Gene Summary

Gene:UGT2B7; UDP glucuronosyltransferase family 2 member B7
Summary:The protein encoded by this gene belongs to the UDP-glycosyltransferase (UGT) family. UGTs serve a major role in the conjugation and subsequent elimination of potentially toxic xenobiotics and endogenous compounds. This protein is localized in the microsome membrane, and has unique specificity for 3,4-catechol estrogens and estriol, suggesting that it may play an important role in regulating the level and activity of these potent estrogen metabolites. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Mar 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:UDP-glucuronosyltransferase 2B7
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (9)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: UGT2B7 (cancer-related)

Shen ML, Xiao A, Yin SJ, et al.
Associations between UGT2B7 polymorphisms and cancer susceptibility: A meta-analysis.
Gene. 2019; 706:115-123 [PubMed] Related Publications
BACKGROUND: UGT2B7 was recently acknowledged as a new critical enzyme involved in biotransformation of a variety of carcinogens, whose function was reported to be significantly associated with its encoding gene (UGT2B7) polymorphisms. However, results regarding the associations between single nucleotide polymorphisms (SNPs) of UGT2B7 and cancer risk still remained controversial. Therefore, a meta-analysis was conducted to further elucidate the role of UGT2B7 SNPs on cancer susceptibilities.
METHODS: PubMed, EMBASE, Cochrane library, Chinese National Knowledge Infrastructure (CNKI), Technology of Chongqing (VIP) and Wan Fang Database were searched for eligible studies until March 2019. All analysis was carried out using the Review Manager 5.3 software. Subgroup analyses were performed by cancer types, ethnicity or source of controls.
RESULTS: 13 studies with a total of 7688 cancer cases and 11,281 controls were included in this meta-analysis. The results showed that UGT2B7 rs7439366 increased the colorectal cancer risk in dominant model (OR = 0.76, 95% CI = 0.61-0.95, P = 0.02). However, as for the rs7435335 and rs12233719, we did not find their associations with cancer risk in all genetic models. In addition, the rs7441774 was found to be associated with breast cancer risk and significantly reduced papillary thyroid cancer risk in rs3924194 was also observed. Nevertheless, these findings remained to be further proven in future studies since these 2 SNPs were only respectively involved in 1 study.
CONCLUSION: This meta-analysis confirmed the association of UGT2B7 rs7439366 with colorectal cancer risk, which may be a potential promising biomarker for prediction of colorectal cancer risk.

Endo-Tsukude C, Sasaki JI, Saeki S, et al.
Population Pharmacokinetics and Adverse Events of Erlotinib in Japanese Patients with Non-small-cell Lung Cancer: Impact of Genetic Polymorphisms in Metabolizing Enzymes and Transporters.
Biol Pharm Bull. 2018; 41(1):47-56 [PubMed] Related Publications
Determinants of interindividual variability in erlotinib pharmacokinetics (PK) and adverse events remain to be elucidated. This study with 50 Japanese non-small-cell lung cancer patients treated with oral erlotinib at a standard dose of 150 mg aimed to investigate whether genetic polymorphisms affect erlotinib PK and adverse events. Single nucleotide polymorphisms (SNPs) in genes encoding metabolizing enzymes (CYP1A1, CYP1A2, CYP2D6, CYP3A4, CYP3A5, UGT1A1, UGT2B7, GSTM1, and GSTT1) or efflux transporters (ABCB1, and ABCG2) were analyzed as covariates in a population PK model. The ABCB1 1236C>T (rs1128503) polymorphism, not ABCB1*2 haplotype (1236TT-2677TT-3455TT, rs1128503 TT-rs2032582 TT-rs1045642 TT), was a significant covariate for the apparent clearance (CL/F), with the TT genotype showing a 29.4% decrease in CL/F as compared with the CC and the CT genotypes. A marginally higher incidence of adverse events (mainly skin rash) was observed in the TT genotype group; however, patients with high plasma erlotinib exposure did not always experience skin rash. None of the other SNPs affected PK or adverse events. The ABCB1 genotype is a potential predictor for erlotinib adverse events. Erlotinib might be used with careful monitoring of adverse events in patients with ABCB1 polymorphic variants.

Falkowski S, Woillard JB, Postil D, et al.
Common variants in glucuronidation enzymes and membrane transporters as potential risk factors for colorectal cancer: a case control study.
BMC Cancer. 2017; 17(1):901 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Associations between polymorphisms of UDP-glucuronosyltransferases (UGTs) or efflux transporters (e.g., P-glycoprotein and MRP2) and different types of cancer have been described, whereas the role of influx transporters (e.g. OATP1B1 and OATP2B1) has been seldom explored. The GenColon study investigated potential associations between variant alleles of UGTs, efflux and influx transporters and CRC.
METHODS: Three hundred CRC cases were matched with 300 controls for age, sex and enrolment site. Fifteen SNPs in UGT1A6-9, UGT2B7, ABCB1, ABCC2, SLCO1B1 and SLCO2B1 genes were characterized using Taqman® PCR. Using multivariate conditional logistic regression, we investigated the relationships between CRC and "environmental" risk factors (physical activity, housing and working areas, consumption of red meat, tobacco, alcohol); genetic polymorphisms, in the study population and in the subgroups with "environmental" risk factors.
RESULTS: No significant association was observed for the analyzed SNPs (or haplotypes). However, an increased CRC risk was found in carriers of the UGT1A8 rs1042597-G variant allele (additive risk OR = 3.39[1.29-8.89], p = 0.02951) in the subgroup of meat-consumers (n = 84), and in carriers of the ABCB1 rs1045642-T (exon26) variant allele (additive risk; OR = 1.89[1.10-3.39], p = 0.0257) in the "never alcohol consumption subgroup" (n = 125). In addition, as previously reported, the following CRC risk factors were identified: absence of physical activity (OR = 6.35[3.70-10.9], p < 0.0001), living or working in rural or mix area (OR = 2.50[1.48-4.23], p = 0.0006 and OR = 2.99[1.63-5.48], p = 0.004, respectively) and tobacco exposure >30 years (3.37[1.63-6.96], p = 0.0010).
CONCLUSIONS: Variant genotypes of influx transporters (OATP1B1 and 2B1) were not associated with CRC. This study confirmed the influence of lifestyle factors, but not the previously reported detrimental effect of SNPs in intestinal UGTs or efflux transporters, except for a UGT1A8 variant in subjects consuming meat and the exon 26 SNP of ABCB1 in the never alcohol consumption subgroup.
TRIAL REGISTRATION: Registered in Direction Générale de la Santé the 1st July 2008 under the number DGS2008-0144.

He BX, Qiao B, Lam AK, et al.
Association between UDP-glucuronosyltransferase 2B7 tagSNPs and breast cancer risk in Chinese females.
Clin Exp Pharmacol Physiol. 2018; 45(5):437-443 [PubMed] Related Publications
This retrospective study was performed to evaluate the association between the UGT2B7 tagSNPs (rs12233719, rs4356975, rs7435335 and rs7441774) and breast cancer in Chinese females. Blood samples were collected from 672 patients with breast cancer and 670 healthy controls for DNA extraction. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to analyze UGT2B7 polymorphisms. Dual-luciferase reporter assays were further performed to investigate the regulatory function of UGT2B7 tagSNPs. The frequency of rs7441774 G allele in the breast cancer cases was statistically significantly higher than in the controls (0.412 vs 0.358, P = .006; odds ratio [OR] = 1.27, 95% CI = 1.08-1.48). After adjusting for conventional risk factors, individuals with the GG genotype had a higher breast cancer risk than those with the AA genotype (adjusted OR = 1.63, 95% CI = 1.18-2.26; P = .008). The GCGG haplotype of UGT2B7 was also associated with breast cancer (OR = 1.22, 95% CI = 1.04-1.45; P = .027). Meanwhile, the rs7441774 G allele could significantly decrease the transcriptional activity of the UGT2B7 gene. This study indicates that UGT2B7 polymorphisms may play a crucial role in the occurrence and development of breast cancer in the Han Chinese population.

Tang L, Platek ME, Yao S, et al.
Associations between polymorphisms in genes related to estrogen metabolism and function and prostate cancer risk: results from the Prostate Cancer Prevention Trial.
Carcinogenesis. 2018; 39(2):125-133 [PubMed] Free Access to Full Article Related Publications
Substantial preclinical data suggest estrogen's carcinogenic role in prostate cancer development; however, epidemiological evidence based on circulating estrogen levels is largely null. Compared with circulating estrogen, the intraprostatic estrogen milieu may play a more important role in prostate carcinogenesis. Using a nested case-control design in the Prostate Cancer Prevention Trial (PCPT), we examined associations of genetic variants of genes that are involved in estrogen synthesis, metabolism and function with prostate cancer risk. A total of 25 potentially functional single nucleotide polymorphisms (SNPs) in 13 genes (PGR, ESR1, ESR2, CYP17A1, HSD17B1, CYP19A1, CYP1A1, CYP1B1, COMT, UGT1A6, UGT1A10, UGT2B7, UGT2B15) were examined in whites only. Controls (n = 1380) were frequency matched to cases on age, PCPT treatment arm, and family history (n = 1506). Logistic regression models adjusted for age and family history were used to estimate odds ratios (OR) and 95% confidence intervals (CI) separately in the placebo and finasteride arms. SNPs associated with prostate cancer risk differed by treatment arm. The associations appeared to be modified by circulating estrogen and androgen levels. CYP19A1 was the only gene harboring SNPs that were significantly associated with risk in both the placebo and finasteride arms. Haplotype analysis with all three CYP19A1 SNPs genotyped (rs700518, rs2445765, rs700519) showed that risk-allele haplotypes are associated with the increased prostate cancer risk in both arms when comparing with the non-risk allele haplotype. In conclusion, associations between SNPs in estrogen-related genes and prostate cancer risk are complex and may be modified by circulating hormone levels and finasteride treatment.

Yang ZZ, Li L, Xu MC, et al.
Brain-derived neurotrophic factor involved epigenetic repression of UGT2B7 in colorectal carcinoma: A mechanism to alter morphine glucuronidation in tumor.
Oncotarget. 2017; 8(17):29138-29150 [PubMed] Free Access to Full Article Related Publications
Uridine diphosphate-glucuronosyltransferase (UGT) 2B7, as one of significant drug enzymes, is responsible on the glucuronidation of abundant endobiotics or xenobiotics. We here report that it is markedly repressed in the tumor tissues of colorectal carcinoma (CRC) patients. Accordingly, morphine in CRC cells will stimulate the expression of its main metabolic enzyme, UGT2B7 during tolerance generation by activating the positive signals in histone 3, especially for trimethylated lysine 27 (H3K4Me3) and acetylated lysine 4 (H3K27Ac). Further study reveals that brain-derived neutrophilic factor (BDNF), a secretory neurotrophin, enriched in CRC can interact and inhibit UGT2B7 by primarily blocking the positive signals of H3K4Me3 as well as activating H3K27Ac on the promoter region of UGT2B7. Meanwhile, BDNF repression attributes to the sensitizations of main core factors in poly-comb repressive complex (PRC) 1 rather than PRC2 as the reason of the depression of SUZ12 in the later complex. Besides that, the productions of two main morphine glucuronides are both increased in the BDNF deficient or TSA and BIX-01294 treated morphine tolerance-like HCT-116 cells. On the same condition, active metabolite, morphine-6-glucuronide (M6G) was accumulated more than inactive M3G. Our findings imply that enzymatic activity enhancement and substrate regioselective catalysis alteration of UGT2B7 may release morphine tolerance under the cure of tumor-induced pain.

Wang J, Shidfar A, Ivancic D, et al.
Overexpression of lipid metabolism genes and PBX1 in the contralateral breasts of women with estrogen receptor-negative breast cancer.
Int J Cancer. 2017; 140(11):2484-2497 [PubMed] Related Publications
Risk biomarkers for estrogen receptor (ER)-negative breast cancer have clear value for breast cancer prevention. We previously reported a set of lipid metabolism (LiMe) genes with high expression in the contralateral unaffected breasts (CUBs) of ER-negative cancer cases. We now further examine LiMe gene expression in both tumor and CUB, and investigate the role of Pre-B-cell leukemia homeobox-1 (PBX1) as a candidate common transcription factor for LiMe gene expression. mRNA was extracted from laser-capture microdissected epithelium from tumor and CUB of 84 subjects (28 ER-positive cases, 28 ER-negative cases, 28 healthy controls). Gene expression was quantitated by qRT-PCR. Logistic regression models were generated to predict ER status of the contralateral cancer. Protein expression of HMGCS2 and PBX1 was measured using immunohistochemistry. The effect of PBX1 on LiMe gene expression was examined by overexpressing PBX1 in MCF10A cells with or without ER, and by suppressing PBX1 in MDA-MB-453 cells. The expression of DHRS2, HMGCS2, UGT2B7, UGT2B11, ALOX15B, HPGD, UGT2B28 and GLYATL1 was significantly higher in ER-negative versus ER-positive CUBs, and predicted ER status of the tumor in test and validation sets. In contrast, LiMe gene expression was significantly lower in ER-negative than ER-positive tumors. PBX1 overexpression in MCF10A cells up-regulated most LiMe genes, but not in MCF10A cells overexpressing ER. Suppressing PBX1 in MDA-MB-453 cells resulted in decrease of LiMe gene expression. Four binding sites of PBX1 and cofactor were identified in three lipid metabolism genes using ChIP-qPCR. These data suggest a novel role for PBX1 in the regulation of lipid metabolism genes in benign breast, which may contribute to ER-negative tumorigenesis.

Dluzen DF, Sutliff AK, Chen G, et al.
Regulation of UGT2B Expression and Activity by miR-216b-5p in Liver Cancer Cell Lines.
J Pharmacol Exp Ther. 2016; 359(1):182-93 [PubMed] Free Access to Full Article Related Publications
The UDP-glucuronosyltransferase (UGT) 2B enzymes are important in the detoxification of a variety of endogenous and exogenous compounds, including many hormones, drugs, and carcinogens. Identifying novel mechanisms governing their expression is important in understanding patient-specific response to drugs and cancer risk factors. In silico prediction algorithm programs were used to screen for microRNAs (miRNAs) as potential regulators of UGT2B enzymes, with miR-216b-5p identified as a potential candidate. Luciferase data suggested the presence of a functional miR-216b-5p binding motif within the 3' untranslated regions of UGTs 2B7, 2B4, and 2B10. Overexpression of miR-216b-5p mimics significantly repressed UGT2B7 (P < 0.001) and UGT2B10 (P = 0.0018) mRNA levels in HuH-7 cells and UGT2B4 (P < 0.001) and UGT2B10 (P = 0.018) mRNA in Hep3B cells. UGT2B7 protein levels were repressed in both HuH-7 and Hep3B cells in the presence of increasing miR-216b-5p concentrations, corresponding with significant (P < 0.001 and P = 0.011, respectively) decreases in glucuronidation activity against the UGT2B7-specific substrate epirubicin. Inhibition of endogenous miR-216b-5p levels significantly increased UGT2B7 mRNA levels in HuH-7 (P = 0.021) and Hep3B (P = 0.0068) cells, and increased epirubicin glucuronidation by 85% (P = 0.057) and 50% (P = 0.012) for HuH-7 and Hep3B cells, respectively. UGT2B4 activity against codeine and UGT2B10 activity against nicotine were significantly decreased in both HuH-7 and Hep3B cells (P < 0.001 and P = 0.0048, and P = 0.017 and P = 0.043, respectively) after overexpression of miR-216b-5p mimic. This is the first evidence that miRNAs regulate UGT 2B7, 2B4, and 2B10 expression, and that miR-216b-5p regulation of UGT2B proteins may be important in regulating the metabolism of UGT2B substrates.

Sutiman N, Lim JSL, Muerdter TE, et al.
Pharmacogenetics of UGT1A4, UGT2B7 and UGT2B15 and Their Influence on Tamoxifen Disposition in Asian Breast Cancer Patients.
Clin Pharmacokinet. 2016; 55(10):1239-1250 [PubMed] Related Publications
Tamoxifen (TAM) is an established endocrine treatment for all stages of oestrogen receptor (ER)-positive breast cancer. Its complex metabolism leads to the formation of multiple active and inactive metabolites. One of the main detoxification and elimination pathways of tamoxifen and its active metabolites, 4-hydroxytamoxifen (4-OHT) and endoxifen, is via glucuronidation catalysed by uridine 5'-diphospho-glucuronosyltransferases (UGTs). However, few studies have comprehensively examined the impact of variations in the genes encoding the major hepatic UGTs on the disposition of tamoxifen and its metabolites. In the present study, we systematically sequenced exons, exon/intron boundaries, and flanking regions of UGT1A4, UGT2B7 and UGT2B15 in 240 healthy subjects of different Asian ethnicities (Chinese, Malays and Indians) to identify haplotype tagging single nucleotide polymorphisms. Subsequently, 202 Asian breast cancer patients receiving tamoxifen were genotyped for 50 selected variants in the three UGT genes to comprehensively investigate their associations with steady-state plasma levels of tamoxifen, its active metabolites and their conjugated counterparts. The UGT1A4 haplotype (containing variant 142T>G, L48 V defining the *3 allele) was strongly associated with higher plasma levels of TAM-N-glucuronide, with a twofold higher metabolic ratio of TAM-N-glucuronide/TAM observed in carriers of this haplotype upon covariate adjustment (P < 0.0001). Variants in UGT2B7 were not associated with altered O-glucuronidation of both 4-OHT and endoxifen, while UGT2B15 haplotypes had a modest effect on (E)-endoxifen plasma levels after adjustment for CYP2D6 genotypes. Our findings highlight the influence of UGT1A4 haplotypes on tamoxifen disposition in Asian breast cancer patients, while genetic variants in UGT2B7 and UGT2B15 appear to be of minor importance.

Hagberg Thulin M, Nilsson ME, Thulin P, et al.
Osteoblasts promote castration-resistant prostate cancer by altering intratumoral steroidogenesis.
Mol Cell Endocrinol. 2016; 422:182-191 [PubMed] Related Publications
The skeleton is the preferred site for prostate cancer (PC) metastasis leading to incurable castration-resistant disease. The increased expression of genes encoding steroidogenic enzymes found in bone metastatic tissue from patients suggests that up-regulated steroidogenesis might contribute to tumor growth at the metastatic site. Because of the overall sclerotic phenotype, we hypothesize that osteoblasts regulate the intratumoral steroidogenesis of castration resistant prostate cancer (CRPC) in bone. We here show that osteoblasts alter the steroidogenic transcription program in CRPC cells, closely mimicking the gene expression pattern described in CRPC. Osteoblast-stimulated LNCaP-19 cells displayed an increased expression of genes encoding for steroidogenic enzymes (CYP11A1, HSD3B1, and AKR1C3), estrogen signaling-related genes (CYP19A1, and ESR2), and genes for DHT-inactivating enzymes (UGT2B7, UGT2B15, and UGT2B17). The observed osteoblast-induced effect was exclusive to osteogenic CRPC cells (LNCaP-19) in contrast to osteolytic PC-3 and androgen-dependent LNCaP cells. The altered steroid enzymatic pattern was specific for the intratibial tumors and verified by immunohistochemistry in tissue specimens from LNCaP-19 xenograft tumors. Additionally, the overall steroidogenic effect was reflected by corresponding levels of progesterone and testosterone in serum from castrated mice with intratibial xenografts. A bi-directional interplay was demonstrated since both proliferation and Esr2 expression of osteoblasts were induced by CRPC cells in steroid-depleted conditions. Together, our results demonstrate that osteoblasts are important mediators of the intratumoral steroidogenesis of CRPC and for castration-resistant growth in bone. Targeting osteoblasts may therefore be important in the development of new therapeutic approaches.

Han K, Jin JY, Marchand M, et al.
Population pharmacokinetics and dosing implications for cobimetinib in patients with solid tumors.
Cancer Chemother Pharmacol. 2015; 76(5):917-24 [PubMed] Related Publications
PURPOSE: To characterize cobimetinib pharmacokinetics and evaluate impact of clinically relevant covariates on cobimetinib pharmacokinetics.
METHODS: Plasma samples (N = 4886) were collected from 487 patients with various solid tumors (mainly melanoma) in three clinical studies (MEK4592g, NO25395, GO28141). Cobimetinib was administered orally, once daily on either a 21-day-on/7-day-off, 14-day-on/14-day-off or 28-day-on schedule in a 28-day dosing cycle as single agent or in combination with vemurafenib. Cobimetinib doses ranged from 2.1 to 125 mg. NONMEM was used for pharmacokinetic analysis.
RESULTS: A linear two-compartment model with first-order absorption, lag time and first-order elimination described cobimetinib pharmacokinetics. The typical estimates (inter-individual variability) of apparent clearance (CL/F), central volume of distribution (V2/F) and terminal half-life were 322 L/day (58 %), 511 L (49 %) and 2.2 days, respectively. Inter-occasion variability on relative bioavailability was estimated at 46 %. CL/F decreased with age. V2/F increased with body weight (BWT). However, the impact of age and BWT on cobimetinib steady-state exposure (peak and trough concentrations and AUC following the recommended daily dose of 60 mg 21-day-on/7-day-off) was limited (<25 % changes across the distribution of age and BWT). No significant difference in cobimetinib pharmacokinetics or steady-state exposure was observed between patient subgroups based on sex, renal function, ECOG score, hepatic function tests, race, region, cancer type, and co-administration of moderate and weak CYP3A inducers or inhibitors and vemurafenib.
CONCLUSION: A population pharmacokinetic model was developed for cobimetinib in cancer patients. Covariates had minimal impact on steady-state exposure, suggesting no need for dose adjustments and supporting the recommended dose for all patients.

Seltzer J, Scotton TC, Kang K, et al.
Gene expression in prolactinomas: a systematic review.
Pituitary. 2016; 19(1):93-104 [PubMed] Related Publications
INTRODUCTION: Prolactinomas are the most common functional pituitary adenomas. Current classification systems rely on phenotypic elements and have few molecular markers for complementary classification. Treatment protocols for prolactinomas are also devoid of molecular targets, leaving those refractory to standard treatments without many options.
METHODS: A systematic literature review was performed utilizing the PRISMA guidelines. We aimed to summarize prior research exploring gene and protein expression in prolactinomas in order to highlight molecular variations associated with tumor development, growth, and prolactin secretion. A PubMed search of select MeSH terms was performed to identify all studies reporting gene and protein expression findings in prolactinomas from 1990 to 2014.
RESULTS: 1392 abstracts were screened and 51 manuscripts were included in the analysis, yielding 54 upregulated and 95 downregulated genes measured by various direct and indirect analytical methods. Of the many genes identified, three upregulated (HMGA2, HST, SNAP25), and three downregulated (UGT2B7, Let7, miR-493) genes were selected for further analysis based on our subjective identification of strong potential targets.
CONCLUSIONS: Many significant genes have been identified and validated in prolactinomas and most have not been fully analyzed for therapeutic and diagnostic potential. These genes could become candidate molecular targets for biomarker development and precision drug targeting as well as catalyze deeper research efforts utilizing next generation profiling/sequencing techniques, particularly genome scale expression and epigenomic analyses.

Romero-Lorca A, Novillo A, Gaibar M, et al.
Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients.
PLoS One. 2015; 10(7):e0132269 [PubMed] Free Access to Full Article Related Publications
Tamoxifen is used to prevent and treat estrogen-dependent breast cancer. It is described as a prodrug since most of its antiestrogen effects are exerted through its hydroxylated metabolites 4-OH-tamoxifen and endoxifen. In prior work, we correlated optimal plasma levels of these metabolites with certain genotypes of CYP2D6 and SULT1A2. This descriptive study examines correlations between concentrations of tamoxifen's glucuronide metabolites and genotypes UGT1A4 Pro24Thr, UGT1A4 Leu48Val, UGT2B7 His268Tyr, UGT2B15 Asp85YTyr UGT2B15 Lys523Thr and UGT2B17del in 132 patients with estrogen receptor-positive breast cancer under treatment with tamoxifen. Patients were genotyped by real-time and conventional PCR-RFLP. The glucuronides 4-OH-tamoxifen-N-glucuronide, 4-OH-tamoxifen-O-glucuronide and endoxifen-O-glucuronide were isolated from blood plasma and quantified using a high-pressure liquid chromatography-tandem mass spectrometry system. Individuals who were homozygous for UGT1A448VAL showed significantly lower mean concentrations of both glucuronide metabolites compared to subjects genotyped as wt/wt plus wt/48Val (p=0.037 and p=0.031, respectively). Women homozygous for UGT2B7268Tyr also showed mean substrate/product ratios of 4-OH-tamoxifen/4-OH-tamoxifen-O-glucuronide and 4-OH-tamoxifen/4-OH-tamoxifen-N-glucuronide indicative of reduced glucuronidase activity compared to wt homozygotes or to heterozygotes for the polymorphism (p=0.005 and p=0.003, respectively). In contrast, UGT2B15 Lys523Thr and UGT2B17del were associated with possibly increased enzyme activity. Patients with at least one variant allele UGT2B15523Thr showed significantly higher 4-OH-tamoxifen-O-glucuronide and endoxifen-glucuronide levels (p=0.023 and p=0.025, respectively) indicating a variant gene-dose effect. Higher 4-OH-tamoxifen-N-glucuronide levels observed in UGT2B17del genotypes (p=0.042) could be attributed to a mechanism that compensates for the greater expression of other genes in UGT2B17 del/del individuals. Our observations suggest that patients carrying mutations UGT1A448Val, UGT2B7268Tyr or with wt genotypes for UGT2B17nodel and UGT2B15523Lys could be the best candidates for a good response to tamoxifen therapy in terms of eliciting effective plasma active tamoxifen metabolite levels. However, additional studies examining the effects of UGT genotype on overall patient response to TAM are needed to further examine the role of UGT polymorphisms in the therapeutic efficacy of TAM.

Lu L, Zhou J, Shi J, et al.
Drug-Metabolizing Activity, Protein and Gene Expression of UDP-Glucuronosyltransferases Are Significantly Altered in Hepatocellular Carcinoma Patients.
PLoS One. 2015; 10(5):e0127524 [PubMed] Free Access to Full Article Related Publications
UDP-glucuronosyltransferases (UGTs), the most important enzymes in body detoxification and homeostasis maintaining, govern the glucuronidation reaction of various endogenous and environmental carcinogens. The metabolic function of UGTs can be severely influenced by hepatocellular carcinoma (HCC), the fifth prevalent and third malignant cancer worldwide. Particularly in China, HBV-positive HCC account for approximately 80% of HCC patients. But rare papers addressed the alteration on the metabolism of UGTs specific substrates, translational and transcriptional activity of UGTs in HBV-positive HCC patients. In present study, we choose the main UGT isoforms, UGT1As, UGT1A1, UGT1A9, UGT1A4 and UGT2B7, to determine the alterations of metabolic activity, protein and gene expression of UGTs in HBV-positive HCC. The corresponding specific substrates such as genistein, SN-38, tamoxifen, propofol and zidovudine were utilized respectively in UGTs metabolic activity determination. Furthermore, the plausible mechanism responsible for UGTs alterations was addressed by analyzing the protein and gene expressions in tumor and the adjacent normal tissues in HBV-positive HCC. The results revealed that in the tumor human liver microsomes (HLMs), either V(max) (maximum reaction rate, R(max) for UGT1A1) or the clearance rates (V(max)/K(m), Clint) of UGT1A, UGT1A1, UGT1A4, UGT1A9 and UGT2B7 were significant lower than those of in the adjacent normal HLMs. Subsequently, the relative protein and gene expressions of these isoforms were notably decreased in most of tumor tissues comparing with the adjacent normal tissues. More interestingly, in tumor tissues, the metabolic activity reduction ratio of each UGT isoform was closely related to its protein reduction ratio, indicating that decreasing protein level would contribute to the reduced metabolic function of UGTs in HBV-positive HCC. In summary, our study firstly determined the alteration of UGT function in HBV-positive HCC patients, which would provide an important insight for toxicity or efficacy determination of chemotherapeutic drugs, and even bring a new strategy for clinical regimen in the health cares for the relative patients.

Hu DG, Mackenzie PI, Lu L, et al.
Induction of human UDP-Glucuronosyltransferase 2B7 gene expression by cytotoxic anticancer drugs in liver cancer HepG2 cells.
Drug Metab Dispos. 2015; 43(5):660-8 [PubMed] Related Publications
We recently reported induction of UGT2B7 by its substrate epirubicin, a cytotoxic anthracycline anticancer drug, via activation of p53 and subsequent recruitment of p53 to the UGT2B7 promoter in hepatocellular carcinoma HepG2 cells. Using the same HepG2 model cell line, the present study assessed the possibility of a similar induction of UGT2B7 by several other cytotoxic drugs. We first demonstrated by reverse transcriptase quantitative real-time polymerase chain reaction that, as observed with epirubicin, nine cytotoxic drugs including three anthracyclines (doxorubicin, daunorubicin, and idarubicin) and six nonanthracyclines (mitomycin C, 5-fluorouracil, camptothecin, 7-ethyl-10-hydroxycamptothecin, topotecan, and etoposide) significantly increased UGT2B7 mRNA levels. To investigate a potential involvement of p53 in this induction, we conducted further experiments with four of the nine drugs (doxorubicin, daunorubicin, idarubicin, and mitomycin C). The cytotoxic drugs studied increased p53 and UGT2B7 protein levels. Knockdown of p53 expression by small interfering RNA reduced cytotoxic drug-induced UGT2B7 expression. Luciferase reporter assays showed activation of the UGT2B7 promoter by cytotoxic drugs via a previously reported p53 site. Finally, chromatin immunoprecipitation assays demonstrated p53 recruitment to the UGT2B7 p53 site upon exposure to mitomycin C, the most potent UGT2B7 inducer among the nine tested drugs. Taken together, these results provide further evidence supporting UGT2B7 as a p53 target gene. The cytotoxic drug-induced UGT2B7 activity in target liver cancer cells or possibly in normal liver cells may affect the therapeutic efficacy of co-administered cytotoxic drugs (e.g., epirubicin) and noncytotoxic drugs (e.g., morphine), which are UGT2B7 substrates.

Joerger M, Huitema AD, Boot H, et al.
Germline TYMS genotype is highly predictive in patients with metastatic gastrointestinal malignancies receiving capecitabine-based chemotherapy.
Cancer Chemother Pharmacol. 2015; 75(4):763-72 [PubMed] Related Publications
PURPOSE: This work was initiated to extend data on the effect of pharmacogenetics and chemotherapy pharmacokinetics (PK) on clinical outcome in patients with gastrointestinal malignancies.
METHODS: We assessed 44 gene polymorphisms in 16 genes (TYMS, MTHFR, GSTP1, GSTM1, GSTT1, DPYD, XRCC1, XRCC3, XPD, ERCC1, RECQ1, RAD54L, ABCB1, ABCC2, ABCG2 and UGT2B7) in 64 patients with metastatic colorectal cancer (CRC) receiving capecitabine/oxaliplatin and 76 patients with advanced gastroesophageal cancer (GEC) receiving epirubicin/cisplatin/capecitabine, respectively. Plasma concentrations of anticancer drugs were measured for up to 24 h, and results were submitted to population PK analysis. We calculated the association between gene polymorphisms, chemotherapy exposure, tumor response, progression-free survival (PFS), overall survival (OS) and chemotherapy-related toxicity using appropriate statistical tests.
RESULTS: Patients with a low clearance of 5FU were at increased risk of neutropenia (P < 0.05) and hand-foot syndrome (P = 0.002). DPYD T85C, T1896C and A2846T mutant variants were associated with diarrhea (P < 0.05) and HFS (P < 0.02), and IVS14+1G>A additionally with diarrhea (P < 0.001). The TYMS 2R/3G, 3C/3G or 3G/3G promoter variants were associated with worse PFS in the CRC (HR = 2.0, P < 0.01) and GEC group (HR = 5.4, P < 0.001) and worse OS in the GEC group (HR = 4.7, P < 0.001). The GSTP1 A313G mutant variant was associated with a higher PFS (HR = 0.55, P = 0.001) and OS (HR = 0.60, P = 0.002) in the CRC group.
CONCLUSIONS: Germline polymorphisms of DPYD, TYMS and GSTP1 have a significant effect on toxicity and clinical outcome in patients receiving capecitabine-based chemotherapy for advanced colorectal or gastroesophageal cancer. These data should further be validated in prospective clinical studies.

Hevir-Kene N, Rižner TL
The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism.
Chem Biol Interact. 2015; 234:309-19 [PubMed] Related Publications
Estrogens have important roles in the pathogenesis of endometrial cancer. They can have carcinogenic effects through stimulation of cell proliferation or formation of DNA-damaging species. To characterize model cell lines of endometrial cancer, we determined the expression profiles of the estrogen receptors (ERs) ESR1, ESR2 and GPER, and 23 estrogen biosynthetic and metabolic genes, and investigated estrogen biosynthesis in the control HIEEC cell line and the Ishikawa and HEC-1A EC cell lines. HIEEC and Ishikawa expressed all ERs to different extents, while HEC-1A cells lacked expression of ESR1. Considering the estrogen biosynthetic and metabolic enzymes, these cells showed statistically significant different gene expression profiles for SULT2B1, HSD3B2, CYP19A1, AKR1C3, HSD17B1, HSD17B7, HSD17B12, CYP1B1, CYP3A5, COMT, SULT1A1, GSTP1 and NQO2. In these cells, E2 was formed from E1S and E1, while androstenedione was not converted to estrogens. HIEEC and Ishikawa had similar profiles of androstenedione and E1 metabolism, but hydrolysis of E1S to E1 was weaker in Ishikawa cells. HEC-1A cells were less efficient for activation of E1 into the potent E2, but metabolized androstenedione to other androgenic metabolites better than HIEEC and Ishikawa cells. This study reveals that HIEEC, Ishikawa, and HEC-1A cells can all form estrogens only via the sulfatase pathway. HIEEC, Ishikawa, and HEC-1A cells expressed all the major genes in the production of hydroxyestrogens and estrogen quinones, and in their conjugation. Significantly higher CYP1B1 mRNA levels in Ishikawa cells compared to HEC-1A cells, together with lack of UGT2B7 expression, indicate that Ishikawa cells can accumulate more toxic estrogen-3,4-quinones than HEC-1A cells, as also for HIEEC cells. This study provides further characterization of HIEEC, Ishikawa, and HEC-1A cells, and shows that they differ greatly in expression of the genes investigated and in their capacity for E2 formation, and thus they represent different in vitro models.

Vulsteke C, Pfeil AM, Schwenkglenks M, et al.
Impact of genetic variability and treatment-related factors on outcome in early breast cancer patients receiving (neo-) adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide, and docetaxel.
Breast Cancer Res Treat. 2014; 147(3):557-70 [PubMed] Related Publications
To assess the impact of patient-related factors, including genetic variability in genes involved in the metabolism of chemotherapeutic agents, on breast cancer-specific survival (BCSS) and recurrence-free interval (RFI). We selected early breast cancer patients treated between 2000 and 2010 with 4-6 cycles of (neo-)adjuvant 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) or 3 cycles FEC followed by 3 cycles docetaxel. Tumor stage/subtype; febrile neutropenia and patient-related factors such as selected single nucleotide polymorphisms and baseline laboratory parameters were evaluated. Multivariable Cox regression was performed. Of 991 patients with a mean follow-up of 5.2 years, 152 (15.3 %) patients relapsed and 63 (6.4 %) patients died. Advanced stage and more aggressive subtype were associated with poorer BCSS and RFI in multivariable analysis (p < 0.0001). Associations with worse BCSS in multivariable analysis were: homozygous carriers of the rs1057910 variant C-allele in CYP2C9 (hazard ratio [HR] 30.4; 95 % confidence interval [CI] 6.1-151.5; p < 0.001) and higher white blood cell count (WBC) (HR 1.2; 95 % CI 1.0-1.3; p = 0.014). The GT genotype of the ABCB1 variant rs2032582 was associated with better BCSS (HR 0.5; 95 % CI 0.3-0.9, p = 0.021). Following associations with worse RFI were observed: higher WBC (HR 1.1; 95 % CI 1.0-1.2; p = 0.026), homozygous carriers of the rs1057910 variant C-allele in CYP2C9 (HR 10.9; 95 % CI 2.5-47.9; p = 0.002), CT genotype of the CYBA variant rs4673 (HR 1.8; 95 % CI 1.2-2.7; p = 0.006), and G-allele homozygosity for the UGT2B7 variant rs3924194 (HR 3.4; 95 % CI 1.2-9.7, p = 0.023). Patient-related factors including genetic variability and baseline white blood cell count, impacted on outcome in early breast cancer.

Sugishita M, Imai T, Kikumori T, et al.
Pharmacogenetic association between GSTP1 genetic polymorphism and febrile neutropenia in Japanese patients with early breast cancer.
Breast Cancer. 2016; 23(2):195-201 [PubMed] Related Publications
BACKGROUND: Genetic risk factors for febrile neutropenia (FN), the major adverse event of perioperative chemotherapy for early breast cancer, remain unclear.
METHODS: This study retrospectively explored pharmacogenetic associations of single nucleotide polymorphisms (SNPs) of the uridine glucuronosyltransferase 2B7 (UGT2B7, rs7668258), glutathione-S-transferase pi 1 (GSTP1, rs1695), and microcephalin 1 (MCPH1, rs2916733) genes with chemotherapy-related adverse events in 102 Japanese women who received epirubicin and cyclophosphamide as perioperative chemotherapy for early breast cancer.
RESULTS: The allele frequencies for all of the SNPs were in concordance with the Hap-Map data of Japanese individuals. Among the 24 patients who had FN at least once during all courses of chemotherapy, 23 had the A/A genotype, and 1 had the A/G genotype of the GSTP1 polymorphism (rs1695, P = 0.001); 23 of the 70 patients with the A/A genotype had FN, as compared with only 1 of the 32 patients with the A/G and G/G genotypes. The genotype distributions of the UGT2B7 and MCPH1 polymorphisms did not differ between the patients who had FN or grade 3/4 neutropenia and those who did not.
CONCLUSION: Among Japanese women who received epirubicin and cyclophosphamide as perioperative chemotherapy for early breast cancer, those with the A/A genotype of the GSTP1 polymorphism (rs1695) were more likely to have FN.

Hu DG, Rogers A, Mackenzie PI
Epirubicin upregulates UDP glucuronosyltransferase 2B7 expression in liver cancer cells via the p53 pathway.
Mol Pharmacol. 2014; 85(6):887-97 [PubMed] Related Publications
Anthracyclines are effective genotoxic anticancer drugs for treating human malignancies; however, their clinical use is limited by tumor resistance and severe cardiotoxicity (e.g., congestive heart failure). Epirubicin (EPI) is less cardiotoxic compared with other canonical anthracyclines (e.g., doxorubicin). This has been attributed to its unique glucuronidation detoxification pathway. EPI is primarily inactivated by UDP-glucuronosyltransferase 2B7 (UGT2B7) in the liver. Hence, the regulation of hepatic UGT2B7 expression is critical for EPI systemic clearance but remains poorly characterized. We show herein that EPI upregulates UGT2B7 expression in hepatocellular carcinoma (HCC) HepG2 and Huh7 cells. Our analyses of deleted and mutated UGT2B7 promoter constructs identified a p53 response element (p53RE) in the UGT2B7 promoter. EPI stimulated UGT2B7 promoter activity via this p53RE and enhanced in vivo p53 binding at this p53RE in HepG2 cells. Knockdown of p53 expression by small interfering RNA silencing technology significantly repressed the capacity of EPI to stimulate UGT2B7 transcription. Furthermore, the p53 activator nutlin-3α significantly enhanced UGT2B7 expression and recruited the p53 protein to the UGT2B7 p53RE in HepG2 cells. Collectively, our results demonstrated that EPI promotes its own detoxification via the p53-mediated pathway. This regulation may contribute to tumor resistance to EPI-containing HCC chemotherapy and may also provide a new explanation for the reduced cardiotoxicity of EPI compared with other anthracyclines. Our finding also suggests that upon exposure to genotoxic agents, detoxifying genes are activated by the p53-mediated pathway to clear genotoxic agents locally within the tumor site or even systemically through the liver.

Ménard V, Lévesque E, Chen S, et al.
Expression of UGT2B7 is driven by two mutually exclusive promoters and alternative splicing in human tissues: changes from prenatal life to adulthood and in kidney cancer.
Pharmacogenet Genomics. 2013; 23(12):684-96 [PubMed] Related Publications
OBJECTIVE: UDP-glucuronosyltransferase 2B7 (UGT2B7) plays a major detoxification role in commonly prescribed drugs and endogenous lipophilic molecules. Additional exons and multiple alternative splicing events (ASEs) at the UGT2B7 locus were recently discovered.
MATERIALS AND METHODS: Novel and classical ASEs were quantified in 27 human tissues, as well as in fetal and tumoral tissues. The activity of the alternative UGT2B7 promoters was studied in cell lines.
RESULTS: UGT2B7 expression is driven by an alternate promoter 1a associated with transcripts containing exon 1b, which is located ∼44 kb upstream of the known promoter 1 associated with transcripts containing exon 1 required for enzyme activity. The exon 1 was expressed most abundantly in the liver and gastrointestinal tract, whereas exon 1b was expressed predominantly in other extrahepatic tissues. Experimental evidence indicated endogenous translation that yields alternative UGT2B7s derived from the use of exon 1b are enzymatically inactive. Alternate 5' ASE predominates in fetal tissues (kidney, lung) and kidney tumor samples compared with normal adult kidney. These changes further correlate with reduced glucuronidation in neoplastic kidneys. This differential expression pattern was further confirmed using four liver and kidney cell lines and was consistent with the differential usage of alternate promoters in hepatic (promoter 1) and kidney cells (1a).
CONCLUSION: UGT2B7 is characterized by two mutually exclusive exons 1, both flanked by a unique 5' promoter region. Data also indicated a switch toward functional enzyme upon maturation in the kidney and reversal of this process in neoplastic cells, considerably modifying the glucuronidation potential across human tissues and cells.

Wang J, Scholtens D, Holko M, et al.
Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer.
Cancer Prev Res (Phila). 2013; 6(4):321-30 [PubMed] Related Publications
Risk biomarkers that are specific to estrogen receptor (ER) subtypes of breast cancer would aid the development and implementation of distinct prevention strategies. The contralateral unaffected breast of women with unilateral breast cancer (cases) is a good model for defining subtype-specific risk because women with ER-negative (ER-) index primaries are at high risk for subsequent ER-negative primary cancers. We conducted random fine needle aspiration of the unaffected breasts of cases. Samples from 30 subjects [15 ER-positive (ER+) and 15 ER- cases matched for age, race and menopausal status] were used for Illumina expression array analysis. Findings were confirmed using quantitative real-time PCR (qRT-PCR) in the same samples. A validation set consisting of 36 subjects (12 ER+, 12 ER- and 12 standard-risk healthy controls) was used to compare gene expression across groups. ER- case samples displayed significantly higher expression of 18 genes/transcripts, 8 of which were associated with lipid metabolism on gene ontology analysis (GO: 0006629). This pattern was confirmed by qRT-PCR in the same samples, and in the 24 cases of the validation set. When compared to the healthy controls in the validation set, significant overexpression of 4 genes (DHRS2, HMGCS2, HPGD and ACSL3) was observed in ER- cases, with significantly lower expression of UGT2B11 and APOD in ER+ cases, and decreased expression of UGT2B7 in both subtypes. These data suggest that differential expression of lipid metabolism genes may be involved in the risk for subtypes of breast cancer, and are potential biomarkers of ER-specific breast cancer risk.

Vulsteke C, Lambrechts D, Dieudonné A, et al.
Genetic variability in the multidrug resistance associated protein-1 (ABCC1/MRP1) predicts hematological toxicity in breast cancer patients receiving (neo-)adjuvant chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC).
Ann Oncol. 2013; 24(6):1513-25 [PubMed] Related Publications
BACKGROUND: To assess the impact of single-nucleotide polymorphisms (SNPs) on predefined severe adverse events in breast cancer (BC) patients receiving (neo-)adjuvant 5-fluorouracil (FU), epirubicin and cyclophosphamide (FEC) chemotherapy.
PATIENTS AND METHODS: Twenty-six SNPs in 16 genes of interest, including the drug transporter gene ABCC1/MRP1, were selected based on a literature survey. An additional 33 SNPs were selected in these genes, as well as in 12 other genes known to be involved in the metabolism of the studied chemotherapeutics. One thousand and twelve female patients treated between 2000 and 2010 with 3-6 cycles of (neo-)adjuvant FEC were genotyped for these SNPs using Sequenom MassARRAY. Severe adverse events were evaluated through an electronic chart review for febrile neutropenia (FN, primary end point), FN first cycle, prolonged grade 4 or deep (<100/µl) neutropenia, anemia grade 3-4, thrombocytopenia grade 3-4 and non-hematological grade 3-4 events (secondary end points).
RESULTS: Carriers of the rs4148350 variant T-allele in ABCC1/MRP1 were associated with FN relative to homozygous carriers of the G-allele [P = 0.0006; false discovery rate (FDR) = 0.026]. Strong correlations with secondary end points such as prolonged grade 4 neutropenia (P = 0.002, FDR = 0.046) were also observed. Additionally, two other SNPs in ABCC1/MRP1 (rs45511401 and rs246221) correlated with FN (P = 0.007 and P = 0.01, respectively; FDR = 0.16 and 0.19), as well as two SNPs in UGT2B7 and FGFR4 (P = 0.024 and P = 0.04; FDR = 0.28 and 0.38).
CONCLUSION: Genetic variability in ABCC1/MRP1 was associated with severe hematological toxicity of FEC.

Fladvad T, Klepstad P, Langaas M, et al.
Variability in UDP-glucuronosyltransferase genes and morphine metabolism: observations from a cross-sectional multicenter study in advanced cancer patients with pain.
Pharmacogenet Genomics. 2013; 23(3):117-26 [PubMed] Related Publications
OBJECTIVE: The objective of the present study was to determine whether genetic variability in UDP-glucuronosyltransferase (UGT) genes, together with clinical factors, contribute to variability in morphine glucuronide (M6G and M3G) to morphine serum concentration ratios in patients with advanced cancer receiving chronic morphine therapy.
MATERIALS AND METHODS: A total of 41 polymorphisms and predicted haplotypes in the UGT2B7, UGT1A1, and UGT1A8 genes were analyzed in 759 patients who were recruited from the European Pharmacogenetic Opioid Study and received chronic morphine therapy by the oral route (n=635) or parenterally (n=124). The administration groups were analyzed separately by multiple linear regression analyses.
RESULTS: Two haplotypes in UGT1A1/UGT1A8 were weak predictors of reduced M6G/morphine and M3G/morphine serum ratios after oral administration (false discovery rate-corrected P-values<0.1). No effect of genotype was seen in the parenteral group. Of the clinical variables (age, sex, BMI, renal function, Karnofsky performance status, and presence of liver metastases), renal function was the major contributor to variation in serum concentration ratios. Concomitant administration of paracetamol predicted significantly higher morphine metabolic ratios after oral administration of morphine (false discovery rate-corrected P-values<2.1E-12). The regression models explained about 35% of the total variability in the data.
CONCLUSION: Genetic variation in the UGT genes together with clinical factors influence morphine metabolic ratios in patients with advanced cancer disease and who are scheduled with oral morphine. This information may be included in future research that develop and test new classification systems for opioid treatment in patients with advanced cancer.

Chung CJ, Pu YS, Shiue HS, et al.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism-related enzymes gene polymorphisms, NNK metabolites levels and urothelial carcinoma.
Toxicol Lett. 2013; 216(1):16-22 [PubMed] Related Publications
Gene polymorphisms of the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism-related enzymes-cytochrome P450 (CYP) monooxygenase 2A13 (CYP2A13) and UDP-glucuronosyltransferases (UGT)-2B7 could contribute to the levels of NNK-related metabolites in urine, thereby increasing the susceptibility to urothelial carcinoma (UC). Therefore, our study aimed to evaluate the roles of two gene polymorphisms (CYP2A13 and UGT2B7) of NNK metabolism-related enzymes in the carcinogenesis of UC in Taiwan. A hospital-based pilot case-control study was conducted. There were 121 UC cases and 121 age- and sex-matched healthy participants recruited from March 2007 to April 2009. Urine samples were analyzed for NNK-related metabolites using the liquid chromatography-tandem mass spectrometry method. Genotyping was conducted using a polymerase chain reaction-restriction fragment length polymorphism technique. ANCOVA and multivariate logistic regression were applied for data analyses. In healthy controls, former smokers had significantly higher total NNAL and higher NNAL-Gluc than never smokers or current smokers. Subjects carrying the UGT2B7 268 His/Tyr or Tyr/Tyr genotype had significantly lower total NNAL than those carrying His/His genotype. However, no association was seen between gene polymorphisms of CYP2A13 and UGT2B7 and UC risk after adjustment for age and sex. Significant dose -response associations between total NNAL, free NNAL, the ratios of free NNAL/total NNAL and NNAL-Gluc/total NNAL and UC risk were observed. In the future, large-scale studies will be required to verify the association between the single nucleotide polymorphisms of NNK metabolism-related enzymes and UC risk.

Dellinger RW, Matundan HH, Ahmed AS, et al.
Anti-cancer drugs elicit re-expression of UDP-glucuronosyltransferases in melanoma cells.
PLoS One. 2012; 7(10):e47696 [PubMed] Free Access to Full Article Related Publications
The UDP-glucuronosyltransferase (UGT) family of enzymes plays a vital role in the detoxification of carcinogens as well as clearance of anti-cancer drugs. In humans, 19 UGT family members have been identified and are expressed in a tissue specific manner throughout the body. However, the UGTs have not been previously characterized in melanocytes or melanoma. In the present study, UGT2B7, UGT2B10, and UGT2B15 were identified as being normally expressed in human melanocytes. The same three UGT family members were also expressed in the primary melanoma cell line WM115. No UGT expression was detected in another primary melanoma cell line, WM3211, or in any metastatic melanoma cell line examined. These results suggest that UGT expression is lost during melanoma progression. Treatment of WM3211 or metastatic melanoma cell lines with anti-cancer agents (including vemurafenib) induced expression of UGT2B7, UGT2B10 and UGT2B15 demonstrating that melanoma cells retain the ability to re-express these same three UGTs. The corresponding increase in glucuronidation activity in melanoma cells following anti-cancer treatment was also observed. Furthermore, knockdown of UGT2B7 in WM115 cells sensitized these cells to treatment by adriamycin and epirubicin indicating that UGT2B7 is involved in resistance to these drugs. However, knockdown of UGT2B7 had no effect on temozolomide toxicity. Taken together, these results clearly demonstrate a role for UGTs in melanoma etiology. Since the UGTs are drug metabolism enzymes, we propose that re-expression of the UGTs constitutes a previously unsuspected mechanism for intratumoral drug resistance in melanoma.

Grant DJ, Hoyo C, Oliver SD, et al.
Association of uridine diphosphate-glucuronosyltransferase 2B gene variants with serum glucuronide levels and prostate cancer risk.
Genet Test Mol Biomarkers. 2013; 17(1):3-9 [PubMed] Free Access to Full Article Related Publications
AIMS: Uridine diphosphate-glucuronosyltransferase 2B (UGT2B) enzymes conjugate testosterone metabolites to enable their excretion in humans. The functional significance of the UGT2B genetic variants has never been described in humans. We evaluated UGT2B variants in relation to plasma androstane-3α,17β-diol-glucuronide (AAG) levels and the prostate cancer risk.
RESULTS: AAG levels were measured in sera from 150 controls and compared to the polymorphisms of UGT2B17, UGT2B15, and UGT2B7. Genomic DNA from controls (301) and cases (148) was genotyped for the polymorphisms, and odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated using unconditional logistic regression analyses. Having two copies of UGT2B17 was associated with higher AAG levels in controls among Whites (p=0.02), but not Blacks (p=0.82). Logistic regression models adjusting for age and race revealed that homozygosity for the G allele of the UGT2B15(D85Y) polymorphism was directly associated with the prostate cancer risk (OR=2.70, 95% CI=1.28, 5.55).
CONCLUSIONS: While the small sample size limits inference, our findings suggest that an association between the UGT2B17 copy number variant (CNV) and serum AAG levels in Whites, but unexpectedly not in Blacks. This novel observation suggests that genetic determinants of AAG levels in Blacks are unrelated to the UGT2B17 CNV. This study replicates the results that show an association of UGT215(D85Y) with an increased prostate cancer risk.

Cui X, Lu X, Hiura M, et al.
Association of genotypes of carcinogen-metabolizing enzymes and smoking status with bladder cancer in a Japanese population.
Environ Health Prev Med. 2013; 18(2):136-42 [PubMed] Free Access to Full Article Related Publications
OBJECTIVES: Arylamines are considered to be the primary causative agent of bladder cancer in tobacco smokers. To test the hypothesis that variation in the genes that metabolize tobacco carcinogens contribute to bladder cancer, we examined the effects of single nucleotide polymorphisms in the genes of four key enzymes: cytochrome P450 1A2, N-acetyltransferase (NAT) 2, sulfotransferase 1A1, and UDP-glucuronosyltransferase (UGT) 2B7.
METHODS: In this study, 282 Japanese patients with transitional cell carcinoma, the most common bladder cancer, and 257 healthy controls were surveyed and compared for frequencies of the genotypes of the four enzymes. Genotypes were determined using PCR-restriction fragment length polymorphism and TaqMan assays. Smoking information was collected by personal interview. Logistic regression analysis and the chi-square test were employed as statistical methods.
RESULTS: The NAT2 slow genotype was significantly associated with the risk of bladder cancer [odds ratio (OR) 3.41, 95 % confidence interval (95 % CI) 1.68-6.87; p < 0.05). The NAT2 slow genotype also significantly increased the risk of bladder cancer in heavy smokers (OR 8.57, 95 % CI 1.82-40.25; p < 0.05). Among the different combinations of the four enzyme genotypes, the highest OR (4.20; 95 % CI 1.34-13.14; p < 0.05) was obtained with the NAT2 slow genotype when present in combination with the UGT2B7 *2/*2 or *1/*2 genotype.
CONCLUSIONS: Our results suggest that individuals with different genotypes for the enzymes involved in metabolizing carcinogenic arylamines have a different risk of developing bladder cancer. In particularly, the combination of the NAT2 slow genotype with UGT2B7 *1/*2 or *2/*2 genotype is a high risk factor for bladder cancer.

Lacko M, Voogd AC, Roelofs HM, et al.
Combined effect of genetic polymorphisms in phase I and II biotransformation enzymes on head and neck cancer risk.
Head Neck. 2013; 35(6):858-67 [PubMed] Related Publications
BACKGROUND: Combinations of genetic polymorphisms in biotransformation enzymes might modify the individual risk for head and neck cancer.
METHODS: Blood from 432 patients with head and neck cancer and 437 controls was investigated for genetic polymorphisms in 9 different phase I and II biotransformation enzymes. Analysis of the risk-modifying effect was performed according to predicted enzyme activities, based on genetic polymorphisms in the corresponding genes.
RESULTS: Combination of polymorphisms in COX-2 or EPHX1 with high activity polymorphisms in UGT1A1, UGT1A6, or UGT1A7 showed a risk-modulating effect in head and neck carcinogenesis, especially among heavy smokers and patients with laryngeal cancer. However, no additional effect for the combination of these polymorphisms was discovered when compared to the impact of polymorphism in UGT1A1, UGT1A6, and UGT1A7 individually.
CONCLUSION: Predicted high activity polymorphisms in the phase II enzymes UGT1A1, UGT1A6, and UGT1A7 are associated with an increased risk of head and neck cancer.

Rae JM, Drury S, Hayes DF, et al.
CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients.
J Natl Cancer Inst. 2012; 104(6):452-60 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Adjuvant tamoxifen therapy substantially decreases the risk of recurrence and mortality in women with hormone (estrogen and/or progesterone) receptor-positive breast cancer. Previous studies have suggested that metabolic conversion of tamoxifen to endoxifen by cytochrome P450 2D6 (CYP2D6) is required for patient benefit from tamoxifen therapy.
METHODS: Tumor specimens from a subset of postmenopausal patients with hormone receptor-positive early-stage (stages I, II, and IIIA) breast cancer, who were enrolled in the randomized double-blind Arimidex, Tamoxifen, Alone or in Combination (ATAC) clinical trial, were genotyped for variants in CYP2D6 (N = 1203 patients: anastrozole [trade name: Arimidex] group, n = 615 patients; tamoxifen group, n = 588 patients) and UDP-glucuronosyltransferase-2B7 (UGT2B7), whose gene product inactivates endoxifen (N = 1209 patients; anastrozole group, n = 606 patients; tamoxifen group, n = 603 patients). Genotyping was performed using polymerase chain reaction-based TaqMan assays. Based on the genotypes for CYP2D6, patients were classified as poor metabolizer (PM), intermediate metabolizer (IM), or extensive metabolizer (EM) phenotypes. We evaluated the association of CYP2D6 and UGT2B7 genotype with distant recurrence (primary endpoint) and any recurrence (secondary endpoint) by estimating the hazard ratios (HRs) and corresponding 95% confidence intervals (CIs) using Cox proportional hazards models. All statistical tests were two-sided.
RESULTS: After a median follow-up of 10 years, no statistically significant associations were observed between CYP2D6 genotype and recurrence in tamoxifen-treated patients (PM vs EM: HR for distant recurrence = 1.25, 95% CI = 0.55 to 3.15, P = .64; HR for any recurrence = 0.99, 95% CI = 0.48 to 2.08, P = .99). A near-null association was observed between UGT2B7 genotype and recurrence in tamoxifen-treated patients. No associations were observed between CYP2D6 and UGT2B7 genotypes and recurrence in anastrozole-treated patients.
CONCLUSION: The results do not support the hypothesis that CYP2D6 genotype predicts clinical benefit of adjuvant tamoxifen treatment among postmenopausal breast cancer patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. UGT2B7, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999