Gene Summary

Gene:ACTB; actin beta
Aliases: BRWS1, PS1TP5BP1
Summary:This gene encodes one of six different actin proteins. Actins are highly conserved proteins that are involved in cell motility, structure, and integrity. This actin is a major constituent of the contractile apparatus and one of the two nonmuscle cytoskeletal actins. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:actin, cytoplasmic 1
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Messenger RNA
  • Bladder Cancer
  • Sensitivity and Specificity
  • Young Adult
  • Glyceraldehyde-3-Phosphate Dehydrogenases
  • Proteome
  • Thymidine Phosphorylase
  • Hepatocellular Carcinoma
  • Gene Expression Profiling
  • Tetraspanins
  • Ribosomal Proteins
  • Cancer DNA
  • Zinc Finger Protein GLI1
  • Algorithms
  • Gene Expression
  • Oligonucleotide Array Sequence Analysis
  • Lung Cancer
  • Paraffin Embedding
  • Follicular Adenocarcinoma
  • DNA
  • Polymerase Chain Reaction
  • Liver Cancer
  • Cancer RNA
  • Reference Standards
  • Genes, Essential
  • Staging
  • Colorectal Cancer
  • Breast Cancer
  • DNA-Binding Proteins
  • Kidney Cancer
  • DNA Methylation
  • Chromosome 7
  • Immunohistochemistry
  • Biomarkers, Tumor
  • Transition Temperature
  • Ovarian Cancer
  • Actins
  • Cancer Gene Expression Regulation
  • RT-PCR
  • RNA
  • RNA-Binding Proteins
  • Case-Control Studies
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ACTB (cancer-related)

Sim EU, Chan SL, Ng KL, et al.
Human Ribosomal Proteins RPeL27, RPeL43, and RPeL41 Are Upregulated in Nasopharyngeal Carcinoma Cell Lines.
Dis Markers. 2016; 2016:5179594 [PubMed] Free Access to Full Article Related Publications
Apart from their canonical role in ribosome biogenesis, there is increasing evidence of ribosomal protein genes' involvement in various cancers. A previous study by us revealed significant differential expression of three ribosomal protein genes (RPeL27, RPeL41, and RPeL43) between cell lines derived from tumor and normal nasopharyngeal epithelium. However, the results therein were based on a semiquantitative assay, thus preliminary in nature. Herein, we provide findings of a deeper analysis of these three genes in the context to nasopharyngeal carcinoma (NPC) tumorigenesis. Their expression patterns were analyzed in a more quantitative manner at transcript level. Their protein expression levels were also investigated. We showed results that are contrary to previous report. Rather than downregulation, these genes were significantly overexpressed in NPC cell lines compared to normal control at both transcript and protein levels. Nevertheless, their association with NPC has been established. Immunoprecipitation pulldown assays indicate the plausible interaction of either RPeL27 or RPeL43 with POTEE/TUBA1A and ACTB/ACTBL2 complexes. In addition, RPeL43 is shown to bind with MRAS and EIF2S1 proteins in a NPC cell line (HK1). Our findings support RPeL27, RPeL41, and RPeL43 as potential markers of NPC and provide insights into the interaction targets of RPeL27 and RPeL43 proteins.

Riwaldt S, Bauer J, Wehland M, et al.
Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach.
Int J Mol Sci. 2016; 17(4):528 [PubMed] Free Access to Full Article Related Publications
Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line) after a 24 h-exposure on the Random Positioning Machine (RPM) and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis) and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

Ichikawa W, Terashima M, Ochiai A, et al.
Impact of insulin-like growth factor-1 receptor and amphiregulin expression on survival in patients with stage II/III gastric cancer enrolled in the Adjuvant Chemotherapy Trial of S-1 for Gastric Cancer.
Gastric Cancer. 2017; 20(2):263-273 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Exploratory biomarker analysis was conducted to identify factors related to the outcomes of patients with stage II/III gastric cancer using data from the Adjuvant Chemotherapy Trial of S-1 for Gastric Cancer, which was a randomized controlled study comparing the administration of an orally active combination of tegafur, gimeracil, and oteracil with surgery alone.
METHODS: Formalin-fixed paraffin-embedded surgical specimens from 829 patients were retrospectively examined, and 63 genes were analyzed by quantitative real-time RT-PCR after TaqMan assay-based pre-amplification. Gene expression was normalized to the geometric mean of GAPDH, ACTB, and RPLP0 as reference genes, and categorized into low and high values based on the median. The impact of gene expression on survival was analyzed using 5-year survival data. The Benjamini and Hochberg procedure was used to control the false discovery rate.
RESULTS: IGF1R and AREG were most strongly correlated with overall survival, which was significantly worse in high IGF1R patients than low IGF1R patients, but better in high AREG patients than low AREG patients. The hazard ratio for death in the analysis of overall survival (S-1 vs. surgery alone) was reduced in the high IGF1R group compared with the low IGF1R group and in the low AREG group compared with the high AREG group. There were no significant interaction effects.
CONCLUSION: IGF1R gene expression was associated with poor outcomes after curative resection of stage II/III gastric cancer, whereas AREG gene expression was associated with good outcomes. No significant interaction effect on survival was evident between S-1 treatment and gene expression.

Stoskus M, Vaitkeviciene G, Eidukaite A, Griskevicius L
ETV6/RUNX1 transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia.
Blood Cells Mol Dis. 2016; 57:30-4 [PubMed] Related Publications
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) is overexpressed in a subset of cancers and promotes cell cycle, migration and aggressive phenotype by regulating post-transcriptionally a number of key mRNAs (e. g, ACTB, CD44, CTNNB1, KRAS, MAPK4, MYC, PTEN and others). IGF2BP1 is also overexpressed in t(12;21)(p13;q22)-positive acute lymphoblastic leukemia (ALL), but the biological significance of this phenomenon has not been addressed so far. We have identified leukemia fusion gene ETV6/RUNX1 mRNA to be highly enriched in immunoprecipitated fraction of endogenous IGF2BP1 from a model cell line REH and t(12;21)(p13;q22)-positive ALL samples. Furthermore, downregulation of IGF2BP1 by two-fold has resulted in a corresponding decrease of ETV6/RUNX1 mRNA validating this transcript as a target of IGF2BP1 protein in t(12;21)(p13;q22)-positive ALL. These data infer that IGF2BP1 is a potent regulator of ETV6/RUNX1 mRNA stability and potentially link this evolutionary-highly conserved protein to cell transformation events in ETV6/RUNX1-mediated leukemogenesis of t(12;21)(p13;q22)-positive ALL.

Bronkhorst AJ, Aucamp J, Wentzel JF, Pretorius PJ
Reference gene selection for in vitro cell-free DNA analysis and gene expression profiling.
Clin Biochem. 2016; 49(7-8):606-8 [PubMed] Related Publications
OBJECTIVES: (i) To optimize cell-free DNA (cfDNA) and mRNA quantification using eight housekeeping genes (HKGs), (ii) to determine if there is a difference in the occurrence of HKGs in the cfDNA and mRNA of normal cells and cancer cells, and (iii) to investigate whether there is some selectivity involved in the release of cfDNA.
DESIGN AND METHODS: cfDNA was isolated directly from the growth medium of 3 cultured cancer cell lines and one non-malignant, primary cell line. At the same time interval, mRNA was isolated from these cells and cDNA was synthesized. CfDNA and cDNA were then amplified with real-time PCR utilizing eight different HKGs.
RESULTS: For all cell lines tested, Beta-actin (ACTB) is the most appropriate HKG to use as a control for cfDNA and mRNA quantification. There was no clear difference in the occurrence of HKGs between cancer cells and healthy cells. Lastly, there is a consistent and distinct difference between the mRNA expression and cfDNA of all cell lines.
CONCLUSIONS: This study reveals a new candidate HKG for a robust control in cfDNA analysis and gene expression profiling, and should be considered for optimal analysis. Furthermore, results indicate that cfDNA is selectively released from cells into culture medium.

Kopp S, Warnke E, Wehland M, et al.
Mechanisms of three-dimensional growth of thyroid cells during long-term simulated microgravity.
Sci Rep. 2015; 5:16691 [PubMed] Free Access to Full Article Related Publications
Three-dimensional multicellular spheroids (MCS) of human cells are important in cancer research. We investigated possible mechanisms of MCS formation of thyroid cells. Both, normal Nthy-ori 3-1 thyroid cells and the poorly differentiated follicular thyroid cancer cells FTC-133 formed MCS within 7 and 14 days of culturing on a Random Positioning Machine (RPM), while a part of the cells continued to grow adherently in each culture. The FTC-133 cancer cells formed larger and numerous MCS than the normal cells. In order to explain the different behaviour, we analyzed the gene expression of IL6, IL7, IL8, IL17, OPN, NGAL, VEGFA and enzymes associated cytoskeletal or membrane proteins (ACTB, TUBB, PFN1, CPNE1, TGM2, CD44, FLT1, FLK1, PKB, PKC, ERK1/2, Casp9, Col1A1) as well as the amount of secreted proteins (IL-6, IL-7, IL-8, IL-17, OPN, NGAL, VEGFA). Several of these components changed during RPM-exposure in each cell line. Striking differences between normal and malignant cells were observed in regards to the expression of genes of NGAL, VEGFA, OPN, IL6 and IL17 and to the secretion of VEGFA, IL-17, and IL-6. These results suggest several gravi-sensitive growth or angiogenesis factors being involved in 3D formation of thyroid cells cultured under simulated microgravity.

Coelho FF, Guimarães FL, Cabral WL, et al.
Expression of PCA3 and PSA genes as a biomarker for differential diagnosis of nodular hyperplasia and prostate cancer.
Genet Mol Res. 2015; 14(4):13519-31 [PubMed] Related Publications
We evaluated the expression of the PCA3 gene in urine from patients with nodular hyperplasia/benign prostatic hyperplasia (PNH) or adenocarcinoma type prostate cancer (PCa).The study included 59 men: 22 with PCa, 26 with PNH, and 11 with no alterations (controls). Patients' urine was collected following prostatic massage and quantified by quantitative real-time PCR for prostate cancer antigen 3 gene (PCA3) and prostate-specific antigen gene (PSA) expression with the ACTB gene for normalization. PCA3 gene expression was detected in 16 patients with PCa and 4 with PNH; in the control group, there was no expression of the gene. No significant difference was observed in the mean levels of PCA3 and PSA expression, the PCA3/PSA ratio, and the total PSA levels when the groups of patients with PCa and PNH were compared. The area under the receiver operating characteristic (ROC) curve was 0.625, 0.596, 0.559, and 0.503 for PCA3 and PSA expression, the PCA3/PSA ratio, and total PSA levels, respectively. The sensitivity and specificity of the PCA3 test were 73 and 85%, respectively. Considering the estimated cutoff values (0.2219 and 0.5007 for PCA3 and PCA3/PSA, respectively), we observed a significant difference between the frequency of individuals with values above in the PCa group compared with the PNH group (P < 0.001). We conclude that the qualitative PCA3 test could be applied to initial screening for differentiation between individuals with PCa or PNH and those without prostate changes.

Sharan RN, Vaiphei ST, Nongrum S, et al.
Consensus reference gene(s) for gene expression studies in human cancers: end of the tunnel visible?
Cell Oncol (Dordr). 2015; 38(6):419-31 [PubMed] Related Publications
BACKGROUND: Gene expression studies are increasingly used to provide valuable information on the diagnosis and prognosis of human cancers. Also, for in vitro and in vivo experimental cancer models gene expression studies are widely used. The complex algorithms of differential gene expression analyses require normalization of data against a reference or normalizer gene, or a set of such genes. For this purpose, mostly invariant housekeeping genes are used. Unfortunately, however, there are no consensus (housekeeping) genes that serve as reference or normalizer for different human cancers. In fact, scientists have employed a wide range of reference genes across different types of cancer for normalization of gene expression data. As a consequence, comparisons of these data and/or data harmonizations are difficult to perform and challenging. In addition, an inadequate choice for a reference gene may obscure genuine changes and/or result in erroneous gene expression data comparisons.
METHODS: In our effort to highlight the importance of selecting the most appropriate reference gene(s), we have screened the literature for gene expression studies published since the turn of the century on thirteen of the most prevalent human cancers worldwide.
CONCLUSIONS: Based on the analysis of the data at hand, we firstly recommend that in each study the suitability of candidate reference gene(s) should carefully be evaluated in order to yield reliable differential gene expression data. Secondly, we recommend that a combination of PPIA and either GAPDH, ACTB, HPRT and TBP, or appropriate combinations of two or three of these genes, should be employed in future studies, to ensure that results from different studies on different human cancers can be harmonized. This approach will ultimately increase the depth of our understanding of gene expression signatures across human cancers.

Proença MA, de Oliveira JG, Cadamuro AC, et al.
TLR2 and TLR4 polymorphisms influence mRNA and protein expression in colorectal cancer.
World J Gastroenterol. 2015; 21(25):7730-41 [PubMed] Free Access to Full Article Related Publications
AIM: To evaluate the effect of promoter region polymorphisms of toll-like receptor (TLR)2-196 to -174del and TLR4-1607T/C (rs10759932) on mRNA and protein expression in tumor tissue and of TLR4+896A/G (rs4986790) on colorectal cancer (CRC) risk.
METHODS: The TLR2-196 to -174del polymorphism was investigated using allele-specific polymerase chain reaction (PCR) and the TLR4-1607T/C and TLR4+896A/G by PCR-restriction fragment length polymorphism (RFLP). We genotyped 434 DNA samples from 194 CRC patients and 240 healthy individuals. The mRNA relative quantification (RQ) was performed in 40 tumor tissue samples by quantitative PCR TaqMan assay, using specific probes for TLR2 and TLR4 genes, and ACTB and GAPDH reference genes were used as endogenous controls. Protein expression was analyzed by immunohistochemistry with specific primary antibodies.
RESULTS: No association was found for TLR4-1607T/C and TLR4+896A/G by three statistical models (log-additive, dominant and recessive). However, based on dominant and log-additive models, the polymorphic variant TLR2-196 to -174del was associated with increased CRC risk [dominant: odds ratio (OR) = 1.72, 95%CI: 1.03-2.89; P = 0.038 and log-additive: OR =1.59, 95%CI: 1.02-2.48; P = 0.039]. TLR2 mRNA expression was increased in tumor tissue (RQ = 2.36) when compared to adjacent normal tissue (RQ = 1; P < 0.0001), whereas the TLR4 mRNA showed a basal expression (RQ = 0.74 vs RQ = 1, P = 0.452). Immunohistochemistry analysis of TLR2 and TLR4 protein expression was concordant with the findings of mRNA expression. In addition, the TLR2-196 to -174del variant carriers showed mRNA relative expression 2.19 times higher than wild-genotype carriers. The TLR2 protein expression was also higher for the TLR2-196 to -174del variant carriers [117 ± 10 arbitrary unit (a.u.) vs 95 ± 4 a.u., P = 0.03]. However, for the TLR4 -1607T/C polymorphism no significant difference was found for both mRNA (P = 0.56) and protein expression (P = 0.26).
CONCLUSION: Our findings suggest that TLR2-196 to -174del polymorphism increases TLR2 mRNA expression and is associated with higher CRC risk, indicating an important role in CRC genetic susceptibility.

Iwafuchi H, Tsuzuki T, Ito R, et al.
Generalized infantile myofibromatosis with a monophasic primitive pattern.
Pathol Int. 2015; 65(8):432-7 [PubMed] Related Publications
Infantile myofibromatosis (IM) is a rare disorder present at birth or in early infancy with a biphasic histological pattern. We present a neonatal-onset case of generalized IM with visceral (central nervous system, heart, lungs, liver, spleen, small intestine, kidneys and bones) and placental involvement, showing a monophasic histological pattern through the lesions during the course of disease. Histologically, the tumor was composed of a solid proliferation of cytologically uniform, 'primitive' mesenchymal cells associated with a hemangiopericytoma-like vascular pattern. Immunohistochemical analysis and ultrastructural study revealed that the tumor cells exhibited primitive features without mature myofibroblastic differentiation. Neither ETV6-NTRK3 nor ACTB-GLI fusion gene was identified. The patient died of cerebral hemorrhage and respiratory failure at four months of age despite intensive therapy. Generalized IM characterized by monophasic primitive pattern could be related to poor clinical outcome.

Han KQ, He XQ, Ma MY, et al.
Inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma.
World J Gastroenterol. 2015; 21(16):4864-74 [PubMed] Free Access to Full Article Related Publications
AIM: To study the inflammatory microenvironment and expression of chemokines in hepatocellular carcinoma (HCC) in nude mice.
METHODS: CBRH-7919 HCC cells were injected into the subcutaneous region of nude mice. Beginning two weeks after the challenge, tumor growth was measured every week for six weeks. The stromal microenvironment and inflammatory cell infiltration was assessed by immunohistochemistry in paired tumor and adjacent peritumoral samples, and macrophage phenotype was assessed using double-stain immunohistochemistry incorporating expression of an intracellular enzyme. A chemokine PCR array, comprised of 98 genes, was used to screen differential gene expressions, which were validated by Western blotting. Additionally, expression of identified chemokines was knocked-down by RNA interference, and the effect on tumor growth was assessed.
RESULTS: Inflammatory cell infiltrates are a key feature of adjacent peritumoral tissues with increased macrophage, neutrophil, and T cell (specifically helper and activated subsets) infiltration. Macrophages within adjacent peritumoral tissues express inducible nitric oxide synthase, suggestive of a proinflammatory phenotype. Fifty-one genes were identified in tumor tissues during the progression period, including 50 that were overexpressed (including CXCL1, CXCL2 and CXCL3) and three that were underexpressed (CXCR1, Ifg and Actb). RNA interference of CXCL1 in the CBRH-7919 cells decreased the growth of tumors in nude mice and inhibited expression of CXCL2, CXCL3 and interleukin-1β protein.
CONCLUSION: These findings suggest that CXCL1 plays a critical role in tumor growth and may serve as a potential molecular target for use in HCC therapy.

Potashnikova D, Gladkikh A, Vorobjev IA
Selection of superior reference genes' combination for quantitative real-time PCR in B-cell lymphomas.
Ann Clin Lab Sci. 2015; 45(1):64-72 [PubMed] Related Publications
Normalization of real-time quantitative PCR data to appropriate reference genes is crucial to accurately interpret results. Many genes commonly used as reference standards do not perform as expected, depending on cell type and experimental design. In our previous work, we addressed the issue of suitable reference genes for lymphoid tissue and successfully applied the normalization factor-based approach to discriminate lymphoid malignancies according to their cyclin D1 mRNA level. Here, we addressed the problem of reference gene selection and sufficient number on an enlarged sample set with seven candidate genes. The experimental set included 165 samples of spleens, lymph nodes, and peripheral blood mononuclear cells from patients with different types of non-Hodgkin lymphomas along with non-neoplastic lymphoid specimens. For the first time, we compared all major stability ranking algorithms of Visual Basic for Applications (VBA) applets geNorm, BestKeeper, and NormFinder and tested candidate reference genes on a large and heterogeneous set of fresh clinical lymphoid samples. We concluded that a normalization-based approach using three reference genes (YWHAZ, UBC and ACTB) allows for robust reduction of the variance in real-time PCR results and that the further addition of reference genes does not improve data normalization. This creates a clinically applicable tool for PCR-based lymphoma diagnostics.

Liu LL, Zhao H, Ma TF, et al.
Identification of valid reference genes for the normalization of RT-qPCR expression studies in human breast cancer cell lines treated with and without transient transfection.
PLoS One. 2015; 10(1):e0117058 [PubMed] Free Access to Full Article Related Publications
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a powerful technique for examining gene expression changes during tumorigenesis. Target gene expression is generally normalized by a stably expressed endogenous reference gene; however, reference gene expression may differ among tissues under various circumstances. Because no valid reference genes have been documented for human breast cancer cell lines containing different cancer subtypes treated with transient transfection, we identified appropriate and reliable reference genes from thirteen candidates in a panel of 10 normal and cancerous human breast cell lines under experimental conditions with/without transfection treatments with two transfection reagents. Reference gene expression stability was calculated using four algorithms (geNorm, NormFinder, BestKeeper and comparative delta Ct), and the recommended comprehensive ranking was provided using geometric means of the ranking values using the RefFinder tool. GeNorm analysis revealed that two reference genes should be sufficient for all cases in this study. A stability analysis suggests that 18S rRNA-ACTB is the best reference gene combination across all cell lines; ACTB-GAPDH is best for basal breast cancer cell lines; and HSPCB-ACTB is best for ER+ breast cancer cells. After transfection, the stability ranking of the reference gene fluctuated, especially with Lipofectamine 2000 transfection reagent in two subtypes of basal and ER+ breast cell lines. Comparisons of relative target gene (HER2) expression revealed different expressional patterns depending on the reference genes used for normalization. We suggest that identifying the most stable and suitable reference genes is critical for studying specific cell lines under certain circumstances.

Zhang XY, Li M, Sun K, et al.
Decreased expression of GRIM-19 by DNA hypermethylation promotes aerobic glycolysis and cell proliferation in head and neck squamous cell carcinoma.
Oncotarget. 2015; 6(1):101-15 [PubMed] Free Access to Full Article Related Publications
To identify novel tumor suppressor genes that are down-regulated by promoter hypermethylation in head and neck squamous cell carcinoma (HNSCC), genome-wide methylation profiling was performed using a methylated DNA immunoprecipitation (MeDIP) array in HNSCC and normal mucosa tissue samples. Promoter hypermethylation of the candidate gene, gene associated with retinoid-interferon induced mortality-19 (GRIM-19), was confirmed in HNSCC cell lines. Multivariate regression analysis determined that GRIM-19 hypermethylation was an independent significant factor for HNSCC diagnosis (OR:125.562; P < 0.001). HNSCC patients with lower ratio of GRIM-19/ACTB hypermethylation had increased overall and disease free survival. Furthermore, the optimal cutoff provided 90% sensitivity and 77% specificity of GRIM-19 hypermethylation as a diagnostic marker for HNSCC. Ectopic expression of GRIM-19 in HNSCC cells led to increased oxygen consumption, reduced glycolysis and decreased cell proliferation. HNSCC cells ectopically expressing GRIM-19 displayed increased p53 activity as well as decreased Stat3 and HIF-1α activities. Moreover, GRIM-19 knockdown not only resulted in decreased oxygen consumption and increased aerobic glycolysis but also promoted cell proliferation and tumorigenic capacity in HNSCC cells. Our data indicate that decreased GRIM-19 expression due to promoter hypermethylation may be important in head and neck carcinogenesis by promoting cell proliferation and regulating metabolic activity.

Ye X, Feng G, Jiao N, et al.
Methylation of DLEC1 promoter is a predictor for recurrence in Chinese patients with gastric cancer.
Dis Markers. 2014; 2014:804023 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To investigate promoter methylation in the deleted in lung and esophageal cancer 1 (DLEC1) gene in Chinese patients with gastric cancer.
METHODS: A total of 227 patients with gastric cancer were enrolled. The methylations of the promoter regions of DLEC1 and ACTB were determined using quantitative methylation-specific PCR. The DLEC1 methylation was compared to the clinicopathological variables of gastric cancer.
RESULTS: DLEC1 methylation was not associated with the clinicopathological variables of gastric cancer. Patients with DLEC1-hypermethylated gastric cancer had significantly higher recurrence rate than those with DLEC1-hypomethylated gastric cancer (P = 0.025; hazard ratio = 2.43).
CONCLUSIONS: Methylation of DELC1 promoter may be a valuable predictor for recurrence in Chinese patients with gastric cancer.

Ali H, Du Z, Li X, et al.
Identification of suitable reference genes for gene expression studies using quantitative polymerase chain reaction in lung cancer in vitro.
Mol Med Rep. 2015; 11(5):3767-73 [PubMed] Related Publications
The present study aimed to examine 10 housekeeping genes (HKGs), including 18s ribosomal RNA (18S), glyceraldehyde‑3‑phosphate dehydrogenase (GAPDH), ribosomal protein large P0 (RPLP0), β‑actin (ACTB), peptidylprolyl isomerase A (PPIA), phosphoglycerate kinase‑1 (PGK1), β‑2‑microglobulin (B2M), ribosomal protein LI3a (RPL13A), hypoxanthine phosphoribosyl transferase‑1 (HPRT1) and TATA box binding protein (TBP) in order to identify the most stable and suitable reference genes for use in expression studies in non‑small cell lung cancer. The mRNA expression encoding the panel of the 10 HKGs was determined using reverse transcription‑quantitative PCR (RT‑qPCR) in human lung cancer cell lines. Three software programs, BestKeeper, NormFinder and geNorm, were used to ascertain the most suitable reference genes to normalize the RNA input. The present study examined three lung cancer cell lines (A549, NCI‑H446 and NCI‑H460). The analysis of the experimental data using BestKeeper software revealed that all 10 HKGs were stable, with GADPH, followed by 18S being the most stable genes and PPIA and HPRT1 being the least stable genes. The NormFinder software results demonstrated that PPIA followed by ACTB were the most stable and B2M and RPLP0 were the least stable. The geNorm software results revealed that ACTB and PGK1, followed by PPIA were the most stable genes and B2M and RPLP0 were identified as the least stable genes. Due to discrepancies in the ranking orders of the reference genes obtained by different analyzing software programs, it was not possible to determine a single universal reference gene. The suitability of selected reference genes requires unconditional validation prior to each study. Based on the three analyzing programs, ACTB, PPIA and PGK1 were the most stable reference genes in lung cancer cell lines.

Akin D, Wang SK, Habibzadegah-Tari P, et al.
A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors.
Autophagy. 2014; 10(11):2021-35 [PubMed] Free Access to Full Article Related Publications
Autophagy has been implicated in the progression and chemoresistance of various cancers. In this study, we have shown that osteosarcoma Saos-2 cells lacking ATG4B, a cysteine proteinase that activates LC3B, are defective in autophagy and fail to form tumors in mouse models. By combining in silico docking with in vitro and cell-based assays, we identified small compounds that suppressed starvation-induced protein degradation, LC3B lipidation, and formation of autophagic vacuoles. NSC185058 effectively inhibited ATG4B activity in vitro and in cells while having no effect on MTOR and PtdIns3K activities. In addition, this ATG4B antagonist had a negative impact on the development of Saos-2 osteosarcoma tumors in vivo. We concluded that tumor suppression was due to a reduction in ATG4B activity, since we found autophagy suppressed within treated tumors and the compound had no effects on oncogenic protein kinases. Our findings demonstrate that ATG4B is a suitable anti-autophagy target and a promising therapeutic target to treat osteosarcoma.

Romani C, Calza S, Todeschini P, et al.
Identification of optimal reference genes for gene expression normalization in a wide cohort of endometrioid endometrial carcinoma tissues.
PLoS One. 2014; 9(12):e113781 [PubMed] Free Access to Full Article Related Publications
Accurate normalization is a primary component of a reliable gene expression analysis based on qRT-PCR technique. While the use of one or more reference genes as internal controls is commonly accepted as the most appropriate normalization strategy, many qPCR-based published studies still contain data poorly normalized and reference genes arbitrarily chosen irrespective of the particular tissue and the specific experimental design. To date, no validated reference genes have been identified for endometrial cancer tissues. In this study, 10 normalization genes (GAPDH, B2M, ACTB, POLR2A, UBC, PPIA, HPRT1, GUSB, TBP, H3F3A) belonging to different functional and abundance classes in various tissues and used in different studies, were analyzed to determine their applicability. In total, 100 endometrioid endometrial cancer samples, which were carefully balanced according to their tumor grade, and 29 normal endometrial tissues were examined using SYBR Green Real-Time RT-PCR. The expression stability of candidate reference genes was determined and compared by means of geNorm and NormFinder softwares. Both algorithms were in agreement in identifying GAPDH, H3F3A, PPIA, and HPRT1 as the most stably expressed genes, only differing in their ranking order. Analysis performed on the expression levels of all candidate genes confirm HPRT1 and PPIA as the most stably expressed in the study groups regardless of sample type, to be used alone or better in combination. As the stable expression of HPRT1 and PPIA between normal and tumor endometrial samples fulfill the basic requirement of a reference gene to be used for normalization purposes, HPRT1 expression showed significant differences between samples from low-grade and high-grade tumors. In conclusion, our results recommend the use of PPIA as a single reference gene to be considered for improved reliability of normalization in gene expression studies involving endometrial tumor samples at different tumor degrees.

Wang H, Yang B, Geng T, et al.
Tissue-specific selection of optimal reference genes for expression analysis of anti-cancer drug-related genes in tumor samples using quantitative real-time RT-PCR.
Exp Mol Pathol. 2015; 98(3):375-81 [PubMed] Related Publications
Gene transcription analysis in clinical tumor samples can help with diagnosis, prognosis, and treatment of cancers. We aimed to identify the optimal reference genes for reliable expression analysis in various tumor samples by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Using a one-step TaqMan-based qRT-PCR, 5 commonly used reference genes (ACTB, GAPDH, RPLPO, GUSB, and TFRC) and 10 anticancer drug-related genes (TYMS, RRM1, TUBB3, STMN1, TOP2A, EGFR, VEGFR2, HER2, ERCC1, and BRCA1) were analyzed in 327 tissue samples from lung, rectal, colon, gastric, esophageal, and breast tumors. According to the expression stability assessments obtained by using three programs (geNorm, NormFinder, and BestKeeper) and a comprehensive ranking method, the optimal reference genes for lung, gastric, esophageal, and breast tumors were RPLPO, GAPDH, ACTB, and ACTB, respectively. For rectal tumors, a combination of the 3 most stable genes (GUSB, ACTB, and RPLPO) was suitable for qRT-PCR, whereas for colon tumors, a combination of the 4 most stable genes (GAPDH, ACTB, GUSB, and RPLPO) was optimal for qRT-PCR. Based on the expression data of target genes normalized against selected reference genes, the principal component analysis revealed 4 expression patterns in 6 different tissues. One pattern was observed in gastric, rectal, and colon tumor tissues, which are gastrointestinal tumors. Expressions in the breast, lung, and esophageal tissues were separately represented as one pattern. Our results could facilitate the practice of personalized cancer medicine based on the gene expression profile of the patients.

Yu S, Yang Q, Yang JH, et al.
Identification of suitable reference genes for investigating gene expression in human gallbladder carcinoma using reverse transcription quantitative polymerase chain reaction.
Mol Med Rep. 2015; 11(4):2967-74 [PubMed] Related Publications
Reverse transcription quantitative polymerase chain reaction (RT‑qPCR) has become a frequently used strategy in gene expression studies. The relative quantification method is an important and commonly used method for the evaluation of RT‑qPCR data. The key aim of this method is to identify an applicable internal reference gene, however, there are currently no suitable reference genes for gene analysis in gallbladder carcinoma. In the present study, screening was performed using 12 common reference genes, which were selected in order to provide an experimental basis for the investigation of gene expression in gallbladder carcinoma. A total of 16 tissue samples of gallbladder carcinoma and their matched normal gallbladder tissues were used. The gene expression stability and applicability of the 12 reference gene candidates were determined using the geNorm, NormFinder and BestKeeper software programs. Following comparison of the results of the three software programs, HPRT1 was identified as the most stably expressed reference gene. In the normal gallbladder group, the relative stably expressed reference gene was PPIA and in the entire sample group, the relatively stably expressed reference gene was PPIA. The present study also demonstrated that the combination of the three reference genes was the most appropriate. The recommended combinations were PPIA + PUM1 + ACTB for the total sample group, GAPDH + PBGD + ALAS1 for the gallbladder carcinoma group and PPIA + PUM1 + TBP for the paired normal gallbladder group.

Zorniak M, Clark PA, Kuo JS
Myelin-forming cell-specific cadherin-19 is a marker for minimally infiltrative glioblastoma stem-like cells.
J Neurosurg. 2015; 122(1):69-77 [PubMed] Free Access to Full Article Related Publications
OBJECT: Glioblastoma stem-like cells (GSCs) exhibit stem-like properties, are highly efficient at forming tumor xenografts, and are resistant to many current therapies. Current molecular identifiers of GSCs are scarce and controversial. The authors describe differential cell-surface gene expression profiling to identify GSC-specific markers.
METHODS: Independent human GSC lines were isolated and maintained in standard neural stem cell (NSC) media and were validated for self-renewal, multipotent differentiation, and tumor initiation properties. Candidate upregulated GSCspecific plasma membrane markers were identified through differential Affymetrix U133 Plus 2.0 Array gene expression profiling of GSCs, human NSCs (hNSCs), normal brain tissue, and primary/recurrent glioblastoma multiforme samples. Results were validated by using comparative quantitative reverse transcription polymerase chain reaction and Western blot analysis of GSCs, hNSCs, normal human astrocytes, U87 glioma cell line, and patient-matched serum-cultured glioblastoma multiforme samples.
RESULTS: A candidate GSC-specific signature of 19 upregulated known and novel plasma membrane-associated genes was identified. Preferential upregulation of these plasma membrane-linked genes was validated by quantitative polymerase chain reaction. Cadherin-19 (CDH19) protein expression was enhanced in minimally infiltrative GSC lines.
CONCLUSIONS: Gene expression profiling of GSCs has shown CDH19 to be an exciting new target for drug development and study of GBM tumorigenesis.

Wierzbicki PM, Klacz J, Rybarczyk A, et al.
Identification of a suitable qPCR reference gene in metastatic clear cell renal cell carcinoma.
Tumour Biol. 2014; 35(12):12473-87 [PubMed] Free Access to Full Article Related Publications
There is no data on reference gene (RG) selection in metastatic clear-cell renal cell carcinoma (mccRCC) for quantitative PCR (qPCR) data normalization. We aimed at selecting the most stable RG for further determination of new prognostic markers. Thirty-five nonmetastatic and 35 mccRCC patients undergoing radical nephrectomy were included. Paired primary tumor (T, n = 70) and normal (C, n = 70) kidney fragments were collected; from 12 out of 35 mccRCC cases, we also collected metastasized regional lymph nodes and adrenal gland tissues (M, n = 12). After RNA extraction, reverse transcription and qPCR were performed. Samples were divided into four analyzed groups. Fifteen candidate RGs were tested by RefFinder tool and manual statistics. To present the importance of RG selection, TP53 gene expression levels in samples were normalized with the use of RG data. RPL13 gene was the most stable RG in analysis of 35 primary tumor nonmetastatic versus 35 mccRCC samples and matched metastasized T/C/M samples (n = 12, each group). GUSB was the most suitable RG in total 152 samples and in paired T and C (n = 140) kidney samples. Expression of GUSB, RPL13, and the RPL13 + RPLP0 pair were independent of clinical/sample variables. Normalization of TP53 expression levels showed variability of GAPDH and ACTB assays. GUSB or RPL13 assays should be used in mccRCC for qPCR data normalization whereas GAPDH and ACTB assays should be avoided. Prior RG studies should precede each qPCR gene expression study since RG selection is associated with the origin and proportion of specimens.

Zhang F, Li C, Liu H, et al.
The functional proteomics analysis of VEGF-treated human epithelial ovarian cancer cells.
Tumour Biol. 2014; 35(12):12379-87 [PubMed] Related Publications
Vascular endothelial growth factor (VEGF), one of the most important angiogenic factor, can impact the tumor cell proliferation and invasion, but the mechanism remains unclear. This study is to investigate the key proteins which may play an important role in the VEGF-induced progress of ovarian cancer cells. The total protein from HO-8910 cells was separated by two-dimensional electrophoresis (2-DE), and differentially expressed proteins were identified by matrix-assisted laser desorption and ionization time-of-flight tandem mass spectrometry (MALDI-TOF MS) and PDQuest image analysis software. Furthermore, real-time PCR, Western blot, and immunocytochemistry were also used to confirm different expression levels of differential proteins. Morphological changes and invasion capability were evaluated by electron microscope and Matrigel invasion assay, respectively. The highly reproducible and well-resolved 2-DE patterns of both HO-8910/VEGF and HO-8910 cells were acquired. A total of 17 expressed differential proteins were identified, 8 proteins were upregulated (ACTB, TIM, PDIA3, PDIA1, DCTN2, KIC17, SIAS, and KIC10) and 9 downregulated (KIC18, GRP78, CAPG, PPIA, ROA2, LMNA, EZRI, ADRM1, and ENOA). Ultrastructure of VEGF-treated group showed more malignant characteristic compared with control group, an obvious increase in the number of cells penetrating the Matrigel membrane in VEGF-treated group (P < 0.05). These results suggested that VEGF could impact ovarian cancer's malignant progression by regulating expression of associated proteins.

Brandwein JM, Kassis J, Leber B, et al.
Phase II study of targeted therapy with temozolomide in acute myeloid leukaemia and high-risk myelodysplastic syndrome patients pre-screened for low O(6) -methylguanine DNA methyltransferase expression.
Br J Haematol. 2014; 167(5):664-70 [PubMed] Related Publications
Resistance to temozolomide is largely mediated by the DNA repair enzyme O(6) -methylguanine DNA methyltransferase (MGMT). We conducted a prospective multicentre study of patients with previously untreated acute myeloid leukaemia (AML) or high-risk myelodysplastic syndrome (MDS) who were not candidates for intensive therapy. Patient selection was based on MGMT expression by Western blot. Patients with MGMT:ACTB (β-actin) ratio <0·2 were eligible to receive temozolomide 200 mg/m(2) /d ×7 d. Patients achieving a complete response (CR) could receive up to 12 monthly cycles of temozolomide ×5/28 d. Of 166 patients screened, 81 (49%) demonstrated low MGMT expression; 45 of these were treated with temozolomide. The overall response rate was 53%; 36% achieved complete clearance of blasts, with 27% achieving a CR/CR with incomplete platelet recovery (CRp). Factors associated with a trend toward a higher response rate included MDS, methylated MGMT promoter and standard cytogenetic risk group. Induction and post-remission cycles were well-tolerated and most patients were treated on an outpatient basis. Patient who achieved CR/CRp had a superior overall survival compared to partial or non-responders. In conclusion, targeted therapy based on pre-selection for low MGMT expression was associated with a higher response rate to temozolomide compared to previous reports of unselected patients.

Zhao LM, Zheng ZX, Zhao X, et al.
Optimization of reference genes for normalization of the quantitative polymerase chain reaction in tissue samples of gastric cancer.
Asian Pac J Cancer Prev. 2014; 15(14):5815-8 [PubMed] Related Publications
For an exact comparison of mRNA transcription in different samples or tissues with real time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), it is crucial to select a suitable internal reference gene. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and beta-actin (ACTB) have been frequently considered as house-keeping genes to normalize for changes in specific gene expression. However, it has been reported that these genes are unsuitable references in some cases, because their transcription is significantly variable under particular experimental conditions and among tissues. The present study was aimed to investigate which reference genes are most suitable for the study of gastric cancer tissues using qRT-PCR. 50 pairs of gastric cancer and corresponding peritumoral tissues were obtained from patients with gastric cancer. Absolute qRT-PCR was employed to detect the expression of GAPDH, ACTB, RPII and 18sRNA in the gastric cancer samples. Comparing gastric cancer with corresponding peritumoral tissues, GAPDH, ACTB and RPII were obviously up-regulated 6.49, 5.0 and 3.68 fold, respectively. Yet 18sRNA had no obvious expression change in gastric cancer tissues and the corresponding peritumoral tissues. The expression of GAPDH, β-actin, RPII and 18sRNA showed no obvious changes in normal gastric epithelial cells compared with gastric cancer cell lines. The carcinoembryonic antigen (CEA), a widely used clinical tumor marker, was used as a validation gene. Only when 18sRNA was used as the normalizing gene was CEA obviously elevated in gastric cancer tissues compared with peritumoral tissues. Our data show that 18sRNA is stably expressed in gastric cancer samples and corresponding peritumoral tissues. These observations confirm that there is no universal reference gene and underline the importance of specific optimization of potential reference genes for any experimental condition.

Vardhini NV, Rao PJ, Murthy PB, Sudhakar G
HOXD10 expression in human breast cancer.
Tumour Biol. 2014; 35(11):10855-60 [PubMed] Related Publications
Breast cancer is the most frequent malignancy among females. In this study, we analyzed the expression pattern of a homeobox gene (HOXD10) in human invasive ductal breast cancer tissues and normal tissues. With the ACTB (β-actin) gene as a reference, HOXD10 was detected in 60 breast cancer tissues by using the quantitative real-time PCR (qPCR) method with the Relative Expression Software Tool (REST). We found that the HOXD10 expression level was significantly different between cancerous and normal tissues. Downregulation of the HOXD10 gene expression was examined in high-grade samples. Low-grade tissue showed no difference from the control group. HOXD10 expression was reduced in grade II breast carcinoma tissues. This data reveal that misexpression of the HOXD10 gene supports the development and involvement in breast cancer and may serve as a potential biomarker for the diagnosis of human ductal invasive breast carcinoma.

Santillán-Benítez JG, Mendieta-Zerón H, Gómez-Oliván LM, et al.
JAK2, STAT3 and SOCS3 gene expression in women with and without breast cancer.
Gene. 2014; 547(1):70-6 [PubMed] Related Publications
INTRODUCTION: Breast cancer is a disease that arises from the accumulation of alterations in the genome of cells that make up the mammary gland. The Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway has been reported to participate in the development of breast cancer and is activated by adipocytokines such as leptin, which are elevated in obesity. In contrast, alterations in suppressor of cytokine signaling 3 (SOCS3) gene expression have been found in patients with decreased breast cancer metastasis.
OBJECTIVE: The current study sought to identify whether JAK2, STAT3 and SOCS3 gene expression is associated with body mass index (BMI) and breast cancer.
METHODS: This was a cross-sectional prospective study. JAK2, STAT3 and SOCS3 gene expression levels were determined using RT-qPCR from the biopsies of 26 patients with breast cancer and 43 patients with benign breast lesions. We compared the expression of these genes, relative to the housekeeping genes, ACTB and GAPDH, against BMI, clinical stage and immunohistochemistry.
RESULTS: STAT3 gene expression was increased in breast cancer patients (p≤0.001; AUC=0.65; AUC 95% CI: 0.5-0.8), and SOCS3 expression was decreased in obese patients with benign breast lesions (p≤0.001; AUC=0.51; AUC 95% CI: 0.36-0.65). With regard to the clinical stage, there were significant differences in STAT3 gene expression between stage II and III (p≤0.011) and stage II and IV (p≤0.033) breast cancers. Among all women, there was a positive correlation between JAK2 and STAT3 expression (R=0.493, p=0.000). In addition, breast cancers that were negative for HER2 were associated with JAK2 and SOCS3 (R=0.645, p=0.003).
CONCLUSION: High levels of STAT3 expression were associated with early stages of breast cancer development and patients in the control group with obesity showed higher expression of SOCS3 regarding overweight.

Krzystek-Korpacka M, Diakowska D, Bania J, Gamian A
Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: implications for finding suitable normalizers for inflammatory bowel disease studies.
Inflamm Bowel Dis. 2014; 20(7):1147-56 [PubMed] Related Publications
Instability of housekeeping genes (HKG), supposedly unregulated and hence used as normalizers, may dramatically change conclusions of quantitative PCR experiments. The effect of bowel inflammation on HKG remains unknown. Expression stability of 15 HKG (ACTB, B2M, GAPDH, GUSB, HPRT1, IPO8, MRPL19, PGK1, PPIA, RPLP0, RPS23, SDHA, TBP, UBC, and YWHAZ) in 166 bowel specimens (91 normal, 35 cancerous, and 40 inflamed) was ranked by coefficients of variation (CV%) or using dedicated software: geNorm and NormFinder. The RPS23, PPIA, and RPLP0 were top-ranked, whereas IPO8, UBC and TBP were the lowest-ranked HKG across inflamed/cancerous/normal colonic tissues. The pairs RPS23/RPLP0, PGK1/MRPL19, or PPIA/RPLP0 were optimal reference by CV%, NormFinder, and geNorm, respectively. Colon inflammation affected HKG more pronouncedly than cancer with ACTB significantly down- and B2M upregulated. In inflammatory bowel disease (IBD), different genes were top-ranked in a large and small bowel, whereas TBP, UBC, and IPO8 were lowest-ranked in both. For patients with IBD at large, RPS23/PPIA, PGK1/MRPL19, and PPIA/RPLP0 were found optimal by CV%, NormFinder, and geNorm, respectively. ACTB and B2M expression was related to CRC stage and positively correlated with clinical activity of IBD. Although GAPDH was upregulated neither in CRC nor IBD, it tended to positively correlate with tumor depth and Crohn's disease activity index. Normalizing against GAPDH affected experimental conclusions in a small but not large bowel. Bowel inflammation significantly affects several classic HKG. The pair PPIA/RPLP0 is a common optimal reference for studies encompassing tissues sampled from colorectal cancer and IBD patients. Using ACTB or B2M is not recommended.

Cai J, Li T, Huang B, et al.
The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-time PCR in human FFPE epithelial ovarian tissue samples.
PLoS One. 2014; 9(4):e95974 [PubMed] Free Access to Full Article Related Publications
Quantitative real-time PCR (qPCR) is a powerful and reproducible method of gene expression analysis in which expression levels are quantified by normalization against reference genes. Therefore, to investigate the potential biomarkers and therapeutic targets for epithelial ovarian cancer by qPCR, it is critical to identify stable reference genes. In this study, twelve housekeeping genes (ACTB, GAPDH, 18S rRNA, GUSB, PPIA, PBGD, PUM1, TBP, HRPT1, RPLP0, RPL13A, and B2M) were analyzed in 50 ovarian samples from normal, benign, borderline, and malignant tissues. For reliable results, laser microdissection (LMD), an effective technique used to prepare homogeneous starting material, was utilized to precisely excise target tissues or cells. One-way analysis of variance (ANOVA) and nonparametric (Kruskal-Wallis) tests were used to compare the expression differences. NormFinder and geNorm software were employed to further validate the suitability and stability of the candidate genes. Results showed that epithelial cells occupied a small percentage of the normal ovary indeed. The expression of ACTB, PPIA, RPL13A, RPLP0, and TBP were stable independent of the disease progression. In addition, NormFinder and geNorm identified the most stable combination (ACTB, PPIA, RPLP0, and TBP) and the relatively unstable reference gene GAPDH from the twelve commonly used housekeeping genes. Our results highlight the use of homogeneous ovarian tissues and multiple-reference normalization strategy, e.g. the combination of ACTB, PPIA, RPLP0, and TBP, for qPCR in epithelial ovarian tissues, whereas GAPDH, the most commonly used reference gene, is not recommended, especially as a single reference gene.

Partin AW, Van Neste L, Klein EA, et al.
Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies.
J Urol. 2014; 192(4):1081-7 [PubMed] Free Access to Full Article Related Publications
PURPOSE: The DOCUMENT multicenter trial in the United States validated the performance of an epigenetic test as an independent predictor of prostate cancer risk to guide decision making for repeat biopsy. Confirming an increased negative predictive value could help avoid unnecessary repeat biopsies.
MATERIALS AND METHODS: We evaluated the archived, cancer negative prostate biopsy core tissue samples of 350 subjects from a total of 5 urological centers in the United States. All subjects underwent repeat biopsy within 24 months with a negative (controls) or positive (cases) histopathological result. Centralized blinded pathology evaluation of the 2 biopsy series was performed in all available subjects from each site. Biopsies were epigenetically profiled for GSTP1, APC and RASSF1 relative to the ACTB reference gene using quantitative methylation specific polymerase chain reaction. Predetermined analytical marker cutoffs were used to determine assay performance. Multivariate logistic regression was used to evaluate all risk factors.
RESULTS: The epigenetic assay resulted in a negative predictive value of 88% (95% CI 85-91). In multivariate models correcting for age, prostate specific antigen, digital rectal examination, first biopsy histopathological characteristics and race the test proved to be the most significant independent predictor of patient outcome (OR 2.69, 95% CI 1.60-4.51).
CONCLUSIONS: The DOCUMENT study validated that the epigenetic assay was a significant, independent predictor of prostate cancer detection in a repeat biopsy collected an average of 13 months after an initial negative result. Due to its 88% negative predictive value adding this epigenetic assay to other known risk factors may help decrease unnecessary repeat prostate biopsies.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ACTB, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999