with the EZH2 inhibitor 3-Deazaneplanocin A (DZNep) and studied the growth of in ovo xenografts in the chorioallantoic membrane (CAM) assay.
RESULTS: We showed a significant decrease in EZH2 expression and the repressive H3K27me3 code at the tumor invasion front as supported by the TSS-constructed heatmaps. Loss of EZH2 at tumor invasion front, but not in tumor center was correlated with unfavorable prognosis and more advanced tumor stages. The observed cell cycle arrest in vitro and in vivo was associated with higher tumor aggressiveness. Xenografts formed by DZNep-treated HCT116 cells showed loosely packed tumor masses, infiltrative growth into the CAM, and high vessel density.
CONCLUSION: The differences in EZH2 expression between tumor center and invasion front as well as different scoring and cutoff values can most likely explain controversial literature data concerning the prognostic value of EZH2. Epigenetic therapies using EZH2 inhibitors have to be carefully evaluated for each specific tumor type, since alterations in cell differentiation might lead to unfavorable results.

Naghizadeh S, Mohammadi A, Baradaran B, Mansoori B
Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy.
Gene. 2019; 714:143972 [PubMed] Related Publications
Among cancers, lung cancer is the most morbidity and mortality disease that is remaining the fatalist. Generally, there are multiple treatment procedures for lung cancer, such as surgery, immunotherapy, radiotherapy and chemotherapy. There is, therefore, an urgent need for more specified and efficient methods for treatment of lung cancer such as RNAi, which in combination with traditional therapies could silence genes that are involved in the drug resistance. These genes may either be motivators of apoptosis inhibition, EMT and DNA repair system promoters or a member of intracellular signaling pathways, such as JAK/STAT, RAS/RAF/MEK, PI3K/AKT, NICD, B-catenin/TCF/LEF and their stimulator receptors including IGFR, EGFR, FGFR, VEGFR, CXCR4, MET, INTEGRINS, NOTCH1 and FRIZZLED, so could be considered as appropriate targets. In current review, the results of multiple studies which have employed drug application after one specific gene silencing or more than one gene from distinct pathways also simultaneous drug and RNAi usage in vitro and in vivo in lung cancer were summarized.

Guo Q, Wang L, Zhu L, et al.
The clinical significance and biological function of lncRNA SOCAR in serous ovarian carcinoma.
Gene. 2019; 713:143969 [PubMed] Related Publications
BACKGROUND: Ovarian cancer (OvCa) is one of the most lethal gynecologic malignancies worldwide. Pelvic and abdominal metastasis is a leading cause for the poor prognosis of OvCa patients. The relationship between long non-coding RNAs (lncRNAs) and OvCa remains unclear. Identifying key lncRNAs related with OvCa metastasis is crucial for research on the mechanism of OvCa metastasis. This study was designed to investigate the role of a novel lncRNA, which we named SOCAR, in serous OvCa.
METHODS: LncRNA microarray and Real-time PCR were used to examine SOCAR expression in high grade serous ovarian cancer (HGSOC) and normal ovary tissues. The proliferation, migration and invasion of OvCa cell lines SKOV-3 and OVCAR-3 were analyzed by CCK-8, Transwell and Scratch wound healing assays. Western blotting was used to detect the expression of Wnt/β-catenin pathway-related proteins.
RESULTS: A novel serous OvCa-related lncRNA, SOCAR, was identified via microarray. SOCAR was overexpressed in primary HGSOC tumors compared with normal ovary tissues, and the expression of SOCAR correlated with progression in HGSOC patients. SOCAR also had higher expression in metastatic HGSOC tissues compared with primary cancer tissues. Moreover, upregulation of SOCAR promoted proliferation, migration and invasion in OvCa cells. Expression of Wnt1, β-catenin and MMP-9 were all increased by SOCAR overexpression.
CONCLUSION: SOCAR is related with HGSOC oncogenesis and progression. It may promote proliferation, migration and invasion in OvCa cells partially by upregulating MMP-9 through the Wnt/β-catenin pathway.

Ramezani S, Sharafshah A, Mirzanejad L, Hadavi M
Association of PARP1 rs4653734, rs907187 and rs1136410 variants with breast cancer risk among Iranian women.
Gene. 2019; 712:143954 [PubMed] Related Publications
BACKGROUND: Breast cancer (BC) is the highest cause of mortality among female cancer patients. In some cases, BC is due to Poly [ADP-ribose] polymerase 1 (PARP1) gene dysregulation, which has been involved in various important cellular processes. Among Iranian women, the association between PARP1 polymorphisms and BC was never studied before so in this case-control study, the genetic association of three SNPs (rs1136410, rs907187 and rs4653734) was analyzed with susceptibility to BC.
METHODS: The study subjects were 386 Iranian females divided into 186 patients and 200 healthy controls. The genotypes of PARP1 variants were detected using ARMS and a combined ARMS-RFLP PCR method.
RESULTS: The results showed that Carriers of CG and GG genotypes of the variant rs4653734 were at higher risk of BC compared with wild-type carriers (CC) and this variant was statistically significant under a recessive model of inheritance. Moreover, rs907187 was related to increased BC risk in the CC and GG genotypes under dominant and recessive models of inheritance. The G allele frequency of rs4653734 and rs907187 was higher in breast cancer patients than in normal subjects. No association was detected between rs1136410 and susceptibility to BC among studied groups. Furthermore, A-G-C haplotype was linked to an increased BC risk, whereas A-C-C and A-C-G haplotypes were related to a decreased risk of BC. In Silico predictions suggested that rs907187 affects E2F and E2F-4 transcription factors binding site.
CONCLUSIONS: The current study suggests that rs907187 and rs4653734 have remarkable associations with BC risk among Iranian women.

Zhou Q, Ren J, Hou J, et al.
Co-expression network analysis identified candidate biomarkers in association with progression and prognosis of breast cancer.
J Cancer Res Clin Oncol. 2019; 145(9):2383-2396 [PubMed] Related Publications
PURPOSE: Breast cancer is one of the most common malignancies among females, and its prognosis is affected by a complex network of gene interactions. Weighted gene co-expression network analysis was used to construct free-scale gene co-expression networks and to identify potential biomarkers for breast cancer progression.
METHODS: The gene expression profiles of GSE42568 were downloaded from the Gene Expression Omnibus database. RNA-sequencing data and clinical information of breast cancer from TCGA were used for validation.
RESULTS: A total of ten modules were established by the average linkage hierarchical clustering. We identified 58 network hub genes in the significant module (R
CONCLUSIONS: AGO2, CDC20, CDCA5, MCM10, MYBL2, and TTK were identified as candidate biomarkers for further basic and clinical research on breast cancer based on co-expression analysis.

Banerjee S, Karunagaran D
An integrated approach for mining precise RNA-based cervical cancer staging biomarkers.
Gene. 2019; 712:143961 [PubMed] Related Publications
Since international federation of gynecology and obstetrics (FIGO) staging is mainly based on clinical assessment, an integrated approach for mining RNA based biomarkers for understanding the molecular deregulation of signaling pathways and RNAs in cervical cancer was proposed in this study. Publicly available data were mined for identifying significant RNAs after patient staging. Significant miRNA families were identified from mRNA-miRNA and lncRNA-miRNA interaction network analyses followed by stage specific mRNA-miRNA-lncRNA association network generation. Integrated bioinformatic analyses of selected mRNAs and lncRNAs were performed. Results suggest that HBA1, HBA2, HBB, SLC2A1, CXCL10 (stage I), PKIA (stage III) and S100A7 (stage IV) were important. miRNA family enrichment of interacting miRNA partners of selected RNAs indicated the enrichment of let-7 family. Assembly of collagen fibrils and other multimeric structures_Homosapiens_R-HSA-2022090 in pathway analysis and progesterone_CTD_00006624 in DSigDB analysis were the most significant and SLC2A1, hsa-miR-188-3p, hsa-miR-378a-3p and hsa-miR-150-5p were selected as survival markers.

Yari K, Jalilvand A
Comment on: 'A 40-bp insertion/deletion polymorphism in the constitutive promoter of MDM2 confers risk for hepatocellular carcinoma in a Chinese population'.
Gene. 2019; 712:143965 [PubMed] Related Publications
Recently, we read the published article in GENE. Dong et al. presented the evaluation of the MDM2 40-bp insertion/deletion status in Hepatocellular carcinoma patients (Dong et al., 2012). The authors stated that the insertion allele showed a 521-bp band and the deletion allele showed a 481-bp band on agarose gel electrophoresis. While it seems that these reported sizes for insertion and deletion alleles of MDM2 are incorrect. Our analysis using the primers indicated that the length of insertion and deletion fragments will be 481 and 441 bps, respectively. Actually, 40-bp is added to the fragment length instead of reducing the 40-bp. In the 'UCSC In-Silico PCR' tool, the length of the amplified fragment using mentioned primers is 481-bp including the sequence of 40-bp insertion allele (5'-(A)

Lv P, Yang S, Wu F, et al.
Single-nucleotide polymorphisms (rs342275, rs342293, rs7694379, rs11789898, and rs17824620) showed significant association with lobaplatin-induced thrombocytopenia.
Gene. 2019; 713:143964 [PubMed] Related Publications
This study aimed to investigate single-nucleotide polymorphisms (SNPs) associated with lobaplatin-induced thrombocytopenia in patients with advanced lung cancer in China. Thirty-nine patients who received lobaplatin-based chemotherapy in the 307 Hospitals of Chinese People's Liberation Army from April 2017 to March 2018 were enrolled as study subjects. Peripheral blood DNA was extracted, and 79 candidate SNP positions were selected. A Sanger sequencing platform was employed to measure genotypes for locating the SNP positions associated with lobaplatin-induced thrombocytopenia. Of the 79 candidate genes, SNPs rs342275 and rs7694379 were significantly associated with lobaplatin-induced decrease in platelet (PLT) count (P < 0.05). SNPs rs342275, rs342293, rs11789898, and rs17824620 showed significant association with lobaplatin-induced lowest PLT counts (P < 0.05). SNPs rs342275, rs342293, rs11789898, rs17824620, and rs7694379 can be used as predictors of thrombocytopenia induced by lobaplatin-based chemotherapy in patients with advanced lung cancer in China.

Zhang Y, Zhang Y, Xu H
LIMCH1 suppress the growth of lung cancer by interacting with HUWE1 to sustain p53 stability.
Gene. 2019; 712:143963 [PubMed] Related Publications
BACKGROUND: The aim of this study was to identify the expression of LIM and calponin-homology domains 1 (LIMCH1) in lung cancer and normal tissues, to determine the interaction between LIMCH1 and HUWE1 in regulating p53 stability.
METHODS: The expression of LIMCH1 was detected by the Oncomine and Cancer Genome Atlas databases. Expression of LIMCH1 mRNA was identified using qRT-PCR. In transfected human lung cancer cells, co-immunoprecipitation experiments were performed. The mechanism that HUWE1 sustained lung cancer malignancy was verified by western blotting. The proliferation of tranfected cells was assessed by CCK-8 assay and colony formation.
RESULTS: Bioinformatic data and e TCGA database suggested LIMCH1 mRNA levels in tumor tissues were down-regulated compared to tumor adjacent tissues. We found low expression of LIMCH1 mRNA in tumor sites and tumor cell line. Exogenous expression of LIMCH1 interacts with HUWE1 promotes expression of p53. Use of siRNA or shRNA against LIMCH1 resulted in decreased p53 protein levels. LIMCH1 deletion lead to enhance of p53 ubiquitination and protein expression of p53 and substrate p21, puma. Growth curve showed that LIMCH1 deletion significantly promoted the proliferation of A549 cells.
CONCLUSIONS: LIMCH1 was a negative regulator and indicated a new molecular mechanism for the pathogenesis of lung cancer via modulating HUWE1 and p53.

Chuo D, Liu F, Chen Y, Yin M
LncRNA MIR503HG is downregulated in Han Chinese with colorectal cancer and inhibits cell migration and invasion mediated by TGF-β2.
Gene. 2019; 713:143960 [PubMed] Related Publications
In this study we investigated the role of lncRNA MIR503HG in colorectal cancer (CRC). We found that MIR503HG was downregulated and TGF-β2 was upregulated in CRC included in this study. Low levels of MIR503HG were associated with poor survival of CRC patients within 5 years after admission. MIR503HG and TGF-β2 were inversely correlated in CRC tissues, and in CRC cells, MIR503HG overexpression was accompanied by TGF-β2 downregulation, while TGF-β2 overexpression did not affect MIR503HG. TGF-β2 overexpression mediated the increased migration and invasion rates of CRC cells. MIR503HG overexpression mediated the decreased migration and invasion rates of CRC cells. Moreover, TGF-β2 overexpression reduced the effects of MIR503HG overexpression. Therefore, MIR503HG overexpression inhibits CRC cell migration and invasion mediated by TGF-β2.

Fasihi A, Soltani BM, Ranjbaran ZS, et al.
Hsa-miR-942 fingerprint in colorectal cancer through Wnt signaling pathway.
Gene. 2019; 712:143958 [PubMed] Related Publications
The Wnt signaling pathway has been identified for its function in carcinogenesis and embryonic development. It is known to play a vital role in the initiation and development of colorectal cancer (CRC). Therefore, it is of great importance for CRC research to illuminate the mechanisms which regulate Wnt pathway activity. Here, we intended to examine the effect of hsa-miR-942 (miR-942) on the Wnt signaling activity, cell cycle progression, and its expression in CRC tissues. RT-qPCR results indicated that miR-942 is significantly upregulated in colorectal cancer. Then, overexpression of miR-942 promoted, whereas its inhibition decreased the Wnt signaling activity, detected by RT-qPCR and Top/Fop flash assay. Inhibition of Wnt signaling by using PNU-74654 or IWP-2 small molecules indicated that miR-942 applies its effect to the β-catenin degradation complex level. Then, RT-qPCR and dual luciferase assay showed that miR-942 upregulated Wnt signaling through direct targeting of APC, which is a tumor suppressor in Wnt signaling pathway. Furthermore, the western blotting analysis indicated that β.catenin, as a main member of Wnt signaling pathway is upregulated following the overexpression of miR-942. Finally, miR-942 overexpression resulted in cell cycle progression in SW480 cells. Taken together, our findings established an oncogenic role for miR-942 in CRC and indicated that this miRNA might be a crucial target for CRC therapy.

Li Y, Xu Q, Yang W, et al.
Oleanolic acid reduces aerobic glycolysis-associated proliferation by inhibiting yes-associated protein in gastric cancer cells.
Gene. 2019; 712:143956 [PubMed] Related Publications
Gastric cancer represents a common malignancy of digestive tract with high incidence and mortality. Increasing evidence suggests that the growth of gastric tumor cells relies largely on aerobic glycolysis. Currently, many potential anti-cancer candidates are derived from natural products. Here, we evaluated the effects of oleanolic acid (OA), a triterpenoid component widely found in the plants of Oleaceae family, on aerobic glycolysis and proliferation in human MKN-45 and SGC-7901 gastric cancer cells. Our results demonstrated that OA reduced the viability and proliferation of gastric cancer cells and inhibited the expression of cyclin A and cyclin-dependent kinase 2. OA blocked glycolysis in these cells evidenced by decreases in the uptake and consumption of glucose, intracellular lactate levels and extracellular acidification rate. Glycolysis inhibitor 2-deoxy-d-glucose, similar to OA, suppressed gastric cancer cell proliferation. OA also decreased the expression and intracellular activities of glycolysis rate-limiting enzymes hexokinase 2 (HK2) and phosphofructokinase 1 (PFK1). Moreover, OA downregulated the expression of hypoxia inducible factor-1α (HIF-1α) and decreased its nuclear abundance. Upregulation of HIF-1α by deferoxamine rescued OA-inhibited HK2 and PFK1. Furthermore, OA reduced the nuclear abundance of yes-associated protein (YAP) in gastric tumor cells. YAP inhibitor verteporfin, similar to OA, downregulated the expression of HIF-1α and glycolytic enzymes in gastric cancer cells; whereas overexpression of YAP abrogated all these effects of OA. Collectively, inhibition of YAP was responsible for OA blockade of HIF-1α-mediated aerobic glycolysis and proliferation in human gastric tumor cells. OA could be developed as a promising candidate for gastric cancer treatment.

Alvur O, Tokgun O, Baygu Y, et al.
The triazole linked galactose substituted dicyano compound can induce autophagy in NSCLC cell lines.
Gene. 2019; 712:143935 [PubMed] Related Publications
As seen in other types of cancer, development of drug resistance in NSCLC treatment causes adverse effects on disease fighting process. Recent studies have shown that one of the drug resistance development mechanisms is that cancer cells may acquire the ability to escape from cell death. Therefore, development of anticancer drugs which have the strategy to redirect cancer cells to any cell death pathways may provide positive results for cancer treatments. Autophagy may be a target mechanism of alternative cancer treatment strategy in cases of blocked apoptosis. There is also a complex molecular link between autophagy and apoptosis, has not been fully understood yet. The dicyano compound which we used in our study caused cell death in NSCLC cell lines. When we analyzed the cells which were treated with dicyano compound by transmission electron microscope, we observed autophagosome structures. Upon this result, we investigated expression levels of autophagic proteins in the dicyano compound-treated cells by immunoblotting and observed that expression levels of autophagic proteins were increased significantly. The TUNEL assay and qRT-PCR for pro-apoptotic and anti-apoptotic gene expression, which we performed to assess apoptosis in the dicyano compound-treated cells, showed that the cell death does not occur through apoptotic pathway. We showed that the dicyano compound, which was developed in our laboratories, may play a role in molecular link between apoptosis and autophagy and may shed light on development of new anticancer treatment strategies.

Zheng Y, Lv P, Wang S, et al.
LncRNA PLAC2 upregulates p53 to induce hepatocellular carcinoma cell apoptosis.
Gene. 2019; 712:143944 [PubMed] Related Publications
It is known that lncRNA PLAC2 can inhibit glioma. This study explored the function of PLAC2 in hepatocellular carcinoma (HCC). Our data showed that PLAC2 expression in HCC was not affect by HCV and HBV infection, while PLAC2 levels were significantly lower in HCC tissues comparing to non-cancer tissues. Low PLAC2 levels in HCC tissues were associated with low overall 5-year survival rate. P53 mRNA was also downregulated in HCC and positively correlated with PLAC2. PLAC2 overexpression caused upregulated p53 and increase cancer cell apoptosis. P53 overexpression failed to affect PLAC2. In addition, p53 silencing reduced the effects of PLAC2 overexpression. Therefore, PLAC2 upregulated p53 to mediate cancer cell apoptosis.

Vieira IA, Recamonde-Mendoza M, da Silva VL, et al.
A comprehensive analysis of core polyadenylation sequences and regulation by microRNAs in a set of cancer predisposition genes.
Gene. 2019; 712:143943 [PubMed] Related Publications
Two core polyadenylation elements (CPE) located in the 3' untranslated region of eukaryotic pre-mRNAs play an essential role in their processing: the polyadenylation signal (PAS) AAUAAA and the cleavage site (CS), preferentially a CA dinucleotide. Herein, we characterized PAS and CS sequences in a set of cancer predisposition genes (CPGs) and performed an in silico investigation of microRNAs (miRNAs) regulation to identify potential tumor-suppressive and oncogenic miRNAs. NCBI and alternative polyadenylation databases were queried to characterize CPE sequences in 117 CPGs, including 81 and 17 known tumor suppressor genes and oncogenes, respectively. miRNA-mediated regulation analysis was performed using predicted and validated data sources. Based on NCBI analyses, we did not find an established PAS in 21 CPGs, and verified that the majority of PAS already described (74.4%) had the canonical sequence AAUAAA. Interestingly, "AA" dinucleotide was the most common CS (37.5%) associated with this set of genes. Approximately 90% of CPGs exhibited evidence of alternative polyadenylation (more than one functional PAS). Finally, the mir-192 family was significantly overrepresented as regulator of tumor suppressor genes (P < 0.01), which suggests a potential oncogenic function. Overall, this study provides a landscape of CPE in CPGs, which might be useful in development of future molecular analyses covering these frequently neglected regulatory sequences.

Jorda R, Lopes SMM, Řezníčková E, et al.
Tetrahydropyrazolo[1,5-a]pyridine-fused steroids and their in vitro biological evaluation in prostate cancer.
Eur J Med Chem. 2019; 178:168-176 [PubMed] Related Publications
The androgen receptor (AR) is a steroid hormone receptor and its high expression and disruption of its regulation are strongly implicated in prostate cancer (PCa) development. One of the current therapies includes application of steroidal antiandrogens leading to blockade of the AR action by the abrogation of AR-mediated signaling. We introduced here novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused steroidal compounds, described their synthesis based on [8π+2π] cycloaddition reactions of diazafulvenium methides with different steroidal scaffolds and showed their biological evaluation in different prostate cancer cell lines in vitro. Our results showed the ability of novel compounds to suppress the expression of known androgen receptor targets, Nkx3.1 and PSA in two prostate cell lines, 22Rv1 and VCaP. Candidate compound diminished the transcription of AR-regulated genes in the reporter cell line in a concentration-dependent manner. Antiproliferative activity of the most promising steroid was studied by clonogenic assay and induction of apoptosis in treated cells was documented by immunoblot detection of cleaved PARP.

Wang X, Dai J, Wang X, et al.
Talanta. 2019; 202:591-599 [PubMed] Related Publications
Photodynamic therapy (PDT) was considered as an effective treatment. Whereas only PDT is not enough to achieve effective therapy on account of irradiation intensity decreases as depth increases as well as tumor hypoxia. Combination with gene therapy and photodynamic therapy have emerged as an effective strategy to improve therapeutic effectiveness. In the present study, a GSH responsive MnO

Recagni M, Greco ML, Milelli A, et al.
Distinct biological responses of metastatic castration resistant prostate cancer cells upon exposure to G-quadruplex interacting naphthalenediimide derivatives.
Eur J Med Chem. 2019; 177:401-413 [PubMed] Related Publications
Small molecules able to bind non-canonical G-quadruplex DNA structures (G4) have been recently tested as novel potential agents for the treatment of prostate cancer thanks to their repression of aberrant androgen receptor gene. However, metastatic castration-resistant prostate cancer (mCRPC), a letal form of prostate cancer, is still incurable. Here we tested two naphthalenediimide derivatives, previously reported as multitarget agents, on a couple of relevant mCRPC cell models (DU145 and PC-3). We showed that these compounds interfere with the RAS/MEK/ERK and PI3K/AKT pathways. Interestingly, both these two biological processes depend upon Epidermal Growth Factor Receptor (EGFR) activation. By means of biological and analytical tools we showed that our compounds are efficient inducers of the structural transition of the EGFR promoter towards a G-quadruplex conformation, ultimately leading to a reduction of the receptor production. The overall result is an interesting cytotoxic profile for these two derivatives. Thanks to their activity at different steps, these compounds can open the way to novel therapeutic approaches for mCRPC that could contribute to escape resistance to selective treatments.

Macuer-Guzmán J, Bernal G, Jamett-Díaz F, et al.
Selective and Apoptotic Action of Ethanol Extract of Annona cherimola Seeds against Human Stomach Gastric Adenocarcinoma Cell Line AGS.
Plant Foods Hum Nutr. 2019; 74(3):322-327 [PubMed] Related Publications
Annona cherimola is a tree belonging to the family Annonacea, whose fruit (cherimoya) is very desirable, but its seeds are considered waste. Present in these seeds are compounds that have been described as selective antiproliferative agents for cancer cells. The aim of this study was to evaluate the antiproliferative activity of ethanol macerate extract (EMCHS) obtained from A. cherimola seeds against the human stomach gastric adenocarcinoma (AGS) cell line and the normal human gastric epithelial cell line (GES-1). The EMCHS extract presented an IC

Kim HS, Kim KM, Lee SB, et al.
Clinicopathological and biomolecular characteristics of stage IIB/IIC and stage IIIA colon cancer: Insight into the survival paradox.
J Surg Oncol. 2019; 120(3):423-430 [PubMed] Related Publications
BACKGROUND: A survival paradox of stage IIB/IIC and IIIA colon cancer has been consistently observed throughout revisions of the TNM system. This study aimed to understand this paradox with clinicopathological and molecular differences.
METHODS: Clinicopathological characteristics of patients with pathologically confirmed stage IIB/IIC or IIIA colon cancer were retrospectively reviewed from a database. Publicly available molecular data were retrieved, and intrinsic subtypes were identified and subjected to gene sets enrichment analysis (GSEA).
RESULTS: Among the 159 patients included in the clinicopathological analysis, those at stage IIB/IIC had worse 3-year disease-free and overall survival than those at stage IIIA (59.3% vs 91.7%, P < 0.001 and 82.7% vs 98.5%, P < 0.001, respectively), even after adjusting for confounding factors. Data of 95 patients were retrieved from public databases, demonstrating a higher frequency of the microsatellite instable subtype in stage IIB/IIC. The consensus molecular subtype distribution pattern differed between the groups. The GSEA further suggested the protumor inflammatory reaction might be more prominent in stage IIB/IIC.
CONCLUSIONS: The survival paradox in colon cancer was confirmed and appears to be a multifactorial phenomenon not attributed to a single clinicopathologic factor. However, the greater molecular heterogeneity in stage IIB/IIC could contribute to the poor prognosis.

Saha T, Makar S, Swetha R, et al.
Estrogen signaling: An emanating therapeutic target for breast cancer treatment.
Eur J Med Chem. 2019; 177:116-143 [PubMed] Related Publications
Breast cancer, a most common malignancy in women, was known to be associated with steroid hormone estrogen. The discovery of estrogen receptor (ER) gave us not only a powerful predictive and prognostic marker, but also an efficient target for the treatment of hormone-dependent breast cancer with various estrogen ligands. ER consists of two subtypes i.e. ERα and ERβ, that are mostly G-protein-coupled receptors and activated by estrogen, specially 17β-estradiol. The activation is followed by translocation into the nucleus and binding with DNA to modulate activities of different genes. ERs can manage synthesis of RNA through genomic actions without directly binding to DNA. Receptors are tethered by protein-protein interactions to a transcription factor complex to communicate with DNA. Estrogens also exhibit nongenomic actions, a characteristic feature of steroid hormones, which are so rapid to be considered by the activation of RNA and translation. These are habitually related to stimulation of different protein kinase cascades. Majority of post-menopausal breast cancer is estrogen dependent, mostly potent biological estrogen (E2) for continuous growth and proliferation. Estrogen helps in regulating the differentiation and proliferation of normal breast epithelial cells. In this review we have investigated the important role of ER in development and progression of breast cancer, which is complicated by receptor's interaction with co-regulatory proteins, cross-talk with other signal transduction pathways and development of treatment strategies viz. selective estrogen receptor modulators (SERMs), selective estrogen receptor down regulators (SERDs), aromatase and sulphatase inhibitors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SEPP1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999