Gene Summary

Gene:TAP1; transporter 1, ATP binding cassette subfamily B member
Aliases: APT1, PSF1, ABC17, ABCB2, PSF-1, RING4, TAP1N, D6S114E, TAP1*0102N
Summary:The membrane-associated protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the MDR/TAP subfamily. Members of the MDR/TAP subfamily are involved in multidrug resistance. The protein encoded by this gene is involved in the pumping of degraded cytosolic peptides across the endoplasmic reticulum into the membrane-bound compartment where class I molecules assemble. Mutations in this gene may be associated with ankylosing spondylitis, insulin-dependent diabetes mellitus, and celiac disease. Two transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, May 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:antigen peptide transporter 1
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (32)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Multienzyme Complexes
  • Alleles
  • Antineoplastic Agents
  • Trans-Activators
  • Cancer Gene Expression Regulation
  • Squamous Cell Carcinoma
  • Transfection
  • Molecular Sequence Data
  • Messenger RNA
  • Viral Matrix Proteins
  • Up-Regulation
  • Melanoma
  • Tumor Escape
  • Histocompatibility Antigens Class I
  • Case-Control Studies
  • Antigen Presentation
  • Chromosome 6
  • Proteasome Endopeptidase Complex
  • Single Nucleotide Polymorphism
  • Promoter Regions
  • T-Lymphocytes, Cytotoxic
  • Antigen Peptide Transporter-1
  • Base Sequence
  • Cysteine Endopeptidases
  • Signal Transduction
  • Down-Regulation
  • Immunohistochemistry
  • Genetic Predisposition
  • ATP-Binding Cassette Transporters
  • Gene Expression
  • Uterine Cancer
  • Genotype
  • Colorectal Cancer
  • Mutation
  • Antigen Peptide Transporter-2
  • Interferon-gamma
  • HLA Antigens
  • Tumor Antigens
  • Genes, MHC Class I
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TAP1 (cancer-related)

Yoshihama S, Roszik J, Downs I, et al.
NLRC5/MHC class I transactivator is a target for immune evasion in cancer.
Proc Natl Acad Sci U S A. 2016; 113(21):5999-6004 [PubMed] Free Access to Full Article Related Publications
Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.

Chawla A, Alatrash G, Philips AV, et al.
Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells.
Cancer Immunol Immunother. 2016; 65(6):741-51 [PubMed] Related Publications
Neutrophil elastase (NE) is an innate immune cell-derived inflammatory mediator that we have shown increases the presentation of tumor-associated peptide antigens in breast cancer. In this study, we extend these observations to show that NE uptake has a broad effect on enhancing antigen presentation by breast cancer cells. We show that NE increases human leukocyte antigen (HLA) class I expression on the surface of breast cancer cells in a concentration and time-dependent manner. HLA class I upregulation requires internalization of enzymatically active NE. Western blots of NE-treated breast cancer cells confirm that the expression of total HLA class I as well as the antigen-processing machinery proteins TAP1, LMP2, and calnexin does not change following NE treatment. This suggests that NE does not increase the efficiency of antigen processing; rather, it mediates the upregulation of HLA class I by stabilizing and reducing membrane recycling of HLA class I molecules. Furthermore, the effects of NE extend beyond breast cancer since the uptake of NE by EBV-LCL increases the presentation of HLA class I-restricted viral peptides, as shown by their increased sensitivity to lysis by EBV-specific CD8+ T cells. Together, our results show that NE uptake increases the responsiveness of breast cancer cells to adaptive immunity by broad upregulation of membrane HLA class I and support the conclusion that the innate inflammatory mediator NE enhances tumor cell recognition and increases tumor sensitivity to the host adaptive immune response.

Sun DX, Liao GJ, Liu KG, Jian H
Endosialin‑expressing bone sarcoma stem‑like cells are highly tumor‑initiating and invasive.
Mol Med Rep. 2015; 12(4):5665-70 [PubMed] Free Access to Full Article Related Publications
It has been reported that the presence of a small group of cancer stem‑like 'side population (SP)' cells is responsible for therapy failure and tumor recurrence. The present study demonstrated that primary human osteosarcoma samples contained a SP of about 3.9% which overexpressed ABC transporters, including ABCA1, ABCB1, ABCB2 and ABCG2, which are associated with drug resistance and may have contributed to multi‑drug resistance of SP cells. Furthermore, these SP cells displayed increased expression of endosialin (CD248) and other stem cell surface proteins, including CD133, octamer‑binding transcription factor 3/4A, Nanog and Nestin, which are ultimately responsible for high self‑renewal and deregulated cell proliferation. In addition, it was shown that endosialin‑overexpressing SP cells were able to regenerate the tumor population and had a high invasive potential. Therefore, the present study suggested that osteosarcoma SP cells were cancer stem cells, as they displayed stem‑like properties; furthermore, endosialin may be a potential target to prevent osteosarcoma recurrence following chemotherapy.

Nymoen DA, Hetland Falkenthal TE, Holth A, et al.
Expression and clinical role of chemoresponse-associated genes in ovarian serous carcinoma.
Gynecol Oncol. 2015; 139(1):30-9 [PubMed] Related Publications
OBJECTIVE: To validate our earlier observation that 11 chemoresistance-associated mRNAs are molecular markers of poor overall survival in ovarian serous carcinoma.
METHODS: Ovarian serous carcinomas (n=112) and solid metastases (n=63; total=175) were analyzed for mRNA expression of APC, BAG3, EGFR, S100A10, ITGAE, MAPK3, TAP1, BNIP3, MMP9, FASLG and GPX3 using quantitative real-time PCR. mRNA expression was studied for association with clinicopathologic parameters and survival. Tumor heterogeneity was assessed in 20 cases with >1 specimen per patient. APC, BAG3, S100A10 and ERK1 protein expression by immunohistochemistry was analyzed in 58 specimens (38 primary carcinomas, 20 metastases).
RESULTS: BAG3 (p=0.013), TAP1 (p=0.014), BNIP3 (p<0.001) and MMP9 (p=0.036) were overexpressed in primary tumors, whereas S100A10 (p=0.027) and FASLG (p=0.006) were overexpressed in metastases. Analysis of patient-matched primary carcinomas and metastases showed overexpression of APC (p=0.022), MAPK3 (p=0.002) and BNIP3 (p=0.004) in the former. In primary carcinomas, higher APC (p=0.003) and MAPK3 (p=0.005) levels were related to less favorable chemoresponse. Higher S100A10 (p=0.029) and MAPK3 (p=0.041) levels were related to primary chemoresistance. Higher BAG3 (p=0.026) and APC (p=0.046) levels in primary carcinomas were significantly related to poor overall survival in univariate, though not in multivariate survival analysis. S100A10 protein expression was related to poor chemoresponse (p=0.002) and shorter overall (p=0.005) and progression-free (p<0.001) survival, the latter finding retained in multivariate analysis (p=0.035).
CONCLUSIONS: Our data provide evidence of heterogeneity in ovarian serous carcinoma and identify APC, MAPK3, BAG3 and S100A10 as potential biomarkers of poor chemotherapy response and/or poor outcome in this cancer.

Zou N, Yang L, Chen L, et al.
Heterozygote of TAP1 Codon637 decreases susceptibility to HPV infection but increases susceptibility to esophageal cancer among the Kazakh populations.
J Exp Clin Cancer Res. 2015; 34:70 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The role of human papillomavirus (HPV) may be involved in the development of esophageal cancer (EC) and the polymorphic immune response gene transporter associated with antigen processing (TAP) may be involved in HPV persistence and subsequent cancer carcinogenesis. The current study aims to provide association evidence for HPV with EC, to investigate TAP1 polymorphisms in EC and assess its association with HPV statuses and EC in Kazakhs.
METHODS: The HPV genotypes in 361 patients with EC and 66 controls selected from Kazakh population were evaluated using PCR. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to detect two SNPs of TAP1 in 150 cases comprised of 75 HPV(+) and 75 HPV(-) patients and 283 pure ethnic population of Kazakh and evaluate their associations with susceptibility to EC. A case-to-case comparison based on the genotyping results was conducted to address the function of TAP1 variants in the involvement of HPV.
RESULTS: The presence of four HPV genotypes in EC tissues - including HPV 16, 18, 31, 45 - was significantly higher at 64.6 % than those in controls at 18.2 % (P < 0.001). Such presence was strongly associated with increased risk of EC (OR 8.196; 95 % CI 4.280-15.964). The infection of HPV16, and multi-infection of 16 and 18 significantly increase the risk for developing EC (OR 4.616, 95 % CI 2.099-10.151; and OR 6.029, 95 % CI 1.395-26.057 respectively). Heterozygote of TAP1 D637G had a significantly higher risk for developing EC (OR 1.626; 95 % CI 1.080-2.449). The odds ratio for HPV infection was significantly lower among carriers of TAP1 D637G polymorphism (OR 0.281; 95 % CI 0.144-0.551).
CONCLUSIONS: HPV infection exhibits a strong positive association with the risk of EC in Kazakhs. Heterozygote of TAP1 D637G decreases susceptibility to HPV infection in patients with EC but increases susceptibility to EC among the Kazakh populations.

Zhang H, Angelopoulos N, Xu Y, et al.
Proteomic profile of KSR1-regulated signalling in response to genotoxic agents in breast cancer.
Breast Cancer Res Treat. 2015; 151(3):555-68 [PubMed] Free Access to Full Article Related Publications
Kinase suppressor of Ras 1 (KSR1) has been implicated in tumorigenesis in multiple cancers, including skin, pancreatic and lung carcinomas. However, our recent study revealed a role of KSR1 as a tumour suppressor in breast cancer, the expression of which is potentially correlated with chemotherapy response. Here, we aimed to further elucidate the KSR1-regulated signalling in response to genotoxic agents in breast cancer. Stable isotope labelling by amino acids in cell culture (SILAC) coupled to high-resolution mass spectrometry (MS) was implemented to globally characterise cellular protein levels induced by KSR1 in the presence of doxorubicin or etoposide. The acquired proteomic signature was compared and GO-STRING analysis was subsequently performed to illustrate the activated functional signalling networks. Furthermore, the clinical associations of KSR1 with identified targets and their relevance in chemotherapy response were examined in breast cancer patients. We reveal a comprehensive repertoire of thousands of proteins identified in each dataset and compare the unique proteomic profiles as well as functional connections modulated by KSR1 after doxorubicin (Doxo-KSR1) or etoposide (Etop-KSR1) stimulus. From the up-regulated top hits, several proteins, including STAT1, ISG15 and TAP1 are also found to be positively associated with KSR1 expression in patient samples. Moreover, high KSR1 expression, as well as high abundance of these proteins, is correlated with better survival in breast cancer patients who underwent chemotherapy. In aggregate, our data exemplify a broad functional network conferred by KSR1 with genotoxic agents and highlight its implication in predicting chemotherapy response in breast cancer.

Srivastava RM, Trivedi S, Concha-Benavente F, et al.
STAT1-Induced HLA Class I Upregulation Enhances Immunogenicity and Clinical Response to Anti-EGFR mAb Cetuximab Therapy in HNC Patients.
Cancer Immunol Res. 2015; 3(8):936-45 [PubMed] Free Access to Full Article Related Publications
The goal of this study was to characterize the molecular mechanisms underlying cetuximab-mediated upregulation of HLA class I antigen-processing machinery components in head and neck cancer (HNC) cells and to determine the clinical significance of these changes in cetuximab-treated HNC patients. Flow cytometry, signaling studies, and chromatin immunoprecipitation (ChIP) assays were performed using HNC cells treated with cetuximab alone or with Fcγ receptor (FcγR)-bearing lymphocytes to establish the mechanism of EGFR-dependent regulation of HLA APM expression. A prospective phase II clinical trial of neoadjuvant cetuximab was used to correlate HLA class I expression with clinical response in HNC patients. EGFR blockade triggered STAT1 activation and HLA upregulation, in a src homology-containing protein (SHP)-2-dependent fashion, more prominently in HLA-B/C than in HLA-A alleles. EGFR signaling blockade also enhanced IFNγ receptor 1 (IFNAR) expression, augmenting induction of HLA class I and TAP1/2 expression by IFNγ, which was abrogated in STAT1(-/-) cells. Cetuximab enhanced HNC cell recognition by EGFR853-861-specific CTLs, and notably enhanced surface presentation of a non-EGFR peptide (MAGE-3271-279). HLA class I upregulation was significantly associated with clinical response in cetuximab-treated HNC patients. EGFR induces HLA downregulation through SHP-2/STAT1 suppression. Reversal of HLA class I downregulation was more prominent in clinical responders to cetuximab therapy, supporting an important role for adaptive immunity in cetuximab antitumor activity. Abrogating EGFR-induced immune escape mechanisms and restoring STAT1 signaling to reverse HLA downregulation using cetuximab should be combined with strategies to enhance adaptive cellular immunity.

Mehta AM, Spaans VM, Mahendra NB, et al.
Differences in genetic variation in antigen-processing machinery components and association with cervical carcinoma risk in two Indonesian populations.
Immunogenetics. 2015; 67(5-6):267-75 [PubMed] Free Access to Full Article Related Publications
Genetic variation of antigen-processing machinery (APM) components has been shown to be associated with cervical carcinoma risk and outcome in a genetically homogeneous Dutch population. However, the role of APM component single nucleotide polymorphisms (SNPs) in genetically heterogeneous populations with different distributions of human papillomavirus (HPV) subtypes remains unclear. Eleven non-synonymous, coding SNPs in the TAP1, TAP2, LMP2, LMP7 and ERAP1 genes were genotyped in cervical carcinoma patients and healthy controls from two distinct Indonesian populations (Balinese and Javanese). Individual genotype and allele distributions were investigated using single-marker analysis, and combined SNP effects were assessed by haplotype construction and haplotype interaction analysis. Allele distribution patterns in Bali and Java differed in relation to cervical carcinoma risk, with four ERAP1 SNPs and one TAP2 SNP in the Javanese population showing significant association with cervical carcinoma risk, while in the Balinese population, only one TAP2 SNP showed this association. Multimarker analysis demonstrated that in the Javanese patients, one specific haplotype, consisting of the ERAP1-575 locus on chromosome 5 and the TAP2-379 and TAP2-651 loci on chromosome 6, was significantly associated with cervical carcinoma risk (global P = 0.008); no significant haplotype associations were found in the Balinese population. These data indicate not only that genetic variation in APM component genes is associated with cervical carcinoma risk in Indonesia but also that the patterns of association differ depending on background genetic composition and possibly on differences in HPV type distribution.

Andersen V, Vogel LK, Kopp TI, et al.
High ABCC2 and low ABCG2 gene expression are early events in the colorectal adenoma-carcinoma sequence.
PLoS One. 2015; 10(3):e0119255 [PubMed] Free Access to Full Article Related Publications
Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds across the epithelial barrier. Low mRNA level of ABCB1 has previously been identified as an early event in colorectal carcinogenesis (Andersen et al., PLoS One. 2013 Aug 19;8(8):e72119). ABCC2 and ABCG2 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 106 adenoma cases (12 with severe dysplasia, 94 with mild-moderate dysplasia) and from 18 controls with normal endoscopy. We found significantly higher level of ABCC2 in adenomas with mild to moderate dysplasia and carcinoma tissue compared to the levels in unaffected tissue from the same individual (P = 0.037, P = 0.037, and P<0.0001) and in carcinoma and distant unaffected tissue from CRC cases compared to the level in the healthy individuals (P = 0.0046 and P = 0.036). Furthermore, ABCG2 mRNA levels were significantly lower in adenomas and carcinomas compared to the level in unaffected tissue from the same individuals and compared to tissue from healthy individuals (P<0.0001 for all). The level of ABCB2 in adjacent normal tissue was significantly higher than in tissue from healthy individuals (P = 0.011). In conclusion, this study found that ABCC2 and ABCG2 expression levels were altered already in mild/moderate dysplasia in carcinogenesis suggesting that these ABC transporters are involved in the early steps of carcinogenesis as previously reported for ABCB1. These results suggest that dysfunctional transport across the epithelial barrier may contribute to colorectal carcinogenesis.

Zhan HQ, Chen H, Wang CF, Zhu XZ
A case of PSF-TFE3 gene fusion in Xp11.2 renal cell carcinoma with melanotic features.
Hum Pathol. 2015; 46(3):476-81 [PubMed] Related Publications
Xp11.2 translocation renal cell carcinoma (Xp11.2 RCC) with PSF-TFE3 gene fusion is a rare neoplasm. Only 22 cases of Xp11.2 RCCs with PSF-TFE3 have been reported to date. We describe an additional case of Xp11.2 RCC with PSF-TFE3 showing melanotic features. Microscopically, the histologic features mimic clear cell renal cell carcinoma. However, the dark-brown pigments were identified and could be demonstrated as melanins. Immunohistochemically, the tumor cells were widely positive for CD10, human melanoma black 45, and TFE3 but negative for cytokeratins, vimentin, Melan-A, microphthalmia-associated transcription factor, smooth muscle actin, and S-100 protein. Genetically, we demonstrated PSF-TFE3 fusion between exon 9 of PSF and exon 5 of TFE3. The patient was free of disease with 50 months of follow-up. The prognosis of this type of tumor requires more cases because of limited number of cases and follow-up period. Xp11.2 RCC with PSF-TFE3 inevitably requires differentiation from other kidney neoplasms. Immunohistochemical and molecular genetic analyses are essential for accurate diagnosis.

Sun X, Sui W, Huang M, et al.
Partner of Sld five 3: a potential prognostic biomarker for colorectal cancer.
Diagn Pathol. 2014; 9:217 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Partner of Sld five 3 (PSF3) is a member of the evolutionarily conserved heterotetrameric complex "Go-Ichi-Ni-San" (GINS), which consists of SLD5, PSF1, PSF2, and PSF3. Previous studies have suggested that some GINS complex members are upregulated in cancer, but the status of PSF3 expression in colorectal cancer has not been investigated.
METHODS: We investigated the status of PSF3 expression in 137 consecutive resected colorectal caners by quantitative reverse-transcription polymerase chain reaction. Univariable and multivariable Cox regression analyses were performed to assess independent prognostic factors for overall survival in colorectal cancer.
RESULTS: In 137 restected colorectal cancer samples, median messenger RNA (mRNA) expression levels of PSF3 were significantly higher in tumor tissues (1.35 × 10(-3), range 2.88 × 10(-4) to 3.16 × 10(-2)) than in adjacent normal tissues (2.94 × 10(-4), range 5.48 × 10(-5) to 1.27 × 10(-3)) (P < 0.05). Moreover, high expression of PSF3 in tumor tissues was associated with shorter disease-free survival and overall survival. When analyzed with a Cox regression model, the PSF3 expression was an independent prognostic factor for overall survival. In addition, in patients with early stage (stage I and II) colorectal cancer, the overall survival rate of the high PSF3 expression group was significantly lower than that of the low PSF3 expression group (P < 0.001).
CONCLUSIONS: The PSF3 expression plays an important role in the progression of colorectal cancer and acts as a factor significantly affecting the prognosis of patients.
VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_217.

Tahara H, Naito H, Kise K, et al.
Evaluation of PSF1 as a prognostic biomarker for prostate cancer.
Prostate Cancer Prostatic Dis. 2015; 18(1):56-62 [PubMed] Related Publications
BACKGROUND: Partner of SLD5 1 (PSF1) is an evolutionarily conserved DNA replication factor. Previous studies have suggested that transcriptional activity of the PSF1 gene correlated with malignancy of cancer cells. The objective of the current study was to evaluate the relationship between PSF1 expression and the clinical features of prostate cancer.
METHODS: We determined the expression of PSF1 in 120 needle biopsy samples of prostate cancer by immunohistochemistry. We divided patients into PSF1-positive or -negative groups and analyzed the relationships between the expression of PSF1, the Gleason score, PSA level, TNM classification and prognosis.
RESULTS: Our results showed that the PSF1 expression correlated significantly with PSA values at diagnosis (P=0.0028), with tumor grade (P<0.0001), and with clinical stage (P=0.0005). Moreover, the PSF1 expression correlated significantly with overall survival (hazard ratio (HR) 5.5; 95% confidence interval (CI) 2.17-15.8; P=0.003) and progression-free survival in 99 consecutive patients with prostate cancer. Noteworthy, the prognosis of PSF1-positive cases was also worse in patients with a Gleason score of 8-10 (HR 3.7; 95% CI 1.28-13.43; P=0.0143). Limitations include that this study had a retrospective design, that patients in the study were heterogeneous and included those with early and advanced cancer, and that small tumor fragments may not be representative of the entire carcinoma.
CONCLUSIONS: PSF1 is expressed in high-grade prostate cancer and may be a useful biomarker to identify patients with a poor prognosis at the time of diagnosis.

Zhang J, Wu Q, Wang Z, et al.
Knockdown of PSF1 expression inhibits cell proliferation in lung cancer cells in vitro.
Tumour Biol. 2015; 36(3):2163-8 [PubMed] Related Publications
Partner of sld five 1 (PSF1) is a member of the heterotetrameric complex termed GINS. Previous studies have shown that PSF1 is unregulated in several cancer and associated with tumor malignant characters. However, the effects of PSF1 in lung cancer are still unclear. The goal of this study was to investigate the effects of PSF1 on the proliferation capacities of lung cancer. To start with, expression of PSF1 in 22 human lung cancer samples and adjacent non-tumor samples were detected by real-time RT-PCR and Western blotting. Our results showed that PSF1 was overexpressed in lung cancer samples compared to adjacent non-tumor samples. To achieve better insights of PSF1 functions in lung cancer cells, we used PSF1-specific small interfering RNA (siRNA) successfully inhibit the expression of PSF1 in messenger RNA (mRNA) and protein levels. In addition, we used lung cancer cell lines with different p53 gene background (p53 null and p53 wild-type). The results showed that knockdown of PSF1 inhibited cell proliferation and caused cell cycle arrest of lung cancer cells in a p53-independent manner. Our data indicated that PSF1 is functionally involved in lung cancer cell proliferation and is a potential target for lung cancer therapy.

Zhou L, Sun XJ, Liu C, et al.
Overexpression of PSF1 is correlated with poor prognosis in hepatocellular carcinoma patients.
Int J Biol Markers. 2015; 30(1):e56-64 [PubMed] Related Publications
BACKGROUND: PSF1 is a subunit of the GINS complex which is essential for establishment of DNA replication forks, and the progression of the replisome. Previous studies have shown a close relationship between PSF1 and cell cycle in the proliferation of immature cells as well as tumors. The purpose of this study was to measure PSF1 expression in hepatocellular carcinoma (HCC) tissues, and determine the effects of down-regulation of PSF1 expression on growth of cancer cells, the cell cycle, apoptosis and cell invasiveness.
METHODS: Samples from 137 HCC tissues, 67 from adjacent nontumor tissue and 15 from normal liver were studied using immunochemistry. The HepG2 cell line was used for knockdown experiments studied by RT-PCR, real-time PCR, apoptosis and invasiveness assays.
RESULTS: PSF1 was overexpressed in HCC tissues compared with normal liver tissues. High PSF1 expression correlated with a more aggressive phenotype as well as worse prognosis in HCC patients. Knockdown of PSF1 expression using small interfering RNA (siRNA) slowed the growth of cancer cell by suppressing the cell cycle progression as well as increasing apoptosis, especially early apoptosis. In addition, the invasiveness of HepG2 cells was also reduced by down-regulation of PSF1.
CONCLUSIONS: These results suggest that the inhibition of PSF1 might provide new therapeutic approaches for HCC.

Aissani B, Boehme AK, Wiener HW, et al.
SNP screening of central MHC-identified HLA-DMB as a candidate susceptibility gene for HIV-related Kaposi's sarcoma.
Genes Immun. 2014; 15(6):424-9 [PubMed] Free Access to Full Article Related Publications
The major histocompatibility complex (MHC) region on chromosome 6p21.3 is suspected to host susceptibility loci for HIV-related Kaposi's sarcoma (HIV-KS). A nested case-control study in the Multicenter AIDS Cohort Study was designed to conduct fine genetic association mapping across central MHC. Individuals co-infected with HIV-1 and human herpes virus-8 who later developed KS were defined as cases (n=354) and were matched 1:1 with co-infected KS-free controls. We report data for new independent MHC class II and III susceptibility loci. In particular, class II HLA-DMB emerged as a strong candidate, with the intronic variant rs6902982 A>G associated with a fourfold increase of risk (odds ratio (OR)=4.09; 95% confidence interval (CI)=1.90-8.80; P=0.0003). A striking multiplicative effect on the estimated risk was associated with further carriage of two non-synonymous variants, rs1800453 A>G (Asp697Gly) and rs4148880 A>G (Ile393Val), in the linked TAP1 gene (OR=10.5; 95% CI=2.54-43.6; P=0.0012). The class III susceptibility variant is moderately associated with HIV-KS and lies within a 120-kb-long haplotype (OR=1.52; 95% CI=1.01-2.28; P=0.047) formed by rs7029 A>G (GPANK1 3' untranslated region), rs1065356 G>A (LY6G6C), rs3749953 A>G (MSH5-SAPCD1 read through) and rs707926 G>A (VARS). Our data suggest that antigen processing by MHC class II molecules is a target pathway in the pathogenesis of HIV-KS.

Yamauchi T, Takeuchi S, Maehara N, Kuroda Y
The genotype of the transporter associated with antigen processing gene affects susceptibility to colorectal cancer in Japanese.
Environ Health Prev Med. 2014; 19(4):265-70 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Although colorectal cancer (CRC) is one of the most frequent malignancies in Japan, the associated genetic factors remain to be elucidated. Functional loss of the transporter associated with antigen processing (TAP) 1 gene induces carcinogenesis. We investigated whether single nucleotide polymorphisms (SNPs) in the TAP1 gene (rs735883) are associated with susceptibility to CRC in a Japanese population.
METHODS: The study participants were 143 cases and 243 clinical controls. After extracting DNA from their peripheral blood cells, genotyping was conducted by the polymerase chain reaction-restriction fragment length polymorphism method.
RESULTS: Participants with a mutated allele had an increased risk for CRC. The adjusted odds ratios for the C/T, T/T, and the mutation type (C/T + T/T) compared to that of wild type (C/C) were 2.27 [95 % confidence interval (CI), 1.43-3.67], 1.95 (95 % CI, 0.88-4.30), and 2.22 (95 % CI, 1.42-3.55), respectively. Furthermore, a significant trend in the rate of cases was observed with an increasing number of mutated alleles (P for trend = 0.0068).
CONCLUSIONS: The genotype of the TAP1 gene is associated with susceptibility to CRC.

Wang C, Cicek MS, Charbonneau B, et al.
Tumor hypomethylation at 6p21.3 associates with longer time to recurrence of high-grade serous epithelial ovarian cancer.
Cancer Res. 2014; 74(11):3084-91 [PubMed] Free Access to Full Article Related Publications
To reveal biologic mechanisms underlying clinical outcome of high-grade serous (HGS) epithelial ovarian carcinomas (EOC), we evaluated the association between tumor epigenetic changes and time to recurrence (TTR). We assessed methylation at approximately 450,000 genome-wide CpGs in tumors of 337 Mayo Clinic (Rochester, MN) patients. Semi-supervised clustering of discovery (n=168) and validation (n=169) sets was used to determine clinically relevant methylation classes. Clustering identified two methylation classes based on 60 informative CpGs, which differed in TTR in the validation set [R vs. L class, P=2.9×10(-3), HR=0.52; 95% confidence interval (CI), 0.34-0.80]. Follow-up analyses considered genome-wide tumor mRNA expression (n=104) and CD8 T-cell infiltration (n=89) in patient subsets. Hypomethylation of CpGs located in 6p21.3 in the R class associated with cis upregulation of genes enriched in immune response processes (TAP1, PSMB8, PSMB9, HLA-DQB1, HLA-DQB2, HLA-DMA, and HLA-DOA), increased CD8 T-cell tumor infiltration (P=7.6×10(-5)), and trans-regulation of genes in immune-related pathways (P=1.6×10(-32)). This is the most comprehensive assessment of clinical outcomes with regard to epithelial ovarian carcinoma tumor methylation to date. Collectively, these results suggest that an epigenetically mediated immune response is a predictor of recurrence and, possibly, treatment response for HGS EOC.

Natter C, Polterauer S, Rahhal-Schupp J, et al.
Association of TAP gene polymorphisms and risk of cervical intraepithelial neoplasia.
Dis Markers. 2013; 35(2):79-84 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Transporter associated with antigen processing (TAP) is responsible for peptide loading onto class I major histocompatibility complex (MHC-I) molecules. TAP seems to facilitate the detection of HPV by MHC-I molecules and contributes to successful eradication of HPV. TAP polymorphisms could have an important impact on the course of HPV infection.
OBJECTIVE: The aim of this study is to evaluate the association between five TAP gene polymorphisms and the risk of CIN. Methods. This case-control study investigated five common TAP polymorphisms in TAP1 (1341 and 2254) and TAP2 (1135, 1693, and 1993) in 616 women with CIN and 206 controls. Associations between gene polymorphisms and risk of CIN were analysed by univariate and multivariable models. The combined effect of the five TAP gene polymorphisms on the risk for CIN was investigated by haplotype analysis.
RESULTS: No significant difference in genotype distribution of the five TAP polymorphisms was observed in women with CIN and controls. Haplotype analysis revealed that women with haplotype mut-wt-wt-wt-wt (TAP polymorphisms t1135-t1341-t1693-t1993-t2254) had a significantly lower risk for CIN, compared to women with the haplotype wt-wt-wt-wt-wt (P = 0.006; OR 0.5 [0.35-0.84]).
CONCLUSION: Identification of this haplotype combination could be used to identify women, less susceptible for development of CIN following HPV infection.

Ozbas-Gerceker F, Bozman N, Gezici S, et al.
Association of TAP1 and TAP2 gene polymorphisms with hematological malignancies.
Asian Pac J Cancer Prev. 2013; 14(9):5213-7 [PubMed] Related Publications
Transporter associated with antigen presenting (TAP) 1 and TAP2 genes are localized in the major histocompatability complex (MHC) class II region and form a heterodimer playing a key role in endogenous pathways for antigen presentation. Defects of these genes have been reported to be common in different types of cancer. Polymorphisms identified in these loci have also been investigated and reported to be associated with several autoimmune disorders, viral infections and neoplasms. In the present study, for the first time, the allele and genotype frequencies of TAP1-333, TAP2-565, TAP2-651 and TAP2-665 were determined in patients with hematological malignancies (HM) using a PCR-RFLP method and compared with the frequencies in the control group. Our results suggested an association of TAP1-333 polymorphism with multiple myeloma-MM and TAP2- 565 polymorphism with chronic lymphoid leukemia-CLL. In addition, it could be concluded that the TAP2-665 GG genotype might be a risk factor for all types of hematological malignancies included in this study.

Ren Y, Zhang Y, Liu RZ, et al.
JAK1 truncating mutations in gynecologic cancer define new role of cancer-associated protein tyrosine kinase aberrations.
Sci Rep. 2013; 3:3042 [PubMed] Free Access to Full Article Related Publications
Cancer-associated protein tyrosine kinase (PTK) mutations usually are gain-of-function (GOF) mutations that drive tumor growth and metastasis. We have found 50 JAK1 truncating mutations in 36 of 635 gynecologic tumors in the Total Cancer Care® (TCC®) tumor bank. Among cancer cell lines containing JAK1 truncating mutations in the Cancer Cell Line Encyclopedia databank, 68% are gynecologic cancer cells. Within JAK1 the K142, P430, and K860 frame-shift mutations were identified as hot spot mutation sites. Sanger sequencing of cancer cell lines, primary tumors, and matched normal tissues confirmed the JAK1 mutations and showed that these mutations are somatic. JAK1 mediates interferon (IFN)-γ-regulated tumor immune surveillance. Functional assays show that JAK1 deficient cancer cells are defective in IFN-γ-induced LMP2 and TAP1 expression, loss of which inhibits presentation of tumor antigens. These findings identify recurrent JAK1 truncating mutations that could contribute to tumor immune evasion in gynecologic cancers, especially in endometrial cancer.

Leone P, Shin EC, Perosa F, et al.
MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells.
J Natl Cancer Inst. 2013; 105(16):1172-87 [PubMed] Related Publications
The surface presentation of peptides by major histocompatibility complex (MHC) class I molecules is critical to all CD8(+) T-cell adaptive immune responses, including those against tumors. The generation of peptides and their loading on MHC class I molecules is a multistep process involving multiple molecular species that constitute the so-called antigen processing and presenting machinery (APM). The majority of class I peptides begin as proteasome degradation products of cytosolic proteins. Once transported into the endoplasmic reticulum by TAP (transporter associated with antigen processing), peptides are not bound randomly by class I molecules but are chosen by length and sequence, with peptidases editing the raw peptide pool. Aberrations in APM genes and proteins have frequently been observed in human tumors and found to correlate with relevant clinical variables, including tumor grade, tumor stage, disease recurrence, and survival. These findings support the idea that APM defects are immune escape mechanisms that disrupt the tumor cells' ability to be recognized and killed by tumor antigen-specific cytotoxic CD8(+) T cells. Detailed knowledge of APM is crucial for the optimization of T cell-based immunotherapy protocols.

Hlaváč V, Brynychová V, Václavíková R, et al.
The expression profile of ATP-binding cassette transporter genes in breast carcinoma.
Pharmacogenomics. 2013; 14(5):515-29 [PubMed] Related Publications
AIM: ATP-binding cassette (ABC) transporters contribute to development of resistance to anticancer drugs via ATP-dependent drug efflux. A major goal of our study was to investigate associations between the expression of ABC transporters and outcome of breast carcinoma patients.
PATIENTS & METHODS: Transcript levels of all 49 human ABC transporters were determined in post-treatment tumor and non-neoplastic tissue samples from 68 breast carcinoma patients treated by neoadjuvant chemotherapy. Six ABC transporters were then evaluated in independent series of 100 pretreatment patients.
RESULTS: ABCA5/6/8/9/10, ABCB1/5/11, ABCC6/9, ABCD2/4, ABCG5 and ABCG8 were significantly downregulated and ABCA2/3/7/12, ABCB2/3/8/9/10, ABCC1/4/5/10/11/12, ABCD1/3, ABCE1, ABCF1/2/3 and ABCG1 were upregulated in post-treatment tumors compared with non-neoplastic tissues. Significant associations of intratumoral levels of ABCC1 and ABCC8 with grade and expression of hormonal receptors were found in both sets of patients. ABCA12, ABCA13 and ABCD2 levels were significantly associated with the response to neoadjuvant chemotherapy in post-treatment patients. Protein expression of ABCA12, ABCC8 and ABCD2 in tumor tissues of patients with breast carcinoma was observed by immunoblotting for the first time.
CONCLUSION: ABCA12, ABCA13, ABCC1, ABCC8 and ABCD2 present potential modifiers of progression and response to the chemotherapy of breast carcinoma.

Xu M, Li L, Liu Z, et al.
ABCB2 (TAP1) as the downstream target of SHH signaling enhances pancreatic ductal adenocarcinoma drug resistance.
Cancer Lett. 2013; 333(2):152-8 [PubMed] Related Publications
Hedgehog signaling plays critical roles in drug resistance of PDAC. We demonstrate that SHH is highly expressed in PDAC patients and cell lines. SHH signaling protects PDAC cells against gemcitabine induced apoptosis, because either over-expression or knockdown of SHH in PDAC cells affects the sensitivity to gemcitabine. Mechanistic studies show that ABCB2 serves as the downstream target of SHH signaling, leading to the drug resistance of PDAC cells. Combinational treatments with gemcitabine and cyclopamine yield synergistic antitumor effects in vitro and in vivo. Our study suggests that inhibiting SHH signaling or targeting ABCB2 gene improves the efficacy of chemotherapy in patients with PDAC.

El Hage F, Durgeau A, Mami-Chouaib F
TAP expression level in tumor cells defines the nature and processing of MHC class I peptides for recognition by tumor-specific cytotoxic T lymphocytes.
Ann N Y Acad Sci. 2013; 1283:75-80 [PubMed] Related Publications
We identified that the antigen preprocalcitonin (ppCT) is recognized on a human lung carcinoma by a cytotoxic T lymphocyte clone derived from autologous tumor-infiltrating lymphocytes. The antigenic peptide ppCT(16-25) is encoded by the gene calcitonin-related polypeptide alpha (CALCA), which codes for CT and is overexpressed in several lung carcinomas compared with normal tissues. The ppCT peptide is derived from the C-terminal region of the signal peptide and is processed independently of proteasomes and the transporter associated with antigen processing (TAP)1/TAP2 heterodimeric complexes. Instead, processing occurs within the endoplasmic reticulum by a novel mechanism involving signal pepsidase (SP) and signal peptide peptidase (SPP). Although lung cancer cells bearing the ppCT(16-25) epitope displayed low levels of TAP, restoration of TAP expression by interferon (IFN)-γ treatment or by TAP1/TAP2 gene transfer inhibited ppCT antigen presentation. Thus, the ppCT(16-25) human tumor epitope requires low TAP expression for efficient presentation. These results indicate that emerging SP-generated peptides represent alternative T cell targets that permit cytotoxic T lymphocytes to destroy TAP-impaired tumors, a process that helps to overcome tumor escape from CD8(+) T cell immunity. Additionally, our data suggest that ppCT is a promising candidate for cancer immunotherapy.

Skov V, Riley CH, Thomassen M, et al.
Whole blood transcriptional profiling reveals significant down-regulation of human leukocyte antigen class I and II genes in essential thrombocythemia, polycythemia vera and myelofibrosis.
Leuk Lymphoma. 2013; 54(10):2269-73 [PubMed] Related Publications
Gene expression profiling studies in the Philadelphia-negative chronic myeloproliferative neoplasms have revealed significant deregulation of several immune and inflammation genes that might be of importance for clonal evolution due to defective tumor immune surveillance. Other mechanisms might be down-regulation of major histocompatibility (MHC) class I and II genes, which are used by tumor cells to escape antitumor T-cell-mediated immune responses. We have performed whole blood transcriptional profiling of genes encoding human leukocyte antigen (HLA) class I and II molecules, β2-microglobulin and members of the antigen processing machinery of HLA class I molecules (LMP2, LMP7, TAP1, TAP2 and tapasin). The findings of significant down-regulation of several of these genes may possibly be of major importance for defective tumor immune surveillance. Since up-regulation of HLA genes is recorded during treatment with epigenome modulating agents (DNA-hypomethylators and DNA-hyperacetylators [histone deacetylase inhibitors]) and interferon-α2, our findings call for prospective transcriptional studies of HLA genes during treatment with these agents.

Sakulterdkiat T, Srisomsap C, Udomsangpetch R, et al.
Curcumin resistance induced by hypoxia in HepG2 cells is mediated by multidrug-resistance-associated proteins.
Anticancer Res. 2012; 32(12):5337-42 [PubMed] Related Publications
BACKGROUND: Tumor hypoxia, a common pathophysiological feature of solid tumors, contributes to drug resistance and treatment failure. Here, we demonstrate that hypoxia in HepG2 cells induces resistance towards cytotoxicity of curcumin, a promising anticancer agent.
MATERIALS AND METHODS: The number of surviving cells after exposure to chemotherapeutic drugs under normoxia (ambient O(2)) and hypoxia (1% O(2)) was determined by crystal violet staining. The expression levels of drug transporter genes were analyzed by quantitative real-time reverse transcription-polymerase chain reaction.
RESULTS: Increased resistance to curcumin, as well as to etoposide and doxorubicin, was observed in HepG2 cells under hypoxia. Gene expression analysis revealed that hypoxia increased the expression of ATP-binding cassette (ABC) drug transporter genes, sub-family C including ABCC1, ABCC2, and ABCC3, by more than two-fold. While expression of ABC drug transporter genes sub-family B member 1 and sub-family G member 2 (ABCB2/P-gp and ABCG2, respectively) did not change significantly. Both inhibitors of ABCC1/ABCC2 and depletion of intracellular glutathione levels were able to reverse hypoxia-induced curcumin resistance.
CONCLUSION: ABCC1 and ABCC2 play an important role in hypoxia-induced curcumin resistance in human hepatocellular carcinoma.

Williams BJ, Bhatia S, Adams LK, et al.
Dendritic cell based PSMA immunotherapy for prostate cancer using a CD40-targeted adenovirus vector.
PLoS One. 2012; 7(10):e46981 [PubMed] Free Access to Full Article Related Publications
Human prostate tumor vaccine and gene therapy trials using ex vivo methods to prime dendritic cells (DCs) with prostate specific membrane antigen (PSMA) have been somewhat successful, but to date the lengthy ex vivo manipulation of DCs has limited the widespread clinical utility of this approach. Our goal was to improve upon cancer vaccination with tumor antigens by delivering PSMA via a CD40-targeted adenovirus vector directly to DCs as an efficient means for activation and antigen presentation to T-cells. To test this approach, we developed a mouse model of prostate cancer by generating clonal derivatives of the mouse RM-1 prostate cancer cell line expressing human PSMA (RM-1-PSMA cells). To maximize antigen presentation in target cells, both MHC class I and TAP protein expression was induced in RM-1 cells by transduction with an Ad vector expressing interferon-gamma (Ad5-IFNγ). Administering DCs infected ex vivo with CD40-targeted Ad5-huPSMA, as well as direct intraperitoneal injection of the vector, resulted in high levels of tumor-specific CTL responses against RM-1-PSMA cells pretreated with Ad5-IFNγ as target cells. CD40 targeting significantly improved the therapeutic antitumor efficacy of Ad5-huPSMA encoding PSMA when combined with Ad5-IFNγ in the RM-1-PSMA model. These results suggest that a CD-targeted adenovirus delivering PSMA may be effective clinically for prostate cancer immunotherapy.

Hasim A, Abudula M, Aimiduo R, et al.
Post-transcriptional and epigenetic regulation of antigen processing machinery (APM) components and HLA-I in cervical cancers from Uighur women.
PLoS One. 2012; 7(9):e44952 [PubMed] Free Access to Full Article Related Publications
Normal function of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins is required for T cell-mediated anti-tumor or antiviral immunity, whereas the tumor survival indicates a failure of the host in immune surveillance associated with the dysfunction in antigen presentation, mainly due to the deregulation in HLA-I and APM expression or function. The posttranscriptional regulation of HLA-I and APM expression may associate with epigenetic modifications in cancer development which was not described so far. Here we showed that the development of cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) in Uighur women was accompanied with the partial or total loss of protein expression of HLA-I, ß2-m and APM components, including the transporter associated with antigen processing (TAP1/2), low molecular mass protein (LMP2, LMP7), endoplasmic reticulum aminopeptidase 1(ERAP1), chaperone molecules include calreticulin (CLR), calnexin (CNX) and ERp57, and this was proved again by analysis of transcription of the same genes in addition to three genes HLA-A, B and C coding for HLA-I. By bisulfite sequencing approach, we identified target CpG islands methylated at the gene promoter region of TAP1, TAP2, LMP7, tapasin and ERp57 in cervical carcinoma cells. Further analysis of CpG site specific methylation of these genes in cases of CSCC and CIN demonstrated an inverse correlation of altered CpG island methylation of TAP1, LMP7, and ERp57 with changes in protein expression. Moreover, promoter methylation of these genes was significantly higher in cases positive for human papillomavirus 16 (HPV 16) than negative ones. Our results suggested that epigenetic modifications are responsible for the aberrant expression of certain HLA-I and APM genes, and may help to understand unrevealed mechanisms of tumor escape from immune surveillance in cervical carcinogenesis.

Qiu B, Huang B, Wang X, et al.
Association of TAP1 and TAP2 polymorphisms with the outcome of persistent HBV infection in a northeast Han Chinese population.
Scand J Gastroenterol. 2012; 47(11):1368-74 [PubMed] Related Publications
OBJECTIVE: Transporter associated with antigen processing (TAP) plays a central role in a cellular immune response against HBV. Polymorphisms exist at the coding region of TAP and alter its structure and function. The aim of this study was to evaluate the potential relationship between polymorphisms of TAP and different outcomes of persistent HBV infection in a Han population in northeastern China.
MATERIAL AND METHODS: 189 HBV spontaneously recovered (SR) subjects, 571 HBV-infected patients including 180 chronic hepatitis B (CHB), 196 liver cirrhosis (LC) and 195 hepatocellular carcinoma (HCC) individuals were included in this study. TAP1-333 Ile/Val and -637 Asp/Gly, TAP2-651 Arg/Cys and -687 Stop/Gln were genotyped in all the samples by using a PCR-RFLP method.
RESULTS: The frequency of TAP1-637-Gly (allele G) was significantly higher in persistently HBV-infected individuals (CHB and LC) than that of SR subjects (OR = 1.58, 95% CI 1.12-2.45, p = 0.024; OR = 1.78, 95% CI 1.27-2.68, p = 0.002) by a logistic regression analysis. In addition, the statistically significant difference in the distribution of TAP2-651-Cys (allele T) was observed between HCC cases and SR controls (OR = 2.30, 95% CI 1.51-3.72, p < 0.001), and TAP2-687-Gln (allele C) in CHB patients was more common than that in SR subjects (OR = 1.41, 95% CI 1.13-1.97, p = 0.021). The data also revealed that haplotype 687 Gln-651 Cys-637 Gly-333 Ile was strongly associated with persistent HBV infection (CHB, LC and HCC) (p < 0.001, < 0.05 and < 0.001, respectively).
CONCLUSION: These results suggested that TAP variants were likely to play a substantial role in different outcomes of persistent HBV infection in the studied population.

Ma Z, Guo W, Niu HJ, et al.
Transcriptome network analysis reveals potential candidate genes for esophageal squamous cell carcinoma.
Asian Pac J Cancer Prev. 2012; 13(3):767-73 [PubMed] Related Publications
The esophageal squamous cell carcinoma (ESCC) is an aggressive tumor with a poor prognosis. Understanding molecular changes in ESCC should improve identification of risk factors with different molecular subtypes and provide potential targets for early detection and therapy. Our study aimed to obtain a molecular signature of ESCC through the regulation network based on differentially expressed genes (DEGs). We used the GSE23400 series to identify potential genes related to ESCC. Based on bioinformatics we constructed a regulation network. From the results, we could establish that many transcription factors and pathways closely related with ESCC were linked by our method. STAT1 also arose as a hub node in our transcriptome network, along with some transcription factors like CCNB1, TAP1, RARG and IFITM1 proven to be related with ESCC by previous studies. In conclusion, our regulation network provided information on important genes which might be useful in investigating the complex interacting mechanisms underlying the disease.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TAP1, Cancer Genetics Web: http://www.cancer-genetics.org/TAP1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999