Gene Summary

Gene:CAST; calpastatin
Aliases: BS-17, PLACK
Summary:The protein encoded by this gene is an endogenous calpain (calcium-dependent cysteine protease) inhibitor. It consists of an N-terminal domain L and four repetitive calpain-inhibition domains (domains 1-4), and it is involved in the proteolysis of amyloid precursor protein. The calpain/calpastatin system is involved in numerous membrane fusion events, such as neural vesicle exocytosis and platelet and red-cell aggregation. The encoded protein is also thought to affect the expression levels of genes encoding structural or regulatory proteins. Alternatively spliced transcript variants encoding different isoforms have been described. [provided by RefSeq, Jun 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CAST (cancer-related)

Starska K, Forma E, Jóźwiak P, et al.
Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer.
Tumour Biol. 2016; 37(10):13185-13203 [PubMed] Related Publications
Recent evidence indicates the involvement of calpains (CAPNs), a family of cysteine proteases, in cancer development and progression, as well as the insufficient response to cancer therapies. The contribution of CAPNs and regulatory calpastatin (CAST) and ERK1/2 kinases to aggressiveness, disease course, and outcome in laryngeal cancer remains elusive. This study was aimed to evaluate the CAPN1/2-CAST-ERK1/2 enzyme system mRNA/protein level and to investigate whether they can promote the dynamic of tumor growth and prognosis. The mRNA expression of marker genes was determined in 106 laryngeal cancer (SCLC) cases and 73 non-cancerous adjacent mucosa (NCLM) controls using quantitative real-time PCR. The level of corresponding proteins was analyzed by Western Blot. SLUG expression, as indicator of pathological advancement was determined using IHC staining. Significant increases of CAPN1/2-CAST-ERK1/2 levels of mRNA/protein were noted in SCLC compared to NCLM (p < 0.05). As a result, a higher level of CAPN1 and ERK1 genes was related to larger tumor size, more aggressive and deeper growth according to TFG scale and SLUG level (p < 0.05). There were also relationships of CAPN1/2 and ERK1 with incidences of local/nodal recurrences (p < 0.05). An inverse association for CAPN1/2, CAST, and ERK1/2 transcripts was determined with regard to overall survival (p < 0.05). In addition, a higher CAPN1 and phospho-ERK1 protein level was related to higher grade and stage (p < 0.05) and was found to promote worse prognosis. This is the first study to show that activity of CAPN1/2- CAST-ERK1/2 axis may be an indicator of tumor phenotype and unfavorable outcome in SCLC.

Lara-Padilla E, Miliar-Garcia A, Gomez-Lopez M, et al.
Neural Transdifferentiation: MAPTau Gene Expression in Breast Cancer Cells.
Asian Pac J Cancer Prev. 2016; 17(4):1967-71 [PubMed] Related Publications
BACKGROUND: In tumor cells, aberrant differentiation programs have been described. Several neuronal proteins have been found associated with morphological neuronal-glial changes in breast cancer (BCa). These neuronal proteins have been related to mechanisms that are involved in carcinogenesis; however, this regulation is not well understood. Microtubule-associated protein-tau (MAP-Tau) has been describing in BCa but not its variants. This finding could partly explain the neuronal-glial morphology of BCa cells. Our aim was to determine mRNA expression of MAP-tau variants 2, 4 and 6 in breast cancer cell lines.
MATERIALS AND METHODS: Cultured cell lines MCF-10A, MDA-MB-231, SKBR3 and T47D were observed under phase-contrast microscopy for neural morphology and analyzed for gene expression of MAP-Tau transcript variants 2, 4 and 6 by real-time PCR.
RESULTS: Regarding morphology like neural/glial cells, T47D line shown more cells with these features than MDA-MB-231 and SKBR. In another hand, we found much greater mRNA expression of MAP-Tau transcript variants 2, and to a lesser extent 4 and 6, in T47D cells than the other lines. In conclusion, regulation of MAP- Tau could bring about changes in cytoskeleton, cell morphology and motility; these findings cast further light on neuronal transdifferentiation in BCa.

Isaacs JS
Hsp90 as a "Chaperone" of the Epigenome: Insights and Opportunities for Cancer Therapy.
Adv Cancer Res. 2016; 129:107-40 [PubMed] Related Publications
The cellular functions of Hsp90 have historically been attributed to its ability to chaperone client proteins involved in signal transduction. Although numerous stimuli and the signaling cascades they activate contribute to cancer progression, many of these pathways ultimately require transcriptional effectors to elicit tumor-promoting effects. Despite this obvious connection, the majority of studies evaluating Hsp90 function in malignancy have focused upon its regulation of cytosolic client proteins, and particularly members of receptor and/or kinase families. However, in recent years, Hsp90 has emerged as a pivotal orchestrator of nuclear events. Discovery of an expanding repertoire of Hsp90 clients has illuminated a vital role for Hsp90 in overseeing nuclear events and influencing gene transcription. Hence, this chapter will cast a spotlight upon several regulatory themes involving Hsp90-dependent nuclear functions. Highlighted topics include a summary of chaperone-dependent regulation of key transcription factors (TFs) and epigenetic effectors in malignancy, as well as a discussion of how the complex interplay among a subset of these TFs and epigenetic regulators may generate feed-forward loops that further support cancer progression. This chapter will also highlight less recognized indirect mechanisms whereby Hsp90-supported signaling may impinge upon epigenetic regulation. Finally, the relevance of these nuclear events is discussed within the framework of Hsp90's capacity to enable phenotypic variation and drug resistance. These newly acquired insights expanding our understanding of Hsp90 function support the collective notion that nuclear clients are major beneficiaries of Hsp90 action, and their impairment is likely responsible for many of the anticancer effects elicited by Hsp90-targeted approaches.

Kierulf-Vieira KS, Sandberg CJ, Grieg Z, et al.
Wnt inhibition is dysregulated in gliomas and its re-establishment inhibits proliferation and tumor sphere formation.
Exp Cell Res. 2016; 340(1):53-61 [PubMed] Related Publications
Evidence indicates that the growth of glioblastoma (GBM), the most common and malignant primary brain cancer, is driven by glioma stem cells (GSCs) resistant to current treatment. As Wnt-signaling is pivotal in stem cell maintenance, we wanted to explore its role in GSCs with the objective of finding distinct signaling mechanisms that could serve as potential therapeutic targets. We compared gene expression in GSCs (n=9) and neural stem cells from the adult human brain (ahNSC; n=3) to identify dysregulated genes in the Wnt signaling pathway. This identified a six-gene Wnt signature present in all nine primary GSC cultures, and the combined expression of three of these genes (SFRP1, SFRP4 and FZD7) reduced median survival of glioma patients from 38 to 17 months. Treatment with recombinant SFRP1 protein in primary cell cultures downregulated nuclear β-catenin and decreased in vitro proliferation and sphere formation in a dose-dependent manner. Furthermore, expressional and functional analysis of SFRP1-treated GSCs revealed that SFRP1 halts cell cycling and induces apoptosis. These observations demonstrate that Wnt signaling is dysregulated in GSC, and that inhibition of the Wnt pathway could serve as a therapeutic strategy in the treatment of GBM.

Barbano R, Pasculli B, Coco M, et al.
Competitive allele-specific TaqMan PCR (Cast-PCR) is a sensitive, specific and fast method for BRAF V600 mutation detection in Melanoma patients.
Sci Rep. 2015; 5:18592 [PubMed] Free Access to Full Article Related Publications
BRAF codon 600 mutation testing of melanoma patients is mandatory for the choice of the most appropriate therapy in the clinical setting. Competitive allele specific TaqMan PCR (Cast-PCR) technology allows not only the selective amplification of minor alleles, but it also blocks the amplification of non-mutant allele. We genotyped codon 600 of the BRAF gene in 54 patients' samples by Cast-PCR and bidirectional direct sequence analysis. All the mutations detected by sequencing were also identified by Cast-PCR. In addition, Cast-PCR assay detected four samples carrying mutations and was able to clearly identify two mutations of uncertain interpretation by Sanger sequencing. The limit of detection of Cast-PCR was evaluated by constructing dilution curves of BRAF(V600E) and BRAF(V600K) mutated clinical samples mixed with a not-mutated specimens. Both mutations could be detected until a 1:100 mutated/not mutated ratio. Cloning and sequencing of the clones was used to confirm mutations on representative discrepant cases. Cast PCR performances were not affected by intratumour heterogeneity, and less affected by melanin content. Our results indicate that Cast-PCR is a reliable diagnostic tool for the identification of melanoma patients as eligible to be treated with TKIs and might be implemented in the clinical setting as elective screening method.

Kinomura M, Shimada N, Nishikawa M, et al.
Parathyroid Hormone-related Peptide-producing Multiple Myeloma and Renal Impairment.
Intern Med. 2015; 54(23):3029-33 [PubMed] Related Publications
A 68-year-old man was hospitalized and examined for renal impairment. A laboratory analysis showed hypercalcemia. Although the serum parathyroid hormone and serum 1-25(OH)2 vitamin D3 levels were not elevated, the serum parathyroid hormone-related peptide (PTHrP) level was increased. Immunoelectrophoresis of the urine and bone marrow aspiration indicated multiple myeloma (MM). He was diagnosed with the coexistence of cast nephropathy and light chain deposition disease by a renal biopsy. Notably, PTHrP expression was detected in the myeloma cells based on immunohistochemistry and in situ hybridization. It is therefore important to examine the PTHrP concentration in MM patients with hypercalcemia.

Eng KH, Schiller E, Morrell K
On representing the prognostic value of continuous gene expression biomarkers with the restricted mean survival curve.
Oncotarget. 2015; 6(34):36308-18 [PubMed] Free Access to Full Article Related Publications
MOTIVATION: Researchers developing biomarkers for cancer prognosis from quantitative gene expression data are often faced with an odd methodological discrepancy: while Cox's proportional hazards model, the appropriate and popular technique, produces a continuous and relative risk score, it is hard to cast the estimate in clear clinical terms like median months of survival and percent of patients affected. To produce a familiar Kaplan-Meier plot, researchers commonly make the decision to dichotomize a continuous (often unimodal and symmetric) score. It is well known in the statistical literature that this procedure induces significant bias.
RESULTS: We illustrate the liabilities of common techniques for categorizing a risk score and discuss alternative approaches. We promote the use of the restricted mean survival (RMS) and the corresponding RMS curve that may be thought of as an analog to the best fit line from simple linear regression.
CONCLUSIONS: Continuous biomarker workflows should be modified to include the more rigorous statistical techniques and descriptive plots described in this article. All statistics discussed can be computed via standard functions in the Survival package of the R statistical programming language. Example R language code for the RMS curve is presented in the appendix.

Mardin BR, Drainas AP, Waszak SM, et al.
A cell-based model system links chromothripsis with hyperploidy.
Mol Syst Biol. 2015; 11(9):828 [PubMed] Free Access to Full Article Related Publications
A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one-off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has remained elusive. We developed an integrative method termed "complex alterations after selection and transformation (CAST)," enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular in hyperploid cells. Analysis of primary medulloblastoma cancer genomes verified the link between hyperploidy and chromothripsis in vivo. CAST provides the foundation for mechanistic dissection of complex DNA rearrangement processes.

Khandelwal A, Bacolla A, Vasquez KM, Jain A
Long non-coding RNA: A new paradigm for lung cancer.
Mol Carcinog. 2015; 54(11):1235-51 [PubMed] Related Publications
Lung cancer is the leading cause of cancer-related deaths worldwide. Recent advances in whole genome transcriptome analysis have enabled the identification of numerous members of a novel class of non-coding RNAs, i.e., long non-coding RNAs (lncRNAs), which play important roles in a wide range of biological processes and whose deregulation causes human disease, including cancer. Herein we provide a comprehensive survey of lncRNAs associated with lung cancer, with particular focus on the functions that either facilitate or inhibit the progression of lung cancer and the pathways involved. Emerging data on the use of lncRNAs as biomarkers for the diagnosis and prognosis of cancer are also discussed. We cast this information within the wider perspective of lncRNA biogenesis and molecular functions in the cell. Relationships that exist between lncRNAs, genome-wide transcription, and lung cancer are discussed. Deepening our understanding on these processes is critical not only from a mechanistic standpoint, but also for the development of novel biomarkers and effective therapeutic targets for cancer patients.

Mikosik A, Henc I, Ruckemann-Dziurdzińska K, et al.
Increased μ-Calpain Activity in Blasts of Common B-Precursor Childhood Acute Lymphoblastic Leukemia Correlates with Their Lower Susceptibility to Apoptosis.
PLoS One. 2015; 10(8):e0136615 [PubMed] Free Access to Full Article Related Publications
Childhood acute lymphoblastic leukemia (ALL) blasts are characterized by inhibited apoptosis promoting fast disease progress. It is known that in chronic lymphocytic and acute myeloid leukemias the reduced apoptosis is strongly related with the activity of calpain-calpastatin system (CCS) composed of cytoplasmic proteases--calpains--performing the modulatory proteolysis of key proteins involved in cell proliferation and apoptosis, and of their endogenous inhibitor--calpastatin. Here, the CCS protein abundance and activity was for the first time studied in childhood ALL blasts and in control bone marrow CD19+ B cells by semi-quantitative flow cytometry and western blotting of calpastatin fragments resulting from endogenous calpain activity. Significantly higher μ-calpain (CAPN1) gene transcription, protein amounts and activity (but not those of m-calpain), with calpastatin amount and transcription of its gene (CAST) greatly varying were observed in CD19(+) ALL blasts compared to control cells. Significant inverse relation between the amount/activity of calpain and spontaneous apoptosis was noted. Patients older than 10 years (considered at higher risk) displayed increased amounts and activities of blast calpain. Finally, treatment of blasts with the tripeptide calpain inhibitors II and IV significantly and in dose-dependent fashion increased the percentage of blasts entering apoptosis. Together, these findings make the CCS a potential new predictive tool and therapeutic target in childhood ALL.

Stangeland B, Mughal AA, Grieg Z, et al.
Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells.
Oncotarget. 2015; 6(28):26192-215 [PubMed] Free Access to Full Article Related Publications
Glioblastoma (GBM) is both the most common and the most lethal primary brain tumor. It is thought that GBM stem cells (GSCs) are critically important in resistance to therapy. Therefore, there is a strong rationale to target these cells in order to develop new molecular therapies.To identify molecular targets in GSCs, we compared gene expression in GSCs to that in neural stem cells (NSCs) from the adult human brain, using microarrays. Bioinformatic filtering identified 20 genes (PBK/TOPK, CENPA, KIF15, DEPDC1, CDC6, DLG7/DLGAP5/HURP, KIF18A, EZH2, HMMR/RHAMM/CD168, NOL4, MPP6, MDM1, RAPGEF4, RHBDD1, FNDC3B, FILIP1L, MCC, ATXN7L4/ATXN7L1, P2RY5/LPAR6 and FAM118A) that were consistently expressed in GSC cultures and consistently not expressed in NSC cultures. The expression of these genes was confirmed in clinical samples (TCGA and REMBRANDT). The first nine genes were highly co-expressed in all GBM subtypes and were part of the same protein-protein interaction network. Furthermore, their combined up-regulation correlated negatively with patient survival in the mesenchymal GBM subtype. Using targeted proteomics and the COGNOSCENTE database we linked these genes to GBM signalling pathways.Nine genes: PBK, CENPA, KIF15, DEPDC1, CDC6, DLG7, KIF18A, EZH2 and HMMR should be further explored as targets for treatment of GBM.

Mughal AA, Grieg Z, Skjellegrind H, et al.
Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells.
Mol Cancer. 2015; 14:160 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma (GBM) is the most common primary brain malignancy and confers a dismal prognosis. GBMs harbor glioblastoma-initiating cells (GICs) that drive tumorigenesis and contribute to therapeutic resistance and tumor recurrence. Consequently, there is a strong rationale to target this cell population in order to develop new molecular therapies against GBM. Accumulating evidence indicates that Nα-terminal acetyltransferases (NATs), that are dysregulated in numerous human cancers, can serve as therapeutic targets.
METHODS: Microarrays were used to study the expression of several NATs including NAT12/NAA30 in clinical samples and stem cell cultures. The expression of NAT12/NAA30 was analyzed using qPCR, immunolabeling and western blot. We conducted shRNA-mediated knockdown of NAT12/NAA30 gene in GICs and studied the effects on cell viability, sphere-formation and hypoxia sensitivity. Intracranial transplantation to SCID mice enabled us to investigate the effects of NAT12/NAA30 depletion in vivo. Using microarrays we identified genes and biochemical pathways whose expression was altered upon NAT12/NAA30 down-regulation.
RESULTS: While decreased expression of the distal 3'UTR of NAT12/NAA30 was generally observed in GICs and GBMs, this gene was strongly up-regulated at the protein level in GBM and GICs. The increased protein levels were not caused by increased levels of the steady state mRNA but rather by other mechanisms. Also, shorter 3'UTR of NAT12/NAA30 correlated with poor survival in glioma patients. As well, we observed previously not described nuclear localization of this typically cytoplasmic protein. When compared to non-silencing controls, cells featuring NAT12/NAA30 knockdown exhibited reduced cell viability, sphere-forming ability, and mitochondrial hypoxia tolerance. Intracranial transplantation showed that knockdown of NAT12/NAA30 resulted in prolonged animal survival. Microarray analysis of the knockdown cultures showed reduced levels of HIF1α and altered expression of several other genes involved in the hypoxia response. Furthermore, NAT12/NAA30 knockdown correlated with expressional dysregulation of genes involved in the p53 pathway, ribosomal assembly and cell proliferation. Western blot analysis revealed reduction of HIF1α, phospho-MTOR(Ser2448) and higher levels of p53 and GFAP in these cultures.
CONCLUSION: NAT12/NAA30 plays an important role in growth and survival of GICs possibly by regulating hypoxia response (HIF1α), levels of p-MTOR (Ser2448) and the p53 pathway.

Fala AM, Oliveira JF, Adamoski D, et al.
Unsaturated fatty acids as high-affinity ligands of the C-terminal Per-ARNT-Sim domain from the Hypoxia-inducible factor 3α.
Sci Rep. 2015; 5:12698 [PubMed] Free Access to Full Article Related Publications
Hypoxia-inducible transcription factors (HIF) form heterodimeric complexes that mediate cell responses to hypoxia. The oxygen-dependent stability and activity of the HIF-α subunits is traditionally associated to post-translational modifications such as hydroxylation, acetylation, ubiquitination, and phosphorylation. Here we report novel evidence showing that unsaturated fatty acids are naturally occurring, non-covalent structural ligands of HIF-3α, thus providing the initial framework for exploring its exceptional role as a lipid sensor under hypoxia.

Oo HZ, Sentani K, Mukai S, et al.
Fukutin, identified by the Escherichia coli ampicillin secretion trap (CAST) method, participates in tumor progression in gastric cancer.
Gastric Cancer. 2016; 19(2):443-52 [PubMed] Related Publications
BACKGROUND: Gastric cancer (GC) is the fifth commonest malignancy worldwide and still one of the leading causes of cancer-related death. The aim of this study was to identify a novel prognostic marker or therapeutic target for GC.
METHODS: We analyzed candidate genes from our previous Escherichia coli ampicillin secretion trap (CAST) libraries in detail, and focused on the FKTN gene because it was overexpressed in both GC cell line CAST libraries, MKN-1 and MKN-45.
RESULTS: Quantitative reverse transcriptase PCR analysis of FKTN revealed that FKTN messenger RNA was overexpressed in nine of 28 (32.1 %) GC tissue samples compared with nonneoplastic gastric mucosa. Immunostaining of fukutin showed that 297 of 695 cases (42.7 %) were positive for fukutin. Fukutin-positive GC cases were significantly associated with differentiated histological features, and advanced T grade and N grade. In addition, fukutin expression was observed more frequently in the intestinal phenotype (51 %) of GC than in other phenotypes (37 %) when defined by the expression patterns of mucin 5AC, mucin 6, mucin 2, and CD10. FKTN small interfering RNA treatment decreased GC cell proliferation.
CONCLUSIONS: These results indicate that the expression of fukutin may be a key regulator for progression of GC with the intestinal mucin phenotype.

Joel M, Mughal AA, Grieg Z, et al.
Targeting PBK/TOPK decreases growth and survival of glioma initiating cells in vitro and attenuates tumor growth in vivo.
Mol Cancer. 2015; 14:121 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastomas are invasive therapy resistant brain tumors with extremely poor prognosis. The Glioma initiating cell (GIC) population contributes to therapeutic resistance and tumor recurrence. Targeting GIC-associated gene candidates could significantly impact GBM tumorigenicity. Here, we investigate a protein kinase, PBK/TOPK as a candidate for regulating growth, survival and in vivo tumorigenicity of GICs.
METHODS: PBK is highly upregulated in GICs and GBM tissues as shown by RNA and protein analyses. We knocked down PBK using shRNA vectors and inhibited the function of PBK protein with a pharmacological PBK inhibitor, HITOPK-032. We assessed viability, tumorsphere formation and apoptosis in three patient derived GIC cultures.
RESULTS: Gene knockdown of PBK led to decreased viability and sphere formation and in one culture an increase in apoptosis. Treatment of cells with inhibitor HITOPK-032 (5 μM and 10 μM) almost completely abolished growth and elicited a large increase in apoptosis in all three cultures. HI-TOPK-032 treatment (5 mg/kg and 10 mg/kg bodyweight) in vivo resulted in diminished growth of experimentally induced subcutaneous GBM tumors in mice. We also carried out multi-culture assays of cell survival to investigate the relative effects on GICs compared with the normal neural stem cells (NSCs) and their differentiated counterparts. Normal NSCs seemed to withstand treatment slightly better than the GICs.
CONCLUSION: Our study of identification and functional validation of PBK suggests that this candidate can be a promising molecular target for GBM treatment.

Oue N, Sentani K, Sakamoto N, Yasui W
Clinicopathologic and molecular characteristics of gastric cancer showing gastric and intestinal mucin phenotype.
Cancer Sci. 2015; 106(8):951-8 [PubMed] Free Access to Full Article Related Publications
Gastric cancer (GC), one of the most common human cancers, can be classified into gastric or intestinal phenotype according to mucin expression. TP53 mutation, allelic deletion of the APC gene and nuclear staining of β-catenin are frequently detected in the intestinal phenotype of GC, whereas CDH1 gene mutation, microsatellite instability and DNA hypermethylation of MLH1 are common events in the gastric phenotype of GC. Our Serial Analysis of Gene Expression (SAGE) and Escherichia coli ampicillin secretion trap (CAST) analyses revealed that CDH17, REG4, OLFM4, HOXA10, DSC2, TSPAN8 and TM9SF3 are upregulated in GC and that CLDN18 is downregulated in GC. Expression of CDH17, REG4, HOXA10 and DSC2 and downregulation of CLDN18 are observed in the intestinal phenotype of GC. In contrast, OLFM4 is expressed in the gastric phenotype of GC. Expression of TSPAN8, TM9SF3 and HER2 are not associated with either gastric or intestinal phenotypes. Ectopic CDX2 expression plays a key function in the GC intestinal phenotype. MUC2, CDH17, REG4, DSC2 and ABCB1 are direct targets of CDX2. Importantly, these genes encode transmembrane/secretory proteins, indicating that the microenvironment as well as cancer cells are also different between gastric and intestinal phenotypes of GC.

Imani-Saber Z, Yousefi-Razin E, Javaheri M, et al.
Promyelocytic Leukemia (PML) Gene Mutations may not Contribute to Gastric Adenocarcinoma Development.
Asian Pac J Cancer Prev. 2015; 16(8):3523-5 [PubMed] Related Publications
Gastric cancer is the second most common cause of cancer death worldwide. Environmental as well as genetic factors have been shown to be involved in its genesis. Among genetic factors, loss of function of a tumor suppressive gene named promyelocytic leukemia (PML) has been demonstrated in gastric cancer. In order to cast light in the mechanism by which PML protein is under-expressed in gastric cancer cells, we analyzed all exons and intron-exon boundaries of PML gene in 50 formalin-fixed paraffin-embedded tissue blocks from gastric carcinoma tumors by means of PCR-SSCP and CSGE, with direct sequencing of abnormally shifted bands. We found a novel sequence variant of unknown significance localized in intron 5 in 3 samples (c.1398+84delA). We did not detect any deleterious mutations of the PML gene. This study shows that PML mutations may not contribute to gastric adenocarcinoma development. Post-translational modifications or protein degradation might be mechanisms by which PML is not expressed in gastric tumors.

Lund K, Dembinski JL, Solberg N, et al.
Slug-dependent upregulation of L1CAM is responsible for the increased invasion potential of pancreatic cancer cells following long-term 5-FU treatment.
PLoS One. 2015; 10(4):e0123684 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Pancreatic adenocarcinoma is a lethal disease with 5-year survival of less than 5%. 5-fluorouracil (5-FU) is a principal first-line therapy, but treatment only extends survival modestly and is seldom curative. Drug resistance and disease recurrence is typical and there is a pressing need to overcome this. To investigate acquired 5-FU resistance in pancreatic adenocarcinoma, we established chemoresistant monoclonal cell lines from the Panc 03.27 cell line by long-term exposure to increasing doses of 5-FU.
RESULTS: 5-FU-resistant cell lines exhibited increased expression of markers associated with multidrug resistance explaining their reduced sensitivity to 5-FU. In addition, 5-FU-resistant cell lines showed alterations typical for an epithelial-to-mesenchymal transition (EMT), including upregulation of mesenchymal markers and increased invasiveness. Microarray analysis revealed the L1CAM pathway as one of the most upregulated pathways in the chemoresistant clones, and a significant upregulation of L1CAM was seen on the RNA and protein level. In pancreatic cancer, expression of L1CAM is associated with a chemoresistant and migratory phenotype. Using esiRNA targeting L1CAM, or by blocking the extracellular part of L1CAM with antibodies, we show that the increased invasiveness observed in the chemoresistant cells functionally depends on L1CAM. Using esiRNA targeting β-catenin and/or Slug, we demonstrate that in the chemoresistant cell lines, L1CAM expression depends on Slug rather than β-catenin.
CONCLUSION: Our findings establish Slug-induced L1CAM expression as a mediator of a chemoresistant and migratory phenotype in pancreatic adenocarcinoma cells.

Anami K, Oue N, Noguchi T, et al.
TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer.
Gastric Cancer. 2016; 19(2):370-80 [PubMed] Related Publications
BACKGROUND: Gastric cancer (GC) is one of the most common human cancers. Genes expressed only in cancer tissue, especially on the cell membrane, will be useful biomarkers for cancer diagnosis and therapeutics.
METHODS: To identify novel genes encoding transmembrane protein specifically expressed in GC, we generated an Escherichia coli ampicillin secretion trap (CAST) library from diffuse-type GC cell line MKN-45. CAST is a survival-based signal sequence trap method that exploits the ability of mammalian signal sequences to confer ampicillin resistance to a mutant β-lactamase lacking the endogenous signal sequence.
RESULTS: By sequencing 1,536 colonies, we identified 23 genes encoding the transmembrane protein present in GC. Among these genes, TSPAN8 (also known as CO-029 and TM4SF3) gene, which encodes transmembrane protein tetraspanin 8, was emphasized as a candidate. Immunohistochemical analysis of tetraspanin 8 in human GC tissues revealed that 72 (34 %) of 210 GC cases were positive for tetraspanin 8, and microvessel density was significantly higher in tetraspanin 8-positive GC than in tetraspanin 8-negative GC. Furthermore, univariate and multivariate analyses revealed that tetraspanin 8 expression is an independent prognostic classifier of patients with GC. TSPAN8 knockdown by siRNA reduced the invasion of GC cell line. The reduction of invasiveness was retrieved by the tetraspanin 8-containing exosome.
CONCLUSION: These results suggest that tetraspanin 8 is involved in tumor progression and is an independent prognostic classifier in patients with GC.

Johnston SB, Raines RT
Conformational stability and catalytic activity of PTEN variants linked to cancers and autism spectrum disorders.
Biochemistry. 2015; 54(7):1576-82 [PubMed] Free Access to Full Article Related Publications
Phosphoinositides are membrane components that play critical regulatory roles in mammalian cells. The enzyme PTEN, which catalyzes the dephosphorylation of the phosphoinositide PIP3, is damaged in most sporadic tumors. Mutations in the PTEN gene have also been linked to autism spectrum disorders and other forms of delayed development. Here, human PTEN is shown to be on the cusp of unfolding under physiological conditions. Variants of human PTEN linked to somatic cancers and disorders on the autism spectrum are shown to be impaired in their conformational stability, catalytic activity, or both. Those variants linked only to autism have activity higher than the activity of those linked to cancers. PTEN-L, which is a secreted trans-active isoform, has conformational stability greater than that of the wild-type enzyme. These data indicate that PTEN is a fragile enzyme cast in a crucial role in cellular metabolism and suggest that PTEN-L is a repository for a critical catalytic activity.

Olsen PA, Solberg NT, Lund K, et al.
Implications of targeted genomic disruption of β-catenin in BxPC-3 pancreatic adenocarcinoma cells.
PLoS One. 2014; 9(12):e115496 [PubMed] Free Access to Full Article Related Publications
Pancreatic adenocarcinoma (PA) is among the most aggressive human tumors with an overall 5-year survival rate of <5% and available treatments are only minimal effective. WNT/β-catenin signaling has been identified as one of 12 core signaling pathways that are commonly mutated in PA. To obtain more insight into the role of WNT/β-catenin signaling in PA we established human PA cell lines that are deficient of the central canonical WNT signaling protein β-catenin by using zinc-finger nuclease (ZFN) mediated targeted genomic disruption in the β-catenin gene (CTNNB1). Five individual CTNNB1 gene disrupted clones (BxPC3ΔCTNNB1) were established from a BxPC-3 founder cell line. Despite the complete absence of β-catenin, all clones displayed normal cell cycle distribution profiles, overall normal morphology and no elevated levels of apoptosis although increased doubling times were observed in three of the five BxPC3ΔCTNNB1 clones. This confirms that WNT/β-catenin signaling is not mandatory for long term cell growth and survival in BxPC-3 cells. Despite a normal morphology of the β-catenin deficient cell lines, quantitative proteomic analysis combined with pathway analysis showed a significant down regulation of proteins implied in cell adhesion combined with an up-regulation of plakoglobin. Treatment of BxPC3ΔCTNNB1 cell lines with siRNA for plakoglobin induced morphological changes compatible with a deficiency in the formation of functional cell to cell contacts. In addition, a re-localization of E-cadherin from membranous in untreated to accumulation in cytoplasmatic puncta in plakoglobin siRNA treated BxPC3ΔCTNNB1 cells was observed. In conclusion we describe in β-catenin deficient BxPC-3 cells a rescue function for plakoglobin on cell to cell contacts and maintaining the localization of E-cadherin at the cellular surface, but not on canonical WNT signaling as measured by TFC/LEF mediated transcription.

Kaeda J, Ringel F, Oberender C, et al.
Up-regulated MSI2 is associated with more aggressive chronic myeloid leukemia.
Leuk Lymphoma. 2015; 56(7):2105-13 [PubMed] Related Publications
A better understanding of events triggering chronic myeloid leukemia progression is critical for optimized clinical management of chronic myeloid leukemia (CML). We sought to validate that increased expression of Musashi 2 (MSI2), a post-transcription regulator, is associated with progression and prognosis. Screening of 152 patients with CML showed that MSI2 was significantly decreased among patients with CML in chronic phase (CP) at diagnosis (p < 0.0001), but found no significant difference between the normal control group and treated patients with CML in CP. Moreover MSI2 was significantly increased (p < 0.0001) in patients with advance disease (AD) CML. Furthermore, our human hematopoietic cell line data imply that MSI2 and BCR-ABL1 mRNA expression are correlated. However, these data cast a doubt on earlier reports that MSI2 effects HES1 expression via NUMB-NOTCH signaling.

Goto K, Oue N, Hayashi T, et al.
Oligophrenin-1 is associated with cell adhesion and migration in prostate cancer.
Pathobiology. 2014; 81(4):190-8 [PubMed] Related Publications
OBJECTIVE: We performed Escherichia coli ampicillin secretion trap (CAST) analysis in prostate cancer (PCa) to identify novel biomarkers. We show here that OPHN1, which encodes oligophrenin-1 protein, is upregulated in PCa. OPHN1 was first determined to be one of the genes associated with X-linked mental retardation; however, neither the gene's function nor the link between its expression and survival of patients has been investigated.
METHODS: We investigate the expression of oligophrenin-1 in 141 PCa tissue samples by immunohistochemistry and perform functional analysis using RNA interference.
RESULTS: Immunohistochemical analysis of oligophrenin-1 demonstrated that 60 (43%) PCa cases were positive for oligophrenin-1. Positive oligophrenin-1 expression was significantly correlated with a high Gleason score (p = 0.0198). Furthermore, patients with oligophrenin-1-positive PCa had a worse biochemical recurrence-free survival rate than patients with oligophrenin-1-negative PCa (p = 0.0079). Cell adhesion to fibronectin was significantly reduced in OPHN1 small interfering (si)RNA-transfected LNCaP and PC3 cells in comparison to negative-control siRNA-transfected cells. Knockdown of OPHN1 reduced the expression of ITGA5 and stress fiber formation in LNCaP and PC3 cells.
CONCLUSION: These results suggest that oligophrenin-1 is involved in tumor progression in PCa.

Klammer M, Dybowski JN, Hoffmann D, Schaab C
Identification of significant features by the Global Mean Rank test.
PLoS One. 2014; 9(8):e104504 [PubMed] Free Access to Full Article Related Publications
With the introduction of omics-technologies such as transcriptomics and proteomics, numerous methods for the reliable identification of significantly regulated features (genes, proteins, etc.) have been developed. Experimental practice requires these tests to successfully deal with conditions such as small numbers of replicates, missing values, non-normally distributed expression levels, and non-identical distributions of features. With the MeanRank test we aimed at developing a test that performs robustly under these conditions, while favorably scaling with the number of replicates. The test proposed here is a global one-sample location test, which is based on the mean ranks across replicates, and internally estimates and controls the false discovery rate. Furthermore, missing data is accounted for without the need of imputation. In extensive simulations comparing MeanRank to other frequently used methods, we found that it performs well with small and large numbers of replicates, feature dependent variance between replicates, and variable regulation across features on simulation data and a recent two-color microarray spike-in dataset. The tests were then used to identify significant changes in the phosphoproteomes of cancer cells induced by the kinase inhibitors erlotinib and 3-MB-PP1 in two independently published mass spectrometry-based studies. MeanRank outperformed the other global rank-based methods applied in this study. Compared to the popular Significance Analysis of Microarrays and Linear Models for Microarray methods, MeanRank performed similar or better. Furthermore, MeanRank exhibits more consistent behavior regarding the degree of regulation and is robust against the choice of preprocessing methods. MeanRank does not require any imputation of missing values, is easy to understand, and yields results that are easy to interpret. The software implementing the algorithm is freely available for academic and commercial use.

Shinmei S, Sentani K, Hayashi T, et al.
Identification of PRL1 as a novel diagnostic and therapeutic target for castration-resistant prostate cancer by the Escherichia coli ampicillin secretion trap (CAST) method.
Urol Oncol. 2014; 32(6):769-78 [PubMed] Related Publications
OBJECTIVES: Although chemotherapy for castration-resistant prostate cancer (CRPC) has been applied clinically in recent years, the effects are not sufficient. It is urgently necessary to develop novel therapeutics for CRPC. We previously generated Escherichia coli ampicillin secretion trap libraries of 2 prostate cancer (PCa) cell lines and normal prostate. By comparing the E. coli ampicillin secretion trap libraries of CRPC cell lines with those of androgen-sensitive PCa cell lines and normal prostate, we focused on the protein-tyrosine-phosphatase of regenerating liver 1 (PRL1) gene and analyzed its expression and biological function.
MATERIALS AND METHODS: The expression of PRL1 was examined by quantitative reverse transcription polymerase chain reaction and immunohistochemistry in clinical PCa samples. The effects of PRL1 on PCa cells were evaluated by cell growth, migration, and invasion assays. To investigate the effect of PRL1 on epidermal growth factor receptor (EGFR) signaling, PRL1 knockdown PC3 cells were examined by Western blot and immunohistochemical analyses.
RESULTS: Quantitative reverse transcription polymerase chain reaction revealed that PRL1 was expressed much more highly in PCa than in nonneoplastic prostate samples. High expression of PRL1 detected by immunohistochemistry correlated with poor prognosis after prostatectomy and combined androgen blockade therapy. Functional analysis indicated that PRL1 stimulated cell growth, migration, and invasion in PCa cell lines. Expression EGFR and matrix metalloproteinase 9 was reduced by knockdown of PRL1 in the PC3 cell line.
CONCLUSIONS: PRL1 regulates expression of EGFR and modulates downstream targets. PRL1 has potential as a therapeutic target in PCa including CRPC.

Oo HZ, Sentani K, Sakamoto N, et al.
Overexpression of ZDHHC14 promotes migration and invasion of scirrhous type gastric cancer.
Oncol Rep. 2014; 32(1):403-10 [PubMed] Related Publications
Scirrhous type gastric cancer is highly aggressive and has a poorer prognosis than many other types of gastric carcinoma, due to its characteristic rapid cancer cell infiltration and proliferation, extensive stromal fibrosis, and frequent peritoneal dissemination. The aim of the present study was to identify novel prognostic markers or therapeutic targets for scirrhous type gastric cancer. We reviewed a list of genes with upregulated expression in scirrhous type gastric cancer and compared their expression with that in normal stomach from our previous Escherichia coli (E. coli) ampicillin secretion-trap (CAST) analysis. We focused on the ZDHHC14 gene, which encodes zinc finger, DHHC-type containing 14 protein. qRT-PCR analysis of ZDHHC14 in 41 gastric cancer cases revealed that compared to mRNA levels in normal non-neoplastic gastric mucosa, ZDHHC14 mRNA was overexpressed in 27% of gastric cancer tissue samples. The overexpression of ZDHHC14 was significantly associated with depth of tumor invasion, undifferentiated histology and scirrhous pattern. The invasiveness of ZDHHC14-knockdown HSC-44PE and 44As3 gastric cancer cells was decreased in comparison with that of the negative control siRNA-transfected cells, together with downregulation of MMP-17 mRNA. Integrins α5 and β1 were also downregulated in ZDHHC14-knockdown 44As3 cells. Forced expression of ZDHHC14 activated gastric cancer cell migration and invasion in vitro. These results indicate that ZDHHC14 is involved in tumor progression in patients with scirrhous type gastric cancer.

Oo HZ, Sentani K, Sakamoto N, et al.
Identification of novel transmembrane proteins in scirrhous-type gastric cancer by the Escherichia coli ampicillin secretion trap (CAST) method: TM9SF3 participates in tumor invasion and serves as a prognostic factor.
Pathobiology. 2014; 81(3):138-48 [PubMed] Related Publications
OBJECTIVE: Scirrhous-type gastric cancer (GC) is highly aggressive and has a poor prognosis due to rapid cancer cell infiltration accompanied by extensive stromal fibrosis. The aim of this study is to identify genes that encode transmembrane proteins frequently expressed in scirrhous-type GC.
METHODS: We compared Escherichia coli ampicillin secretion trap (CAST) libraries from 2 human scirrhous-type GC tissues with a normal stomach CAST library. By sequencing 2,880 colonies from scirrhous CAST libraries, we identified a list of candidate genes.
RESULTS: We focused on the TM9SF3 gene because it has the highest clone count, and immunohistochemical analysis demonstrated that 46 (50%) of 91 GC cases were positive for TM9SF3, which was observed frequently in scirrhous-type GC. TM9SF3 expression showed a significant correlation with the depth of invasion, tumor stage and undifferentiated GC. There was a strong correlation between TM9SF3 expression and poor patient outcome, which was validated in two separate cohorts by immunostaining and quantitative RT-PCR, respectively. Transient knockdown of the TM9SF3 gene by siRNA showed decreased tumor cell-invasive capacity.
CONCLUSION: Our results indicate that TM9SF3 might be a potential diagnostic and therapeutic target for scirrhous-type GC.

Li P, Yang R, Gao WQ
Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer.
Mol Cancer. 2014; 13:55 [PubMed] Free Access to Full Article Related Publications
An important clinical challenge in prostate cancer therapy is the inevitable transition from androgen-sensitive to castration-resistant and metastatic prostate cancer. Albeit the androgen receptor (AR) signaling axis has been targeted, the biological mechanism underlying the lethal event of androgen independence remains unclear. New emerging evidences indicate that epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) play crucial roles during the development of castration-resistance and metastasis of prostate cancer. Notably, EMT may be a dynamic process. Castration can induce EMT that may enhance the stemness of CSCs, which in turn results in castration-resistance and metastasis. Reverse of EMT may attenuate the stemness of CSCs and inhibit castration-resistance and metastasis. These prospective approaches suggest that therapies target EMT and CSCs may cast a new light on the treatment of castration-resistant prostate cancer (CRPC) in the future. Here we review recent progress of EMT and CSCs in CRPC.

Kuo CH, Liu CJ, Lu CY, et al.
17β-estradiol inhibits mesenchymal stem cells-induced human AGS gastric cancer cell mobility via suppression of CCL5- Src/Cas/Paxillin signaling pathway.
Int J Med Sci. 2014; 11(1):7-16 [PubMed] Free Access to Full Article Related Publications
Gender differences in terms of mortality among many solid organ malignancies have been proved by epidemiological data. Estrogen has been suspected to cast a protective effect against cancer because of the lower mortality of gastric cancer in females and the benefits of hormone replacement therapy (HRT) in gastric cancer. Hence, it suggests that 17β-estradiol (E2) may affect the behavior of cancer cells. One of the key features of cancer-related mortality is metastasis. Accumulating evidences suggest that human bone marrow mesenchymal stem cells (HBMMSCs) and its secreted CCL-5 have a role in enhancing the metastatic potential of breast cancer cells. However, it is not clear whether E2 would affect HBMMSCs-induced mobility in gastric cancer cells. In this report, we show that CCL-5 secreted by HBMMSCs enhanced mobility in human AGS gastric cancer cells via activation of Src/Cas/Paxillin signaling pathway. Treatment with specific neutralizing antibody of CCL-5 significantly inhibited HBMMSCs-enhanced mobility in human AGS gastric cancer cells. We further observe that 17β-estradiol suppressed HBMMSCs-enhanced mobility by down-regulating CCL5-Src/Cas/paxillin signaling pathway in AGS cells. Collectively, these results suggest that 17β-estradiol treatment significantly inhibits HBMMSCS-induced mobility in human AGS gastric cancer cells.

Wolf J, Müller-Decker K, Flechtenmacher C, et al.
An in vivo RNAi screen identifies SALL1 as a tumor suppressor in human breast cancer with a role in CDH1 regulation.
Oncogene. 2014; 33(33):4273-8 [PubMed] Related Publications
The gold standard for determining the tumorigenic potential of human cancer cells is a xenotransplantation into immunodeficient mice. Higher tumorigenicity of cells is associated with earlier tumor onset. Here, we used xenotransplantation to assess the tumorigenic potential of human breast cancer cells following RNA interference-mediated inhibition of over 5000 genes. We identify 16 candidate tumor suppressors, one of which is the zinc-finger transcription factor SALL1. Analyzing this particular molecule in more detail, we show that inhibition of SALL1 correlates with reduced levels of CDH1, an important contributor to epithelial-to-mesenchymal transition. Furthermore, SALL1 expression led to an increased migration and more than twice as many cells expressing a cancer stem cell signature. Also, SALL1 expression correlates with the survival of breast cancer patients. These findings cast new light on a gene that has previously been described to be relevant during embryogenesis, but not carcinogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CAST, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999