Gene Summary

Gene:TCF7L2; transcription factor 7 like 2
Aliases: TCF4, TCF-4
Summary:This gene encodes a high mobility group (HMG) box-containing transcription factor that plays a key role in the Wnt signaling pathway. The protein has been implicated in blood glucose homeostasis. Genetic variants of this gene are associated with increased risk of type 2 diabetes. Several transcript variants encoding multiple different isoforms have been found for this gene.[provided by RefSeq, Oct 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:transcription factor 7-like 2
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (70)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • gamma Catenin
  • Case-Control Studies
  • Gene Expression Profiling
  • Signal Transduction
  • Repressor Proteins
  • Promoter Regions
  • Genetic Predisposition
  • Proto-Oncogene Proteins
  • Transcriptional Activation
  • APC
  • Transcription Factors
  • Diabetes Mellitus, Type 2
  • TCF Transcription Factors
  • Adenocarcinoma
  • Cytoskeletal Proteins
  • Transfection
  • Messenger RNA
  • Binding Sites
  • siRNA
  • Transcription Factor 7-Like 2 Protein
  • Colorectal Cancer
  • Genotype
  • Mutation
  • Breast Cancer
  • DNA-Binding Proteins
  • Polycystic Ovary Syndrome
  • Liver Cancer
  • Cell Proliferation
  • Colonic Neoplasms
  • Trans-Activators
  • Chromosome 10
  • Cancer Gene Expression Regulation
  • HCT116 Cells
  • Protein Binding
  • Base Sequence
  • Wnt Proteins
  • Neoplastic Cell Transformation
  • beta Catenin
  • Molecular Sequence Data
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TCF7L2 (cancer-related)

Kishore C, Sundaram S, Karunagaran D
Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells.
Chem Biol Interact. 2019; 309:108725 [PubMed] Related Publications
Tumor recurrence and metastasis decrease the survival rate of colorectal cancer (CRC) patients. Menadione reduces the numbers and incidences of 1,2-dimethylhydrazine induced colon tumors in mouse but the mechanism of anticancer activity of menadione in colorectal cancer is not very clear. Since Wnt signaling is constitutively active in CRC and it aggravates the epithelial mesenchymal transition (EMT), the regulation of EMT and Wnt signaling by menadione (vitamin K3) was investigated in CRC cells. Menadione showed cytotoxicity against human CRC cells (SW480 and SW620) and human primary colon cancer cells but was relatively ineffective against the cells from human normal colon (CRL-1790) and human primary colon epithelial cells. Menadione suppressed invasion, migration and epithelial-mesenchymal transition in human CRC cells by upregulating the expression of E-cadherin (CDH1), ZO-1 and downregulating that of N-cadherin (CDH2), Vimentin (VIM), ZEB1, MMP2 and MMP9. Menadione decreased TOPFlash/FOPFlash luciferase activity and expression of several downstream targets of Wnt signaling and coactivators such as β-catenin (CTNNB1), TCF7L2, Bcl9l, p300 (EP300) and cyclin D1 (CCND1) was suppressed. Menadione induced differentiation and increased apoptotic cell population in SubG0 phase of cell cycle in SW480 and SW620 cells. The ability of menadione to suppress EMT, migration, invasion, Wnt signaling, cell proliferation and induce Sub G0 arrest, highlights its potential to be considered for intensive preclinical and clinical investigation in CRC.

Andersen V, Halekoh U, Tjønneland A, et al.
Intake of Red and Processed Meat, Use of Non-Steroid Anti-Inflammatory Drugs, Genetic Variants and Risk of Colorectal Cancer: A Prospective Study of the Danish "Diet, Cancer and Health" Cohort.
Int J Mol Sci. 2019; 20(5) [PubMed] Free Access to Full Article Related Publications
Red and processed meat have been associated with increased risk of colorectal cancer (CRC), whereas long-term use of non-steroid anti-inflammatory drugs (NSAIDs) may reduce the risk. The aim was to investigate potential interactions between meat intake, NSAID use, and gene variants in fatty acid metabolism and NSAID pathways in relation to the risk of CRC. A nested case-cohort study of 1038 CRC cases and 1857 randomly selected participants from the Danish prospective "Diet, Cancer and Health" study encompassing 57,053 persons was performed using the Cox proportional hazard model. Gene variants in

Liang TS, Zheng YJ, Wang J, et al.
MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2.
J Exp Clin Cancer Res. 2019; 38(1):97 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial-mesenchymal transition (EMT)-associated proteins play key roles in cancer progression and metastasis with the involvement of microRNAs (miRNAs). This study aims to assess the role of miR-506 working in tandem with LIM Homeobox 2 (LHX2) in EMT and metastasis through the Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma (NPC).
METHODS: Differentially expressed genes associated with NPC were screened using microarray analyses, from which LHX2 was identified. Next, the potential relationship between miR-506 and LHX2 was analyzed. In order to explore the effect of miR-506 or LHX2 on NPC cell proliferation, migration, invasion and apoptosis, serials of mimics, inhibitors or siRNA against LHX2 were transfected into NPC cells. Then, the expression patterns of LHX2, Wnt1, β-catenin, E-cadherin, Vimentin, TCF4 and Twist were determined to assess the influence of miR-506 or LHX2 on EMT as well as the relationship between the Wnt/β-catenin signaling pathway and TCF4. The tumorigenicity and lymph node metastasis (LNM) in xenograft tumors of nude mice were observed.
RESULTS: The has-miR-506-3p was identified as the down-regulated gene in NPC based on the microarray data while LHX2 was negatively regulated by miR-506. Over-expression of miR-506 or silencing of LHK2 inhibited NPC cell proliferation, migration, invasion, tumorigenicity and LNM but promoted apoptosis indicated by decreased Wnt1, β-catenin, Vimentin, TCF4 and Twist expressions along with increased E-cadherin expressions.
CONCLUSIONS: miR-506 inhibits tumor growth and metastasis in NPC via inhibition of Wnt/β-catenin signaling by down-regulating LHX2, accompanied by decreased TCF4. Taken together, miR-506 targeted-inhibition LHX2 presents a promising therapeutic strategy for the treatment of NPC.
TRIAL REGISTRATION: ChiCTR1800018889 . Registered 15 October 2018.

Jiang J, Yang X, He X, et al.
MicroRNA-449b-5p suppresses the growth and invasion of breast cancer cells via inhibiting CREPT-mediated Wnt/β-catenin signaling.
Chem Biol Interact. 2019; 302:74-82 [PubMed] Related Publications
Accumulating evidence has suggested that microRNA-449b-5p (miR-449b-5p) plays an important role in the development and progression of multiple cancers. However, little is known about the role of miR-449b-5p in breast cancer. In this study, we aimed to investigate the expression level, biological function and underlying mechanism of miR-449b-5p in breast cancer. Our results showed that miR-449b-5p expression was frequently down-regulated in breast cancer cell lines and tissues. The overexpression of miR-449b-5p significantly inhibited growth and invasion, and induced the cell cycle arrest of breast cancer cells. In contrast, the inhibition of miR-449b-5p showed the opposite effect. Interestingly, bioinformatic analysis predicted that cell cycle-related and expression-elevated protein in tumor (CREPT), an important oncogene in breast cancer, was a potential target gene of miR-449b-5p. The overexpression of miR-449b-5p decreased CREPT expression while miR-449b-5p inhibition promoted CREPT expression in breast cancer cells. Restoration of CREPT expression in miR-449b-5p mimics transfected cells partially reversed the suppressive effect of miR-449b-5p on breast cancer cell growth and invasion. Notably, our results showed that miR-449b-5p overexpression decreased the expression of β-catenin and suppressed the activation of Wnt/β-catenin/TCF-4 signaling via targeting CREPT. In addition, blocking Wnt/β-catenin partially reversed the promotion effect of miR-449b-5p inhibition on breast cancer cell growth and invasion. Overall, these results reveal a tumor suppressive role of miR-449b-5p that restricts the growth and invasion of breast cancer cells through targeting CREPT and inhibiting CREPT-mediated activation of Wnt/β-catenin signaling. Our study suggests that the miR-449b-5p/CREPT/Wnt/β-catenin axis may play an important role in the pathogenesis of breast cancer and miR-449-5p may serve as a potential therapeutic target for breast cancer.

Li J, Yang R, Dong Y, et al.
Knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the β-catenin/TCF4 pathway through SPRY2.
J Exp Clin Cancer Res. 2019; 38(1):38 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Early invasion and metastasis are responsible for the dismal prognosis of pancreatic ductal adenocarcinoma (PDAC), and epithelial-to-mesenchymal transition (EMT) is recognized as a crucial biological progress in driving tumor invasion and metastasis. The transcription factor FOXO3a is inactivated in various types of solid cancers and the loss of FOXO3a is associated with EMT and tumor metastasis. In this study, we sought to explore whether SPRY2, a regulator of receptor tyrosine kinase (RTK) signaling, is involved in FOXO3a-mediated EMT and metastasis in PDAC.
METHODS: Immunohistochemistry was performed in 130 paired PDAC tissues and paracarcinomatous pancreatic tissues. Cell proliferation and apoptosis were assessed by cell counting kit and flow cytometry, while cell migration and invasion were evaluated with wound healing and transwell assays. The changes in mRNA and protein levels were estimated by qRT-PCR and western blot. BALB/c nude mice xenograft model was established to evaluate tumorigenesis and metastasis in vivo.
RESULTS: FOXO3a expression was remarkably reduced in PDAC tissues, and correlated with metastasis-associated clinicopathologic characteristics and poor prognosis in patients with PDAC. In addition to the promotion of proliferation and suppression of apoptosis, knockdown of FOXO3a or SPRY2 induced EMT and promoted the migration and invasion of PDAC cells via activation of the β-catenin/TCF4 pathway. Moreover, silencing of SPRY2 reversed the suppressor effects induced by FOXO3a overexpression on EMT-associated migration and invasion of PDAC cells, while blockade of β-catenin reversed the effects of SPRY2 loss. FOXO3a knockdown decreased SPRY2 protein stability, whereas SPRY2 knockdown enhanced β-catenin protein stability. In vivo, FOXO3a knockdown promoted the tumorigenic ability and metastasis of PDAC cells.
CONCLUSIONS: Our study suggests that knockdown of FOXO3a induces EMT and promotes metastasis of PDAC by activation of the β-catenin/TCF4 pathway through SPRY2. Thus, FOXO3a may represent a candidate therapeutic target in PDAC.

Yu X, Wang M, Wu J, et al.
ZNF326 promotes malignant phenotype of glioma by up-regulating HDAC7 expression and activating Wnt pathway.
J Exp Clin Cancer Res. 2019; 38(1):40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Zinc-finger protein-326 (ZNF326) was initially found in the NIH3T3 cell line to regulate cell growth, however, the expression and underlying role of ZNF326 in human tumours, especially in glioma, is not fully understood.
METHODS: Immunohistochemistry was applied to detect the expression of ZNF326 in glioma tissues, and statistical analysis was used to analyse the relationship between ZNF326 expression and clinicopathological factors. The effect of ZNF326 on glioma cells proliferation and invasion was conducted by functional experiments both in vivo and in vitro. Chromatin immunoprecipitation and dual-luciferase assays were performed to demonstrate that histone deacetylase enzyme-7 (HDAC7) is the target gene of ZNF326. Immunoblotting, real-time PCR, GST-pulldown and co-immunoprecipitation assays were used to clarify the underlying role of ZNF326 on Wnt pathway activation.
RESULTS: High nuclear expression of ZNF326 was observed in glioma cell lines and tissues, and closely related with advanced tumour grade in the patients. Moreover, ectopic ZNF326 expression promoted the proliferation and invasiveness of glioma cells. Mechanistically, ZNF326 could activate HDAC7 transcription by binding to a specific promoter region via its transcriptional activation domain and zinc-finger structures. The interaction of the up-regulated HDAC7 with β-catenin led to a decrease in β-catenin acetylation level at Lys-49, followed by a decrease in β-catenin phosphorylation level at Ser-45. These changes in β-catenin posttranscriptional modification levels promoted its redistribution and import into the nucleus. Additionally, ZNF326 directly associated with β-catenin in the nucleus, and enhanced the binding of β-catenin to TCF-4, serving as a co-activator in stimulating Wnt pathway.
CONCLUSIONS: Our findings elucidated ZNF326 promotes the malignant phenotype of human glioma via ZNF326-HDAC7-β-catenin signalling. This study reveals the vital role and mechanism of ZNF326 in the malignant progression of glioma, and provides the reference for finding biomarkers and therapeutic targets for glioma.

Bollaert E, de Rocca Serra A, Demoulin JB
The HMG box transcription factor HBP1: a cell cycle inhibitor at the crossroads of cancer signaling pathways.
Cell Mol Life Sci. 2019; 76(8):1529-1539 [PubMed] Related Publications
HMG box protein 1 (HBP1) is a transcription factor and a potent cell cycle inhibitor in normal and cancer cells. HBP1 activates or represses the expression of different cell cycle genes (such as CDKN2A, CDKN1A, and CCND1) through direct DNA binding, cofactor recruitment, chromatin remodeling, or neutralization of other transcription factors. Among these are LEF1, TCF4, and MYC in the WNT/beta-catenin pathway. HBP1 also contributes to oncogenic RAS-induced senescence and terminal cell differentiation. Collectively, these activities suggest a tumor suppressor function. However, HBP1 is not listed among frequently mutated cancer driver genes. Nevertheless, HBP1 expression is lower in several tumor types relative to matched normal tissues. Several micro-RNAs, such as miR-155, miR-17-92, and miR-29a, dampen HBP1 expression in cancer cells of various origins. The phosphatidylinositol-3 kinase (PI3K)/AKT pathway also inhibits HBP1 transcription by preventing FOXO binding to the HBP1 promoter. In addition, AKT directly phosphorylates HBP1, thereby inhibiting its transcriptional activity. Taken together, these findings place HBP1 at the center of a network of micro-RNAs and oncoproteins that control cell proliferation. In this review, we discuss our current understanding of HBP1 function in human physiology and diseases.

Li H, Zhang W, Yan M, et al.
Nucleolar and spindle associated protein 1 promotes metastasis of cervical carcinoma cells by activating Wnt/β-catenin signaling.
J Exp Clin Cancer Res. 2019; 38(1):33 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The primary obstacle to treat cervical cancer is its high prevalence of metastasis, which severely affects patients' quality of life and survival time. Nucleolar and spindle associated protein 1 (NUSAP1) has been implicated in the development, progression, and metastasis in several types of cancer. However, its oncogenic role in cervical cancer remains unclear.
METHODS: Western blot assay and immunohistochemistry were used to determine the expression of NUSAP1 in 21 clinical fresh Cervical cancer tissues and 233 clinicopathologically characterized cervical cancer specimens. The biological roles of NUSAP1 in the metastasis of cervical cancer were investigated both in vitro by EMT, Side population analysis and Transwell assays and so on, and in vivo using a mouse 4w model of hematogenous metastasis and lymph node metastasis. Bioinformatics analysis, luciferase reporter analysis, immunoprecipitation and immunoblotting of nuclear and cytoplasmic cellular fractions were applied to discern and examine the relationshipbetween NUSAP1 and its potential targets.
RESULTS: The results demonstrated that NUSAP1 was upregulated in cervical cancer cells and tissues, correlated positively with metastasis and poor clinical outcome of patients. High expression of NUSAP1 promoted metastasis by enhancing cancer stem cell (CSC) traits and epithelial-mesenchyme transition (EMT) progression, while silencing of NUSAP1 reduced CSC traits and EMT progression. Mechanistically, upregulation of NUSAP1 induced SUMOylation of TCF4 via interacting with SUMO E3 ligase Ran-binding protein 2 (RanBP2) and hyperactivated Wnt/β-catenin signaling in cervical cancer cells. Additionally, NUSAP1-induced cervical cancer cells metastasis and the cancer stem cell phenotype were abrogated with the Wnt/β-catenin signaling inhibitor XAV-939 treatment. Importantly, co-therapy of conventional treatment and XAV-939 will provide a novel and effective treatment for NUSAP1-ovexpressed cervical cancer patients.
CONCLUSIONS: Our results demonstrate thatNUSAP1 upregulation contributes to metastasis of cervical cancer by promoting CSC properties and EMT via Wnt/β-catenin signaling and XAV-939 might serve as a potential tailored therapeutic option for patients with NUSAP1-ovexpressed cervical cancer.

Kanomata N, Kurebayashi J, Koike Y, et al.
CD1d- and PJA2-related immune microenvironment differs between invasive breast carcinomas with and without a micropapillary feature.
BMC Cancer. 2019; 19(1):76 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Invasive micropapillary carcinoma (IMPC) of the breast is characterized by its unique morphology and frequent nodal metastasis. However, the mechanism for development of this unique subtype has not been clearly elucidated. The aim of this study was to obtain a better understanding of IMPC.
METHODS: Using representative cases of mixed IMPC, mRNA expression in the micropapillary area and usual invasive area was compared. Then, immunohistochemical analyses for 294 cases (76 invasive carcinomas with a micropapillary feature [ICMF] and 218 invasive carcinomas without a micropapillary feature [ICNMF]) were conducted. Clinicopathological analyses were also studied.
RESULTS: DNA microarray analyses for mixed IMPC showed that BC-1514 (C21orf118) was commonly upregulated in the micropapillary area. CAMK2N1, CD1d, PJA2, RPL5, SAMD13, TCF4, and TXNIP were commonly downregulated in the micropapillary area. Immunohistochemically, we confirmed that BC-1514 was more upregulated in ICMF than in ICNMF. CD1d and PJA2 were more downregulated in ICMF than ICNMF. All patients with cases of PJA2 overexpression survived without cancer recurrence during the follow-up period, although the differences for disease-free (p = 0.153) or overall survival (p = 0.272) were not significant.
CONCLUSIONS: The CD1d- and PJA2-related tumour microenvironment might be crucial for IMPC. Further study of the immune microenvironment and micropapillary features is warranted.

Liu L, Zeng Z, Yi J, et al.
Expression and clinical significance of transcription factor 4 (TCF4) in epithelial ovarian cancer.
Cancer Biomark. 2019; 24(2):213-221 [PubMed] Related Publications
OBJECTIVES: To investigate TCF4 expression in epithelial ovarian cancer, and to explore its correlation with clinicopathological parameters and clinical prognosis of epithelial ovarian cancer.
METHODS: From 2009 to 2017, 188 cases of paraffin-embedded epithelial ovarian cancer tissues and 41 paratumor ovarian tissues which had been confirmed at the memorial hospital of Sun Yat-sen University were collected in this study, and the expression of TCF4 was performed by immunohistochemistry using a polyclonal antibody specific for TCF4.
RESULTS: The expression of TCF4 protein was associated with disease progression free survival and overall survival in epithelial ovarian cancer patients; and TCF4 overexpression was associated with age, FIGO stage, lymph node metastasis, intraperitoneal metastasis, intestinal metastasis, vital status, intraperitoneal recurrence, and serum CA153. Moreover, in a multivariate Cox regression analysis TCF4 overexpression was an indeed independent prognostic factor in epithelial ovarian cancer.
CONCLUSIONS: TCF4 may play an oncogenic role in epithelial ovarian cancer, and TCF4 is a useful independent prognostic biomarker of epithelial ovarian cancer, and it may provide a candidate target therapy treatment in future.

Liu N, Song J, Xie Y, et al.
Different roles of E proteins in t(8;21) leukemia: E2-2 compromises the function of AETFC and negatively regulates leukemogenesis.
Proc Natl Acad Sci U S A. 2019; 116(3):890-899 [PubMed] Free Access to Full Article Related Publications
The AML1-ETO fusion protein, generated by the t(8;21) chromosomal translocation, is causally involved in nearly 20% of acute myeloid leukemia (AML) cases. In leukemic cells, AML1-ETO resides in and functions through a stable protein complex, AML1-ETO-containing transcription factor complex (AETFC), that contains multiple transcription (co)factors. Among these AETFC components, HEB and E2A, two members of the ubiquitously expressed E proteins, directly interact with AML1-ETO, confer new DNA-binding capacity to AETFC, and are essential for leukemogenesis. However, the third E protein, E2-2, is specifically silenced in AML1-ETO-expressing leukemic cells, suggesting E2-2 as a negative factor of leukemogenesis. Indeed, ectopic expression of E2-2 selectively inhibits the growth of AML1-ETO-expressing leukemic cells, and this inhibition requires the bHLH DNA-binding domain. RNA-seq and ChIP-seq analyses reveal that, despite some overlap, the three E proteins differentially regulate many target genes. In particular, studies show that E2-2 both redistributes AETFC to, and activates, some genes associated with dendritic cell differentiation and represses MYC target genes. In AML patients, the expression of E2-2 is relatively lower in the t(8;21) subtype, and an E2-2 target gene,

Sun Z, Ou C, Liu J, et al.
YAP1-induced MALAT1 promotes epithelial-mesenchymal transition and angiogenesis by sponging miR-126-5p in colorectal cancer.
Oncogene. 2019; 38(14):2627-2644 [PubMed] Free Access to Full Article Related Publications
Yes-associated protein 1 (YAP1) exerts significant effects in various malignancies. However, the oncogenic role of YAP1 remains controversial, and the mechanism by which YAP1 regulates non-coding RNAs is still largely unknown. The present study aimed to assess the effect of YAP1 on the malignant behaviors of colorectal carcinoma (CRC) and explore the underlying regulatory mechanism of the YAP1-MALAT1-miR-126-5p axis. YAP1 was highly expressed in CRC tissues as assessed by GSE20916 and its expression was negatively correlated with overall survival in 83 CRC cases. Meanwhile, YAP1 promoted proliferation, invasion, and migration in colon cancer cells, in vitro and in vivo. MALAT1 was obviously expressed, with differential expression of 11 lncRNAs in HCT116 cells after transfection with siYAP1 or si-Ctl. Based on bioinformatics prediction, immunoprecipitation (IP), and chromatin immunoprecipitation (ChIP), the interaction of YAP1 with TCF4/β-catenin was regulated by MALAT1. Bioinformatics prediction, dual luciferase assay, RNA-IP, and RNA pull-down assay demonstrated that YAP1-induced MALAT1 promoted the expression of metastasis-associated molecules such as VEGFA, SLUG, and TWIST, by sponging miR-126-5p in CRC. These findings indicated that the YAP1-MALAT1-miR-126-5p axis could control angiogenesis and epithelial-mesenchymal transition in CRC, providing potential biomarkers and therapeutic targets for CRC.

Khan M, Muzumdar D, Shiras A
Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma.
Neoplasia. 2019; 21(1):106-116 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is one of the most aggressive and lethal types of brain tumor. Despite the advancements in conventional or targeted therapies, median survival of GBM patients is less than 12 months. Amongst various signaling pathways aberrantly activated in glioma, active Wnt/β-catenin signaling pathway is one of the crucial oncogenic players. β-catenin, an important mediator of Wnt signaling pathway, gets phosphorylated by GSK3β complex. Phosphorylated β-catenin is specifically recognized by β-Trcp1, a F-box/WD40-repeat protein and with the help of Skp1 it plays a central role in recruiting phosphorylated β-catenin for degradation. In GBM, expression of β-TrCP1 and its affinity for β catenin is reported to be very low. Hence, we investigated whether any other members of the E3 ubiquitin ligase family could be involved in degradation of nuclear β-catenin. We here report that FBXO16, a component of SCF E3 ubiquitin ligase complex, is an interacting protein partner for β-catenin and mediates its degradation. Next, we show that FBXO16 functions as a tumor suppressor in GBM. Under normal growth conditions, FBXO16 proteasomally degrades β-catenin in a GSK-3β independent manner. Specifically, the C-terminal region of FBXO16 targets the nuclear β-catenin for degradation and inhibits TCF4/LEF1 dependent Wnt signaling pathway. The nuclear fraction of β-catenin undergoes K-48 linked poly-ubiquitination in presence of FBXO16. In summary, we show that due to low expression of FBXO16, the β-catenin is not targeted in glioma cells leading to its nuclear accumulation resulting in active Wnt signaling. Activated Wnt signaling potentiates the glioma cells toward a highly proliferative and malignant state.

Zhang LS, Kang X, Lu J, et al.
Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9.
EBioMedicine. 2019; 39:145-158 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear.
METHODS: We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs).
FINDINGS: We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/β-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML.
INTERPRETATION: By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/β-catenin-dependent growth of LICs. Small molecules disrupting WNT/β-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.

Tian S, Liu W, Pan Y, Zhan S
Long non-coding RNA Linc00320 inhibits glioma cell proliferation through restraining Wnt/β-catenin signaling.
Biochem Biophys Res Commun. 2019; 508(2):458-464 [PubMed] Related Publications
Recent efforts have revealed that numerous oncogenic lncRNAs have been found play pivotal role in Glioma progression while there is little know about anti-oncogenic lncRNAs in Glioma. In current study, we found a HMGB1 regulated lncRNA, Linc00320, is significantly decreased in Glioma malignant tissues and its low expression predicts poor prognosis. Moreover, we found that the nucleus localized Linc00320 inhibits Glioma cell proliferation both in vitro and in vivo. In addition, we found that Linc00320 binds to β-catenin and inhibits the activity of Wnt/β-catenin signaling by disrupting β-catenin binds to TCF4 in Glioma cells. Taken together, we firstly demonstrated the tumor suppressive lncRNA, Linc00320, is down-regulated in Glioma tissues and inhibits Glioma cell proliferation by restraining Wnt/β-catenin signaling through segregating β-catenin and TCF4 and revealed the novel HMGB1/Linc00320/β-catenin axis in Glioma progression.

Liu Z, Zhong Y, Chen YJ, Chen H
SOX11 regulates apoptosis and cell cycle in hepatocellular carcinoma via Wnt/β-catenin signaling pathway.
Biotechnol Appl Biochem. 2019; 66(2):240-246 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality. Identifying key molecules involved in the regulation of HCC development is of great clinical significance. SOX11 is a transcription factor belonging to group C of Sry-related high mobility group box family whose abnormal expression is frequently seen in many kinds of human cancers. Here, we noted that the expression of SOX11 was decreased in human HCC tumors compared with that in matched normal tissues. Overexpression of SOX11 promoted growth inhibition and apoptosis in HCC cell line HuH-7. Mechanistically, SOX11 enhanced the expression of nemo-like kinase and the phosphorylation of TCF4, thereby blunting the activation of oncogenic Wnt/β-catenin signaling pathway in HuH-7 cells. Finally, SOX11 was also found to sensitize HuH-7 cells to chemotherapy drugs cisplatin and 5-fluorouraci. Therefore, our study identifies SOX11 as a potential tumor suppressor in HCC and may hopefully be beneficial for the clinical diagnosis or treatment of HCC.

Zheng L, Liang X, Li S, et al.
CHAF1A interacts with TCF4 to promote gastric carcinogenesis via upregulation of c-MYC and CCND1 expression.
EBioMedicine. 2018; 38:69-78 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Histones chaperones have been found to play critical roles in tumor development and progression. However, the role of histone chaperone CHAF1A in gastric carcinogenesis and its underlying mechanisms remain elusive.
METHODS: CHAF1A expression in gastric cancer (GC) was analyzed in GEO datasets and clinical specimens. CHAF1A knockdown and overexpression were used to explore its functions in gastric cancer cells. The regulation and potential molecular mechanism of CHAF1A expression in gastric cancer cells were studied by using cell and molecular biological methods.
FINDINGS: CHAF1A was upregulated in GC tissues and its high expression predicted poor prognosis in GC patients. Overexpression of CHAF1A promoted gastric cancer cell proliferation both in vitro and in vivo, whereas CHAF1A suppression exhibited the opposite effects. Mechanistically, CHAF1A acted as a co-activator in the Wnt pathway. CHAF1A directly interacted with TCF4 to enhance the expression of c-MYC and CCND1 through binding to their promoter regions. In addition, the overexpression of CHAF1A was modulated by specificity protein 1 (Sp1) in GC. Sp1 transcriptionally enhanced the expression of CHAF1A in GC. Furthermore, CHAF1A expression induced by Helicobacter pylori was Sp1 dependent.
INTERPRETATION: CHAF1A is a potential oncogene in GC, and may serve as a novel therapeutic target for GC treatment.

Kusonmano K, Halle MK, Wik E, et al.
Identification of highly connected and differentially expressed gene subnetworks in metastasizing endometrial cancer.
PLoS One. 2018; 13(11):e0206665 [PubMed] Free Access to Full Article Related Publications
We have identified nine highly connected and differentially expressed gene subnetworks between aggressive primary tumors and metastatic lesions in endometrial carcinomas. We implemented a novel pipeline combining gene set and network approaches, which here allows integration of protein-protein interactions and gene expression data. The resulting subnetworks are significantly associated with disease progression across tumor stages from complex atypical hyperplasia, primary tumors to metastatic lesions. The nine subnetworks include genes related to metastasizing features such as epithelial-mesenchymal transition (EMT), hypoxia and cell proliferation. TCF4 and TWIST2 were found as central genes in the subnetwork related to EMT. Two of the identified subnetworks display statistically significant association to patient survival, which were further supported by an independent validation in the data from The Cancer Genome Atlas data collection. The first subnetwork contains genes related to cell proliferation and cell cycle, while the second contains genes involved in hypoxia such as HIF1A and EGLN3. Our findings provide a promising context to elucidate the biological mechanisms of metastasis, suggest potential prognostic markers and further identify therapeutic targets. The pipeline R source code is freely available, including permutation tests to assess statistical significance of the identified subnetworks.

Hua F, Shang S, Yang YW, et al.
TRIB3 Interacts With β-Catenin and TCF4 to Increase Stem Cell Features of Colorectal Cancer Stem Cells and Tumorigenesis.
Gastroenterology. 2019; 156(3):708-721.e15 [PubMed] Related Publications
BACKGROUND & AIMS: Activation of Wnt signaling to β-catenin contributes to the development of colorectal cancer (CRC). Expression of tribbles pseudo-kinase 3 (TRIB3) is increased in some colorectal tumors and associated with poor outcome. We investigated whether increased TRIB3 expression promotes stem cell features of CRC cells and tumor progression by interacting with the Wnt signaling pathway.
METHODS: We performed studies with C57BL/6J-Apc
RESULTS: At 10 weeks of age, more than half the Apc
CONCLUSION: TRIB3 interacts with β-catenin and TCF4 in intestine cells to increase expression of genes associated with cancer stem cells. Knockdown of TRIB3 decreases colon neoplasia in mice, migration of CRC cells, and their growth as xenograft tumors in mice. Strategies to block TRIB3 activity might be developed for treatment of CRC.

Song N, Kim K, Shin A, et al.
Colorectal cancer susceptibility loci and influence on survival.
Genes Chromosomes Cancer. 2018; 57(12):630-637 [PubMed] Related Publications
Genome-wide association studies (GWAS) have identified multiple single-nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. To evaluate the potential influence of colorectal cancer susceptibility SNPs on disease prognosis, we investigated whether GWAS-identified colorectal cancer risk SNPs and polygenic risk scores (PRSs) might be associated with survival among colorectal cancer patients. A total of 1374 colorectal cancer patients were recruited from the Korean National Cancer Center. For genotyping, 30 colorectal cancer-susceptibility SNPs previously identified by GWAS were selected. The Cox proportional hazard model was used to evaluate associations of these risk SNPs and PRSs with disease-free survival (DFS) and overall survival (OS). The prognostic values were compared between genetic and nongenetic models using Harrell's c index. During the follow-up period (median: 88, 91 months for DFS and OS), 570 DFS (41.5%) and 487 OS (35.4%) events were observed. We found that 5 SNPs were significantly associated with DFS or OS among colorectal cancer patients at P < .05: rs10936599 at 3q26.2 (MYNN), rs704017 at 10q22.3 (ZMIZ1-AS1), rs11196172 at 10q25.2 (TCF7L2), rs3802842 at 11q23.1 (COLCA1-2), and rs9929218 at 16q22.1 (CDH1). The PRSs constructed using these 5 SNPs were associated with worse survival (DFS: P

Khoury JD
Blastic Plasmacytoid Dendritic Cell Neoplasm.
Curr Hematol Malig Rep. 2018; 13(6):477-483 [PubMed] Related Publications
PURPOSE OF REVIEW: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare malignancy derived from plasmacyoid dendritic cells whose biology, clinical features, and treatment options are increasingly better understood.
RECENT FINDINGS: TCF4 is a master regulator that drives donwstream transcriptional programs in BPDCN. In turn, TCF4 activity is dependent on the bromodomain and extra-terminal domain (BET) protein BRD4 whose inhibition provides a promising therapeutic vulnerability. Notably, TCF4 expression is a highly sensitive marker for BPDCN and augments diagnostic specificity alongside CD4, CD56, CD123, and TCL1. The gene expression profile of BPDCN is characterized by aberrant NF-kappaB pathway activation, while its genomic landscape is dominated by structural chromosomal alterations involving ETV6, MYC, and NR3C1, as well as mutations in epigenetic regulators particularly TET2. Advances in elucidating the biological characteristics of BPDCN are resulting in a more refined diagnostic approach and are opening novel therapeutic avenues for patients with this disease.

Muñoz-Bello JO, Olmedo-Nieva L, Castro-Muñoz LJ, et al.
HPV-18 E6 Oncoprotein and Its Spliced Isoform E6*I Regulate the Wnt/β-Catenin Cell Signaling Pathway through the TCF-4 Transcriptional Factor.
Int J Mol Sci. 2018; 19(10) [PubMed] Free Access to Full Article Related Publications
The Wnt/β-catenin signaling pathway regulates cell proliferation and differentiation and its aberrant activation in cervical cancer has been described. Persistent infection with high risk human papillomavirus (HR-HPV) is the most important factor for the development of this neoplasia, since E6 and E7 viral oncoproteins alter cellular processes, promoting cervical cancer development. A role of HPV-16 E6 in Wnt/β-catenin signaling has been proposed, although the participation of HPV-18 E6 has not been previously studied. The aim of this work was to investigate the participation of HPV-18 E6 and E6*I, in the regulation of the Wnt/β-catenin signaling pathway. Here, we show that E6 proteins up-regulate TCF-4 transcriptional activity and promote overexpression of Wnt target genes. In addition, it was demonstrated that E6 and E6*I bind to the TCF-4 (T cell factor 4) and β-catenin, impacting TCF-4 stabilization. We found that both E6 and E6*I proteins interact with the promoter of

Li T, Jian X, He H, et al.
MiR-452 promotes an aggressive colorectal cancer phenotype by regulating a Wnt/β-catenin positive feedback loop.
J Exp Clin Cancer Res. 2018; 37(1):238 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aberrant activation of Wnt/β-catenin signaling pathway is considered to be an important issue in progression and metastasis of various human cancers, especially in colorectal cancer (CRC). MiR-452 could activate of Wnt/β-catenin signaling. But the mechanism remains unclear.
METHODS: The expression of miR-452 in CRC and normal tissues was detected by real-time quantitative PCR. The effect of miR-452 on CRC growth and invasion was conducted by functional experiments in vitro and in vivo. Bioinformatics and cell luciferase function studies verified the direct regulation of miR-452 on the 3'-UTR of the GSK3β, which leads to the activation of Wnt/β-catenin signaling.
RESULTS: MiR-452 was upregulated in CRC compared with normal tissues and was correlated with clinical significance. The luciferase reporter system studies affirmed the direct regulation of miR-452 on the 3'-UTR of the GSK3β, which activate the Wnt/β-catenin signaling. The ectopic upregulation of miR-452 significantly inhibited the expression of GSK3β and enhanced CRC proliferation and invasion in vitro and in vivo. Meanwhile, knockdown of miR-452 significantly recovered the expression of GSK3β and attenuated Wnt/β-catenin-mediated cell metastasis and proliferation. More important, T-cell factor/lymphoid enhancer factor (TCF/LEF) family of transcription factors, which are crucial downstream molecules of the Wnt/β-catenin signaling pathway was verified as a valid transcription factor of miR-452's promoter.
CONCLUSIONS: Our findings first demonstrate that miR-452-GSK3β-LEF1/TCF4 positive feedback loop induce CRC proliferation and migration.

Liu H, Hu J, Wei R, et al.
SPAG5 promotes hepatocellular carcinoma progression by downregulating SCARA5 through modifying β-catenin degradation.
J Exp Clin Cancer Res. 2018; 37(1):229 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The sperm-associated antigen 5 (SPAG5) plays a key role in controlling various cellular phenomena, including cell cycle progression and proliferation. However, the role of SPAG5 in hepatocellular carcinoma (HCC) remains unknown.
METHODS: This study investigated the function and clinical significance of SPAG5 protein expression in hepatocellular carcinoma. We analyzed SPAG5 expression in surgical specimens from 136 HCC patients. The correlation between the clinical characteristics and prognosis was also determined. Furthermore, the SPAG5 was overexpressed in HCC cell and silenced with shRNA in HCC cells. Moreover, cell proliferation and apoptosis were measured using Edu assay and flow cytometry and a molecular mechanism of SPAG5 promotes HCC progression was explored.
RESULTS: Herein, our study showed that upregulation of SPAG5 was detected frequently in primary HCC tissues, and was associated with significantly worse survival among the HCC patients. Multivariate analyses revealed that high SPAG5 expression was an independent predictive marker for the poor prognosis of HCC. SPAG5 silence effectively abolished the proliferation abilities of SPAG5 in vivo and in vitro, while induced apoptosis in HCC cells. Furthermore, our results indicate that SPAG5 promoted cell progression by decreasing SCARA5 expression, which has been reported to control the progression of HCC, and our data demonstrated that SCARA5 is crucial for SPAG5-mediated HCC cell progression in vitro and in vivo. Moreover, we found that the expression of SPAG5 and SCARA5 are inversely correlated in HCC tissues. In addition, we demonstrated that SPAG5 promoted progression in HCC via downregulating SCARA5 depended on the β-catenin/TCF4 signaling pathway. Interestingly, the underlying mechanism is which SPAG5 regulates SCARA5 expression by modulating β-catenin degradation.
CONCLUSIONS: Taken together, our data provide a novel evidence for the biological and clinical significance of SPAG5 as a potential biomarker, and we demonstrate that SPAG5-β-catenin-SCARA5 might be a novel pathway involved in HCC progression.

Hsu YL, Chen YJ, Chang WA, et al.
Interaction between Tumor-Associated Dendritic Cells and Colon Cancer Cells Contributes to Tumor Progression via CXCL1.
Int J Mol Sci. 2018; 19(8) [PubMed] Free Access to Full Article Related Publications
Crosstalk of a tumor with its microenvironment is a critical factor contributing to cancer development. This study investigates the soluble factors released by tumor-associated dendritic cells (TADCs) responsible for increasing cancer stem cell (CSC) properties, cell mobility, and epithelial-to-mesenchymal transition (EMT). Dendritic cells (DCs) of colon cancer patients were collected for phenotype and CXCL1 expression by flow cytometry and Luminex assays. The transcriptome of CXCL1-treated cancer cells was established by next generation sequencing. Inflammatory chemokine CXCL1, present in large amounts in DCs isolated from colon cancer patients, and SW620-conditioned TADCs, enhance CSC characteristics in cancer, supported by enhanced anchorage-independent growth, CD133 expression and aldehyde dehydrogenase activity. Additionally, CXCL1 increases the metastatic ability of a cancer by enhancing cell migration, matrix metalloproteinase-7 expression and EMT. The enhanced CXCL1 expression in DCs is also noted in mice transplanted with colon cancer cells. Transcriptome analysis of CXCL1-treated SW620 cells indicates that CXCL1 increases potential oncogene expression in colon cancer, including

He L, Zhu H, Zhou S, et al.
Wnt pathway is involved in 5-FU drug resistance of colorectal cancer cells.
Exp Mol Med. 2018; 50(8):101 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. 5-Fluorouracil (5-FU) is widely used in the treatment of cancers, but its antineoplastic activity is limited in drug-resistant cancer cells. To investigate the detailed mechanism of 5-FU resistance, we developed a model of 5-FU-resistant cells from HCT-8 cells, a well-established colorectal cancer cell line. We found that the drug-resistant cells demonstrated high expression of TCF4 and β-catenin, indicating an upregulated Wnt pathway. A microarray analysis revealed that the suppression of the checkpoint kinase 1 (CHK1) pathway explained the resistance to 5-FU, especially in p53 wild-type cancer cells such as HCT-8. Our data also demonstrated that the CHK1 pathway is suppressed by the Wnt pathway in 5-FU-resistant cells. In summary, we have discovered a novel mechanism for 5-FU resistance mediated by histone deacetylation, which also revealed the crosstalk between the Wnt pathway and CHK1 pathway.

Muhammad BA, Almozyan S, Babaei-Jadidi R, et al.
FLYWCH1, a Novel Suppressor of Nuclear β-Catenin, Regulates Migration and Morphology in Colorectal Cancer.
Mol Cancer Res. 2018; 16(12):1977-1990 [PubMed] Free Access to Full Article Related Publications
Wnt/β-catenin signaling plays a critical role during development of both normal and malignant colorectal cancer tissues. Phosphorylation of β-catenin protein alters its trafficking and function. Such conventional allosteric regulation usually involves a highly specialized set of molecular interactions, which may specifically turn on a particular cell phenotype. This study identifies a novel transcription modulator with an FLYWCH/Zn-finger DNA-binding domain, called "FLYWCH1." Using a modified yeast-2-hybrid based Ras-Recruitment system, it is demonstrated that FLYWCH1 directly binds to unphosphorylated (nuclear) β-catenin efficiently suppressing the transcriptional activity of Wnt/β-catenin signaling that cannot be rescued by TCF4. FLYWCH1 rearranges the transcriptional activity of β-catenin/TCF4 to selectively block the expression of specific downstream genes associated with colorectal cancer cell migration and morphology, including ZEB1, EPHA4, and E-cadherin. Accordingly, overexpression of FLYWCH1 reduces cell motility and increases cell attachment. The expression of FLYWCH1 negatively correlates with the expression level of ZEB1 and EPHA4 in normal versus primary and metastatic colorectal cancer tissues in patients. Thus, FLYWCH1 antagonizes β-catenin/TCF4 signaling during cell polarity/migration in colorectal cancer. IMPLICATIONS: This study uncovers a new molecular mechanism by which FLYWCH1 with a possible tumor suppressive role represses β-catenin-induced ZEB1 and increases cadherin-mediated cell attachment preventing colorectal cancer metastasis.

Prossomariti A, Piazzi G, D'Angelo L, et al.
miR-155 Is Downregulated in Familial Adenomatous Polyposis and Modulates WNT Signaling by Targeting AXIN1 and TCF4.
Mol Cancer Res. 2018; 16(12):1965-1976 [PubMed] Related Publications
Adenomatous Polyposis Coli (

Su Z, Song J, Wang Z, et al.
Tumor promoter TPA activates Wnt/β-catenin signaling in a casein kinase 1-dependent manner.
Proc Natl Acad Sci U S A. 2018; 115(32):E7522-E7531 [PubMed] Free Access to Full Article Related Publications
The tumor promoter 12-

Knutti N, Huber O, Friedrich K
CD147 (EMMPRIN) controls malignant properties of breast cancer cells by interdependent signaling of Wnt and JAK/STAT pathways.
Mol Cell Biochem. 2019; 451(1-2):197-209 [PubMed] Related Publications
EMMPRIN (extracellular matrix metalloproteinase inducer, EMN, CD147) is a member of the immunoglobulin superfamily expressed in numerous cell types both as a soluble and a membrane-spanning glycoprotein. It is involved in many physiological processes, as well as in cancer. This study addresses mechanisms of crosstalk between EMN-driven cancer-related cellular responses and the canonical Wnt-pathway in MCF-7 breast carcinoma cells. Genetic knockdown of EMN in MCF-7 resulted in characteristic changes in cellular shape, organization of the actin cytoskeleton and malignancy profile, indicating that EMN expression represses cell motility, but, in contrast, exerts a stimulatory effect on cell proliferation and invasive properties. Increased invasiveness coincided with elevated expression of Wnt-target genes and established invasion driver matrix metalloproteinase MMP14. Activation of the downstream Wnt-pathway by means of heterologous β-catenin and/or TCF-4 expression, through inhibition of GSK-3β by LiCl treatment, or by cell stimulation with insulin-like growth factor-1 (IGF-1) resulted in increased EMN expression. EMN over-expression raised the ratio of the two opposing Wnt pathway-driven transcription factors Sp1 and Sp5, leading to stimulation of the EMN promoter. Furthermore, the EMN promoter was activated by a feed-forward circuit involving an EMN-dependent drop in expression of the repressive signal transducer and activator of transcription 1 (STAT1). Taken together, we show that the influence of EMMPRIN on malignancy-related properties of breast cancer cells is functionally connected to both Wnt- and JAK/STAT pathways.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TCF7L2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999