CCNB1

Gene Summary

Gene:CCNB1; cyclin B1
Aliases: CCNB
Location:5q13.2
Summary:The protein encoded by this gene is a regulatory protein involved in mitosis. The gene product complexes with p34(cdc2) to form the maturation-promoting factor (MPF). Two alternative transcripts have been found, a constitutively expressed transcript and a cell cycle-regulated transcript, that is expressed predominantly during G2/M phase. The different transcripts result from the use of alternate transcription initiation sites. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:G2/mitotic-specific cyclin-B1
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (47)
Pathways:What pathways are this gene/protein implicaed in?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CCNB1 (cancer-related)

Dai L, Wang G, Pan W
Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.
Biomed Res Int. 2017; 2017:6242103 [PubMed] Free Access to Full Article Related Publications
To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

Bastos V, Ferreira-de-Oliveira JM, Carrola J, et al.
Coating independent cytotoxicity of citrate- and PEG-coated silver nanoparticles on a human hepatoma cell line.
J Environ Sci (China). 2017; 51:191-201 [PubMed] Related Publications
The antibacterial potential of silver nanoparticles (AgNPs) resulted in their increasing incorporation into consumer, industrial and biomedical products. Therefore, human and environmental exposure to AgNPs (either as an engineered product or a contaminant) supports the emergent research on the features conferring them different toxicity profiles. In this study, 30nm AgNPs coated with citrate or poly(ethylene glycol) (PEG) were used to assess the influence of coating on the effects produced on a human hepatoma cell line (HepG2), namely in terms of viability, apoptosis, apoptotic related genes, cell cycle and cyclins gene expression. Both types of coated AgNPs decreased cell proliferation and viability with a similar toxicity profile. At the concentrations used (11 and 5μg/mL corresponding to IC50 and ~IC10 levels, respectively) the amount of cells undergoing apoptosis was not significant and the apoptotic related genes BCL2 (anti-apoptotic gene) and BAX (pro-apoptotic gene) were both downregulated. Moreover, both AgNPs affected HepG2 cell cycle progression at the higher concentration (11μg/mL) by increasing the percentage of cells in S (synthesis phase) and G2 (Gap 2 phase) phases. Considering the cell-cycle related genes, the expression of cyclin B1 and cyclin E1 genes were decreased. Thus, this work has shown that citrate- and PEG-coated AgNPs impact on HepG2 apoptotic gene expression, cell cycle dynamics and cyclin regulation in a similar way. More research is needed to determine the properties that confer AgNPs at lower toxicity, since their use has proved helpful in several industrial and biomedical contexts.

Zhang H, Zhong J, Bian Z, et al.
Long non-coding RNA CCAT1 promotes human retinoblastoma SO-RB50 and Y79 cells through negative regulation of miR-218-5p.
Biomed Pharmacother. 2017; 87:683-691 [PubMed] Related Publications
OBJECTIVE: To investigate the regulatory role and potential mechanism of long non-coding RNAs (lncRNA) in human retinoblastoma (RB).
METHODS: The lncRNA profile in RB tissues were analyzed by microarray and quantitative reverse transcription PCR (qRT-PCR). One of the identified lncRNAs (LncRNA CCAT1) was selected for further experiments. SO-RB50 and Y79 cells were transfected with negative control, siRNA targeting lncRNA CCAT1 (si-CCAT1) and si-CCAT1+miR218-5p inhibitor, respectively. lncRNA CCAT1 expression was measured by qRT-PCR. Cell proliferation, migration and invasion were detected by CCK8, wound scratching, and transwell assay, respectively. Apoptosis and cell cycle distribution were assessed by flow cytometry. Apoptosis- (cle-caspase-3, cle-caspase-9, Bax and Bcl-2) and cell cycle-related protein expression (cyclin B1, CDC2 and p-CDC2 (Thr161)) were analyzed by Western blot.
RESULTS: lncRNA CCAT1 expression in SO-RB50 and Y79 cells was significantly inhibited after si-CCAT1 transfection (P<0.01). Both RB cells exhibited significantly reduced proliferation, migration and invasion abilities, but markedly increased apoptosis at 48h after si-CCAT1 transfection (P<0.05 or 0.01). RB cells in si-CCAT1+miR218-5p inhibitor group had significantly higher proliferation, migration and invasion, but notably lower apoptosis compared with si-CCAT1 group at 24 and 48h after transfection (all P<0.05 or 0.01). si-CCAT1 significantly increased the expression of cle-caspase-3, cle-caspase-9, Bax, but decreased Bcl-2 expression (P<0.01). The proportion of G2/M SO-RB50 and Y79 cells in siCCAT1 group was significantly increased compared with negative control group (P<0.01). LncRNA CCAT1 interference significantly reduced the expression of cyclin B1, CDC2 and p-CDC2 (Thr161) (P<0.01).
CONCLUSION: LncRNA CCAT1 promotes the proliferation migration and invasion, and reduces cell apoptosis of SO-RB50 and Y79 cells, probably through negative modulation of miR-218-5p. Our study suggested lncRNA CCAT1 as a potential biomarker and therapeutic target for RB.

Liu L, Xu Y, Reiter RJ, et al.
Inhibition of ERK1/2 Signaling Pathway is Involved in Melatonin's Antiproliferative Effect on Human MG-63 Osteosarcoma Cells.
Cell Physiol Biochem. 2016; 39(6):2297-2307 [PubMed] Related Publications
BACKGROUND: In a previous study, we found that melatonin inhibits MG-63 osteosarcoma cell proliferation; however, the underlying mechanisms remain elusive. Mitogen-activated protein kinase (MAPK) and Akt signaling pathways play key roles in the anticancer effects of melatonin.
AIMS: The present study investigated whether MAPK and Akt signaling pathways are involved in melatonin's antiproliferative actions on the human MG-63 osteosarcoma cells.
METHODS/RESULTS: Western blot analysis confirmed that melatonin significantly inhibited phosphorylation of ERK1/2 but not p38, JNK, or Akt. The expression of ERK1/2, p38, JNK, and Akt was not altered by melatonin. PD98059 and melatonin alone, and especially in combination, significantly inhibited cell proliferation. The changes included G1 and G2/M phase arrest of the cell cycle, and a downregulation of the expression at both the protein and mRNA levels of cyclin D1 and CDK4 (related to the G1 phase) and of cyclin B1 and CDK1 (related to the G2/M phase) as measured by flow cytometry after propidium iodide staining, and both western blot and real-time PCR, respectively. Furthermore, the combination of PD98059 and melatonin synergistically and markedly augmented the action of either agent alone. Co-immunoprecipitation further confirmed that there was an interaction between p-ERK1/2 and cyclin D1, CDK4, cyclin B1, or CDK1, which was blunted in the presence of melatonin or PD98059.
CONCLUSION: These findings suggest that melatonin's antiproliferative action is mediated by inhibition of the ERK1/2 signaling pathway rather than the p38, JNK, or Akt pathways.

Hass HG, Vogel U, Scheurlen M, Jobst J
Gene-expression Analysis Identifies Specific Patterns of Dysregulated Molecular Pathways and Genetic Subgroups of Human Hepatocellular Carcinoma.
Anticancer Res. 2016; 36(10):5087-5095 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma comprises of a group of heterogeneous tumors of different etiologies. The multistep process of liver carcinogenesis involves various genetic and phenotypic alterations. The molecular pathways and driver mutations involved are still under investigation.
MATERIALS AND METHODS: DNA micorarray technology was used to identify differentially expressed genes between human hepatocarcinoma and non-tumorous liver tissues to establish a unique specific gene-expression profile independent of the underlying liver disease. The validity of this global gene-expression profile was tested for its robustness against biopsies from other liver entities (cirrhotic and non-cirrhotic liver) by diagnosing HCC in blinded samples.
RESULTS: Most of the consistently and strongly overexpressed genes were related to cell-cycle regulation and DNA replication [27 genes, e.g. cyclin B1, karyopherin alpha 2 (KPNA2), cyclin-dependent kinase 2 (CDC2)], G-protein depending signaling [e.g. Rac GTPase activating protein 1 (RACGAP1), Rab GTPase YPT1 homolog (RAB1), and ADP-ribosylation factor-like 2 (ARL2)] and extracellular matrix re-modelling or cytoskeleton structure [22 genes, e.g. serine proteinase inhibitor 1 kazal-type (SPINK1), osteopontin (OPN), secreted protein acidic and rich in cysteine (SPARC), collagen type 1 alpha2 (COL1A2), integrin alpha6 (ITGA6), and metalloproteinase 12 (MMP12)]. Furthermore, significantly differentially expressed genes (e.g. calcium-binding proteins, G-proteins, oncofetal proteins) in relation to tumor differentiation were detected using gene-expression analysis.
CONCLUSION: It is suggested that these significantly dysregulated genes are highly specific and potentially utilizable as prognostic markers and may lead to a better understanding of human hepatocarcinogenesis.

Dadhania V, Zhang M, Zhang L, et al.
Meta-Analysis of the Luminal and Basal Subtypes of Bladder Cancer and the Identification of Signature Immunohistochemical Markers for Clinical Use.
EBioMedicine. 2016; 12:105-117 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: It has been suggested that bladder cancer can be divided into two molecular subtypes referred to as luminal and basal with distinct clinical behaviors and sensitivities to chemotherapy. We aimed to validate these subtypes in several clinical cohorts and identify signature immunohistochemical markers that would permit simple and cost-effective classification of the disease in primary care centers.
METHODS: We analyzed genomic expression profiles of bladder cancer in three cohorts of fresh frozen tumor samples: MD Anderson (n=132), Lund (n=308), and The Cancer Genome Atlas (TCGA) (n=408) to validate the expression signatures of luminal and basal subtypes and relate them to clinical follow-up data. We also used an MD Anderson cohort of archival bladder tumor samples (n=89) and a parallel tissue microarray to identify immunohistochemical markers that permitted the molecular classification of bladder cancer.
FINDINGS: Bladder cancers could be assigned to two candidate intrinsic molecular subtypes referred to here as luminal and basal in all of the datasets analyzed. Luminal tumors were characterized by the expression signature similar to the intermediate/superficial layers of normal urothelium. They showed the upregulation of PPARγ target genes and the enrichment for FGFR3, ELF3, CDKN1A, and TSC1 mutations. In addition, luminal tumors were characterized by the overexpression of E-Cadherin, HER2/3, Rab-25, and Src. Basal tumors showed the expression signature similar to the basal layer of normal urothelium. They showed the upregulation of p63 target genes, the enrichment for TP53 and RB1 mutations, and overexpression of CD49, Cyclin B1, and EGFR. Survival analyses showed that the muscle-invasive basal bladder cancers were more aggressive when compared to luminal cancers. The immunohistochemical expressions of only two markers, luminal (GATA3) and basal (KRT5/6), were sufficient to identify the molecular subtypes of bladder cancer with over 90% accuracy.
INTERPRETATION: The molecular subtypes of bladder cancer have distinct clinical behaviors and sensitivities to chemotherapy, and a simple two-marker immunohistochemical classifier can be used for prognostic and therapeutic stratification.
FUNDING: U.S. National Cancer Institute and National Institute of Health.

Mohammadi A, Mansoori B, Aghapour M, et al.
The Urtica dioica extract enhances sensitivity of paclitaxel drug to MDA-MB-468 breast cancer cells.
Biomed Pharmacother. 2016; 83:835-842 [PubMed] Related Publications
INTRODUCTION: Due to the chemo resistant nature of cancer cells and adverse effects of current therapies, researchers are looking for the most efficient therapeutic approach which has the lowest side effects and the highest toxicity on cancer cells. The aim of the present study was to investigate the synergic effect of Urtica dioica extract in combination with paclitaxel on cell death and invasion of human breast cancer MDA-MB-468 cell line.
MATERIALS AND METHODS: To determine the cytotoxic effects of Urtica dioica extract with paclitaxel, MTT assay was performed. The scratch test was exploited to assess the effects of Urtica dioica, Paclitaxel alone and combination on migration of cancer cells. The expression levels of snail-1, ZEB1, ZEB2, twist, Cdc2, cyclin B1 and Wee1 genes were quantified using qRT-PCR and western blot performed for snail-1expression. The effects of plant extract, Paclitaxel alone and combination on different phases of cell cycle was analyzed using flow cytometry.
RESULTS: Results of MTT assay showed that Urtica dioica significantly destroyed cancer cells. Interestingly, Concurrent use of Urtica dioica extract with paclitaxel resulted in decreased IC50 dose of paclitaxel. Moreover, findings of scratch assay exhibited the inhibitory effects of Urtica dioica, Paclitaxel alone and combination on migration of MDA-MB-468 cell line. Our findings also demonstrated that the extract substantially decreased the Snail-1 and related gene expression. Ultimately, Cell cycle arrest occurred at G2/M phase post-treatment by deregulating Cdc2 and wee1.
CONCLUSIONS: Our results demonstrated that the dichloromethane extract of Urtica dioica inhibit cell growth and migration. Also, Urtica dioica extract substantially increased sensitivity of breast cancer cells to paclitaxel. Therefore, it can be used as a potential candidate for treatment of breast cancer with paclitaxel.

Eyvani H, Moghaddaskho F, Kabuli M, et al.
Arsenic trioxide induces cell cycle arrest and alters DNA methylation patterns of cell cycle regulatory genes in colorectal cancer cells.
Life Sci. 2016; 167:67-77 [PubMed] Related Publications
AIMS: Cell cycle dysregulation is important in tumorigenesis. Transcriptional silencing of cell cycle regulatory genes, due to DNA methylation, is a common epigenetic event in malignancies. As2O3 has been shown to induce cell cycle arrest and also to be a potential hypomethylating agent. Our study aimed to investigate DNA methylation patterns of cell cycle regulatory genes promoters, the effects of Arsenic trioxide (As2O3) on the methylated genes and cell cycle distribution in colorectal cancer (CRC) cell lines.
MAIN METHODS: The methylation-specific PCR (MSP) and/or restriction enzyme-based methods were used to study the promoter methylation patterns of 24 cell cycle regulatory genes in CRC cell lines. Gene expression level and cell cycle distribution were determined by Real-time PCR and flow cytometric analyses, respectively.
KEY FINDINGS: Our methylation analysis indicated that only promoters of RBL1 (p107), CHFR and p16 genes were aberrantly methylated in three cell lines. As2O3 significantly decreased DNA methylation in promoter regions of these genes and restored their expression. We found that As2O3 significantly reduced the expression of DNA methyltransferase 1 (DNMT1) and increased arsenic methyltransferase (AS3MT). Furthermore, As2O3 altered transcriptional activity of several unmethylated cell cycle regulatory genes including cyclin B1, E1, D1, GADD45A and p21. Cell cycle flow cytometry analysis showed As2O3 induced G2/M arrest in all three cell lines.
SIGNIFICANCE: These data suggest that demethylation and alteration in the expression level of the cell cycle-related genes may be possible mechanisms in As2O3-induced cell cycle arrest in colorectal cancer cells.

Choi HE, Shin JS, Leem DG, et al.
6-(3,4-Dihydro-1H-isoquinoline-2-yl)-N-(6-methoxypyridine-2-yl) nicotinamide-26 (DIMN-26) decreases cell proliferation by induction of apoptosis and downregulation of androgen receptor signaling in human prostate cancer cells.
Chem Biol Interact. 2016; 260:196-207 [PubMed] Related Publications
Previously, we reported that 6-(3,4-dihydro-1H-isoquinolin-2-yl)-N-(6-methylpyridin-2-yl) nicotinamide (DIMN) analogues inhibited the growth of prostate cancer cells as an anti-androgenic compound. In the present study, we evaluated cytotoxic effects of these DIMN derivatives and found that DIMN-26 most potently inhibited the proliferation of the LNCap-LN3 androgen-dependent and DU145 androgen-independent prostate cancer cells through induction of G2/M phase cell cycle arrest and subsequent apoptosis. The G2/M phase arrest was found due to increases in the activation of cdc2 (also known as cyclin-dependent kinase 1, CDK1)/cyclin B1 complex. DIMN-26 also induced apoptosis in LNCap-LN3 and DU145 prostate cancer cells through activation of caspase-3, -8, and -9, and cleavage of poly(ADP-ribose) polymerase-1 (PARP-1). In addition, DIMN-26 caused the dephosphorylation and mitochondrial accumulation of Bad protein and induced the loss of mitochondria membrane potential, consequently releasing cytochrome c into the cytosol of the cell. Furthermore, overexpression of AKT protein significantly reduced DIMN-26-induced PARP-1 cleavage and p-Bad decrease and cdc2 activation. In addition, DIMN-26 inhibited the 5α-dihydrotestosterone (DHT)-induced cell growth and proliferation and nuclear translocation and transcriptional activities of androgen receptor (AR) in LNCap-LN3 prostate cancer cells. Consistent with these findings, DIMN-26 significantly inhibited the DHT-induced expression of AR-response genes (ARGs), such as prostate-specific antigen (PSA), AR, β2-microglobulin (B2M), selenoprotein P (SEPP1), and ste20-related proline-alanine-rich kinase (SPAK) in LNCap-LN3 prostate cancer cells. Taken together, these results suggest that DIMN-26 plays a therapeutic role not only in induction of G2/M arrest and apoptosis but also in suppression of androgen receptor signaling in androgen-dependent and androgen-independent prostate cancer cells.

Liu KC, Shih TY, Kuo CL, et al.
Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells.
Am J Chin Med. 2016; 44(6):1289-1310 [PubMed] Related Publications
Sulforaphane (SFN), an isothiocyanate, exists exclusively in cruciferous vegetables, and has been shown to possess potent antitumor and chemopreventive activity. However, there is no available information that shows SFN affecting human colon cancer HCT 116 cells. In the present study, we found that SFN induced cell morphological changes, which were photographed by contrast-phase microscopy, and decreased viability. SFN also induced G2/M phase arrest and cell apoptosis in HCT 116 cells, which were measured with flow cytometric assays. Western blotting indicated that SFN increased Cyclin A, cdk 2, Cyclin B and WEE1, but decreased Cdc 25C, cdk1 protein expressions that led to G2/M phase arrest. Apoptotic cell death was also confirmed by Annexin V/PI and DAPI staining and DNA gel electrophoresis in HCT 116 cells after exposure to SFN. The flow cytometric assay also showed that SFN induced the generation of reactive oxygen species (ROS) and Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell. Western blotting also showed that SFN induced the release of cytochrome c, and AIF, which was confirmed by confocal microscopy examination. SFN induced ER stress-associated protein expression. Based on those observations, we suggest that SFN may be used as a novel anticancer agent for the treatment of human colon cancer in the future.

Ma Y, Wang B, Guo Y, et al.
Inhibition of miR-196a affects esophageal cancer cell growth in vitro.
Biomed Pharmacother. 2016; 84:22-27 [PubMed] Related Publications
Esophageal cancer (EC) is one of the most common causes of cancer-related mortality worldwide. Several oncogenes such as miR-196a have been implicated in the carcinogenesis and progression of EC. The purpose of this study was to determine the effects of anti-miR-196a on the growth and survival of human EC cells in vitro. We found that miR-196a was highly expressed in both TE1 and EC109 cells and that miR-196a knockdown inhibited cell proliferation and migration. Furthermore, miR-196a knockdown sensitized EC cells to radiation treatment and chemotherapy. Inhibition of miR-196a also altered cell cycle progression and induced G2/M arrest, which was related to changes in the levels of cyclin B1. ABCG2, which was highly expressed in untransfected EC cells, was inhibited by miR-196a knockdown. Thus, our results confirm the fact that miR-196a is highly involved in the biological behavior of EC progression in vitro. We conclude that miR-196a is a useful biological marker and potential therapeutic target for the clinical treatment of human EC.

Jagadish N, Gupta N, Agarwal S, et al.
Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells.
Tumour Biol. 2016; 37(10):13101-13110 [PubMed] Related Publications
Recently, we demonstrated the association of sperm-associated antigen 9 (SPAG9) expression with breast cancer. Among breast cancer, 15 % of the cancers are diagnosed as triple-negative breast cancers (TNBC) based on hormone receptor status and represent an important clinical challenge because of lack of effective available targeted therapy. Therefore, in the present investigation, plasmid-based small hairpin (small hairpin RNA (shRNA)) approach was used to ablate SPAG9 in aggressive breast cancer cell line model (MDA-MB-231) in order to understand the role of SPAG9 at molecular level in apoptosis, cell cycle, and epithelial-to-mesenchymal transition (EMT) signaling. Our data in MDA-MB-231 cells showed that ablation of SPAG9 resulted in membrane blebbing, increased mitochondrial membrane potential, DNA fragmentation, phosphatidyl serine surface expression, and caspase activation. SPAG9 depletion also resulted in cell cycle arrest in G0-G1 phase and induced cellular senescence. In addition, in in vitro and in vivo xenograft studies, ablation of SPAG9 resulted in upregulation of p21 along with pro-apoptotic molecules such as BAK, BAX, BIM, BID, NOXA, AIF, Cyto-C, PARP1, APAF1, Caspase 3, and Caspase 9 and epithelial marker, E-cadherin. Also, SPAG9-depleted cells showed downregulation of cyclin B1, cyclin D1, cyclin E, CDK1, CDK4, CDK6, BCL2, Bcl-xL, XIAP, cIAP2, MCL1, GRP78, SLUG, SNAIL, TWIST, vimentin, N-cadherin, MMP2, MMP3, MMP9, SMA, and β-catenin. Collectively, our data suggests that SPAG9 promotes tumor growth by inhibiting apoptosis, altering cell cycle, and enhancing EMT signaling in in vitro cells and in vivo mouse model. Hence, SPAG9 may be a potential novel target for therapeutic use in TNBC treatment.

Huang X, Zhou W, Zhang Y, Liu Y
High Expression of PTGR1 Promotes NSCLC Cell Growth via Positive Regulation of Cyclin-Dependent Protein Kinase Complex.
Biomed Res Int. 2016; 2016:5230642 [PubMed] Free Access to Full Article Related Publications
Lung cancer has been the most common cancer and the main cause of cancer-related deaths worldwide for several decades. PTGR1 (prostaglandin reductase 1), as a bifunctional enzyme, has been involved in the occurrence and progression of cancer. However, its impact on human lung cancer is rarely reported. In this study, we found that PTGR1 was overexpressed in lung cancer based on the analyses of Oncomine. Moreover, lentivirus-mediated shRNA knockdown of PTGR1 reduced cell viability in human lung carcinoma cells 95D and A549 by MTT and colony formation assay. PTGR1 depletion led to G2/M phase cell cycle arrest and increased the proportion of apoptotic cells in 95D cells by flow cytometry. Furthermore, silencing PTGR1 in 95D cells resulted in decreased levels of cyclin-dependent protein kinase complex (CDK1, CDK2, cyclin A2, and cyclin B1) by western blotting and then PTGR1 is positively correlated with cyclin-dependent protein by using the data mining of the Oncomine database. Therefore, our findings suggest that PTGR1 may play a role in lung carcinogenesis through regulating cell proliferation and is a potential new therapeutic strategy for lung cancer.

Li G, Sun L, Mu Z, et al.
Ectopic WWOX Expression Inhibits Growth of 5637 Bladder Cancer Cell In Vitro and In Vivo.
Cell Biochem Biophys. 2015; 73(2):417-25 [PubMed] Related Publications
WW domain-containing oxidoreductase (WWOX) gene located in the common fragile site FRA16D region exhibits loss or reduction of expression in multiple types of carcinomas including bladder cancer. However, the role of WWOX in the tumorigenesis and development of bladder cancer remains elusive. In this study, WWOX overexpression construct was transfected into 5637 bladder cancer cell line in which WWOX expression was compromised. Constitutive expression of ectopic WWOX in 5637 cells suppressed cell proliferation and cell cycle progression, which was associated with downregulation of Cyclin B, D1, and E. Moreover, WWOX overexpression promoted apoptosis in 5637 cells and resulted in upregulation of Bax, downregulation of Bcl-2, and elevated levels of cleaved caspase-3 and cleaved PARP, indicating activation of the intrinsic apoptosis pathway. Furthermore, WWOX overexpression suppressed tumorigenicity of 5637 cells and promoted apoptosis in the xenograft tumors as demonstrated in a xenograft mouse model. In summary, our data indicate that WWOX plays a critical role in the regulation of proliferation, cell cycle, apoptosis, and tumorigenesis of bladder cancer cells, suggesting that WWOX may have potential clinical implications in bladder cancer therapy.

Wang DW, Yu SY, Cao Y, et al.
Identification of CD20, ECM, and ITGA as Biomarkers for Osteosarcoma by Integrating Transcriptome Analysis.
Med Sci Monit. 2016; 22:2075-85 [PubMed] Free Access to Full Article Related Publications
BACKGROUND Osteosarcoma is the most frequent primary bone cancer derived from primitive mesenchymal cells. The aim of this study was to explore the molecular mechanism of the development and progression of osteosarcoma. MATERIAL AND METHODS The gene expression profiles of osteosarcoma from 17 specimens (3 normal and 14 osteosarcoma) were downloaded from the GEO database. The differentially expressed genes were identified by use of the Limma package. DAVID and Enrichment Map were used to perform GO and KEGG pathways enrichment analysis and to integrate enrichment results of differentially expressed genes (DEGs). Protein-protein interaction network was constructed and analyzed to screen out the potential regulatory proteins using the STRING online tools. RESULTS A total of 417 DEGs were screened, including 215 up-regulated and 202 down-regulated ones, accounting for 51.56% and 48.4%, respectively. In GO term, a total of 12 up-regulated expression genes were enriched in Cellular Component. The up-regulated DEGs were enriched in 6 KEGG pathways while the down-regulated expression genes were enriched in 2 KEGG pathways. The constructed PPI network was aggregated with 1006 PPI relationships and 238 nodes, accounting for 57.07% of DEGs. We found that CD20, MCM, and CCNB1 (down-regulated) in cell cycle and ECM, ITGA, RTKin (up-regulated) in focal adhesion had important roles in the progression of osteosarcoma. CONCLUSIONS The identified DEGs and their enriched pathways provide references for the exploration of the molecular mechanism of the development and progression of osteosarcoma. Moreover, the key genes (CD20, ECM, and ITGA) may be useful in treatment and diagnosis of osteosarcoma.

Thomas C, Robinson C, Dessauvagie B, et al.
Expression of proliferation genes in formalin-fixed paraffin-embedded (FFPE) tissue from breast carcinomas. Feasibility and relevance for a routine histopathology laboratory.
J Clin Pathol. 2017; 70(1):25-32 [PubMed] Related Publications
AIM: Breast carcinoma proliferative activity, histological grade and commercial molecular tests are all important in prognostication and treatment. There is a particular need for improved, standardised techniques for subclassification of grade 2 breast cancers into low-risk and high-risk prognostic groups. In this study we investigated whether gene expression profiling of five proliferation genes was feasible using breast cancer tissue in a clinical setting and whether these profiles could enhance pathological assessment.
METHODS: Expression of five proliferation gene mRNAs; Ki-67, STK 15, CCNB1, CCND1 and MYBL2, was quantified in 27 breast carcinomas and compared with Ki-67 proliferation index (PI) and Nottingham mitotic score.
RESULTS: Expression of Ki-67, STK15 and MYBL2 mRNA showed moderate Spearman's correlation with Ki-67 PI (p<0.01), but CCND1 and CCNB1 showed weak, non-significant correlation. Individual gene expression did not associate with mitotic score but combined mRNA expression correlated with both Ki-67 PI (p=0.018) and mitotic score (p=0.03; 0.007).
CONCLUSIONS: This study confirms mRNA analysis in breast carcinoma formalin-fixed, paraffin-embedded samples is feasible and suggests gene expression profiling, using a small set of five proliferation genes, has potential in aiding histological grading or assessment of proliferative activity of breast cancers. To fully evaluate the clinical applicability of this approach, a larger cohort study with long-term follow-up data is required.

Zhang Y, Ran Y, Xiong Y, et al.
Effects of TMEM9 gene on cell progression in hepatocellular carcinoma by RNA interference.
Oncol Rep. 2016; 36(1):299-305 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a malignant tumor that has become a global health issue. The aim of the present study was to examine the role of transmembrane protein 9 (TMEM9) in cell progression, such as cell growth, cell cycle, cell metastasis of hepatoma cells, and to discuss the TMEM9 gene‑encoding protein as a potential therapy target of hepatoma. RT-qPCR was performed to examine TMEM9 expression in tumor tissues and adjacent tissues of patients with liver cancer. siRNAs were used to interfere TMEM9 in HepG2 and 7721 cells. A CCK-8 assay was performed to evaluate cell growth at 24, 48 and 72 h. Cell cycle and apoptosis were analyzed using flow cytometry. Transwell assays were used to determine cell invasion, migration and adhesion. The results showed that TMEM9 was expressed abnormally in liver cancers. TMEM9 expression increased significantly in the 34 examined patients. TMEM9 knockdown inhibited proliferation in the HepG2 and 7721 cells. The flow cytometric analysis revealed that TMEM9 knockdown by RNA interference resulted in G1 arrest and induced apoptosis. Cell invasion, migration and adhesion ability were also decreased. Western blotting indicated that expression of the cell cycle‑related proteins CDK1, EIF3H, RPL10L, S100A10, CCNB1 and CCNB2 was significantly decreased. In conclusion, TMEM9 plays an important role in the cell growth of hepatoma cells.

Feng W, Li HC, Xu K, et al.
SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line.
Gene. 2016; 587(1):91-7 [PubMed] Related Publications
BACKGROUND: SHC SH2-binding protein 1, a member of Src homolog and collagen homolog (Shc) family, has been recently identified in different contexts in unbiased screening assays. It has been reported to be over-expressed in several malignant cancers.
METHODS: Immunohistochemistry of SHCBP1 on 128 breast cancer tissues and adjacent normal tissues were used to evaluate the prognostic significance of SHCBP1. Survival analyses were performed by Kaplan-Meier method. CRISPR/CAS9 method was used to knockout SHCBP1 expression. CRISPR/CAS9 technology was used to knockout SHCBP1 in 2 breast cancer cell lines. MTT assay, BrdU assay, colony formation assay, cell cycle assay and apoptosis analysis in MCF-7 and MDA-MB-231 cell lines were carried out to evaluate the effects of SHCBP1 on breast cancer in vitro.
RESULTS: Immunohistochemical analysis revealed SHCBP1 was significantly up-regulated in breast cancer tissues compared with adjacent normal tissues (82 of 128, 64%). Over-expressed SHCBP1 was correlated with advanced clinical stage and poorer survival. Ablation of SHCBP1 inhibited the proliferation in vitro. SHCBP1 knockout increased cyclin-dependent kinase inhibitor p21, and decreased the Cyclin B1 and CDK1.
CONCLUSION: Our study suggests SHCBP1 is dysregulated expressed in breast cancer and plays a critical role in cancer progression, which can be a potential prognosis predictor of breast cancer.

Medina-Aguilar R, Marchat LA, Arechaga Ocampo E, et al.
Resveratrol inhibits cell cycle progression by targeting Aurora kinase A and Polo-like kinase 1 in breast cancer cells.
Oncol Rep. 2016; 35(6):3696-704 [PubMed] Related Publications
The Aurora protein kinase (AURKA) and the Polo-like kinase-1 (PLK1) activate the cell cycle, and they are considered promising druggable targets in cancer therapy. However, resistance to chemotherapy and to specific small‑molecule inhibitors is common in cancer patients; thus alternative therapeutic approaches are needed to overcome clinical resistance. Here, we showed that the dietary compound resveratrol suppressed the cell cycle by targeting AURKA and PLK1 kinases. First, we identified genes modulated by resveratrol using a genome-wide analysis of gene expression in MDA-MB-231 breast cancer cells. Transcriptional profiling indicated that 375 genes were modulated at 24 h after resveratrol intervention, whereas 579 genes were regulated at 48 h. Of these, 290 genes were deregulated in common at 24 and 48 h. Interestingly, a significant decrease in the expression of genes involved in the cell cycle, DNA repair, cytoskeleton organization, and angiogenesis was detected. In particular, AURKA and PLK1 kinases were downregulated by resveratrol at 24 h. In addition the BRCA1 gene, an AURKA/PLK1 inhibitor, was upregulated at 24 h of treatment. Moreover, two well-known resveratrol effectors, cyclin D1 (CCND1) and cyclin B1 (CCNB1), were also repressed at both times. Congruently, we found that resveratrol impaired G1/S phase transition in both MDA-MB-231 and MCF-7 cells. By western blot assays, we confirmed that resveratrol suppressed AURKA, CCND1 and CCNB1 at 24 and 48 h. In summary, we showed for the first time that resveratrol regulates cell cycle progression by targeting AURKA and PLK1. Our findings highlight the potential use of resveratrol as an adjuvant therapy for breast cancer.

Ashour AE, Ahmed AF, Kumar A, et al.
Thymoquinone inhibits growth of human medulloblastoma cells by inducing oxidative stress and caspase-dependent apoptosis while suppressing NF-κB signaling and IL-8 expression.
Mol Cell Biochem. 2016; 416(1-2):141-55 [PubMed] Related Publications
Medulloblastoma (MB) is the most common malignant brain tumor of childhood. The transcription factor NF-κB is overexpressed in human MB and is a critical factor for MB tumor growth. NF-κB is known to regulate the expression of interleukin-8 (IL-8), the chemokine that enhances cancer cell growth and resistance to chemotherapy. We have recently shown that thymoquinone (TQ) suppresses growth of hepatocellular carcinoma cells in part by inhibiting NF-κB signaling. Here we sought to extend these studies in MB cells and show that TQ suppresses growth of MB cells in a dose- and time-dependent manner, causes G2M cell cycle arrest, and induces apoptosis. TQ significantly increased generation of reactive oxygen species (ROS), while pretreatment of MB cells with the ROS scavenger N-acetylcysteine (NAC) abrogated TQ-induced cell death and apoptosis, suggesting that TQ-induced cell death and apoptosis are oxidative stress-mediated. TQ inhibitory effects were associated with inhibition of NF-κB and altered expression of its downstream effectors IL-8 and its receptors, the anti-apoptotic Bcl-2, Bcl-xL, X-IAP, and FLIP, as well as the pro-apoptotic TRAIL-R1, caspase-8, caspase-9, Bcl-xS, and cytochrome c. TQ-triggered apoptosis was substantiated by up-regulation of the executioner caspase-3 and caspase-7, as well as cleavage of the death substrate poly(ADP-ribose)polymerase. Interestingly, pretreatment of MB cells with NAC or the pan-caspase inhibitor zVAD-fmk abrogated TQ-induced apoptosis, loss of cyclin B1 and NF-κB activity, suggesting that these TQ-mediated effects are oxidative stress- and caspase-dependent. These findings reveal that TQ induces both extrinsic and intrinsic pathways of apoptosis in MB cells, and suggest its potential usefulness in the treatment of MB.

Tu Y, Kim E, Gao Y, et al.
Theaflavin-3, 3'-digallate induces apoptosis and G2 cell cycle arrest through the Akt/MDM2/p53 pathway in cisplatin-resistant ovarian cancer A2780/CP70 cells.
Int J Oncol. 2016; 48(6):2657-65 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer is the most lethal gynecological cancer among women worldwide. Adverse side effects and acquired resistance to conventional platinum based chemotherapy are major impediments in ovarian cancer treatment, and drive the development of more selective anticancer drugs that target cancer-specific defects. In this study, theaflavin-3, 3'-digallate (TF3), the major theaflavin monomer in black tea, exhibited a potent growth inhibitory effect on the cisplatin-resistant ovarian cancer A2780/CP70 cells (IC50, 23.81 µM), and was less cytotoxic to a normal ovarian IOSE‑364 cells (IC50, 59.58 µM) than to the cancer cells. Flow cytometry analysis indicated that TF3 induced preferential apoptosis and G2 cell cycle arrest in A2780/CP70 cells with respect to IOSE‑364 cells. TF3 induced apoptosis through both the intrinsic and extrinsic apoptotic pathways, and caused G2 cell cycle arrest via cyclin B1 in A2780/CP70 cells. The p53 protein played an important role in TF3-induced apoptosis and G2 cell cycle arrest. TF3 might upregulate the p53 expression via the Akt/MDM2 pathway. Our findings help elucidate the mechanisms by which TF3 may contribute to the prevention and treatment of platinum-resistant ovarian cancer.

Bukowska B, Rogalska A, Forma E, et al.
Why a Combination of WP 631 and Epo B is an Improvement on the Drugs Singly - Involvement in the Cell Cycle and Mitotic Slippage.
Asian Pac J Cancer Prev. 2016; 17(3):1299-308 [PubMed] Related Publications
Our previous studies clearly demonstrated that a combination of WP 631 and Epo B has higher activity against ovarian cancer cells than either of these compounds used separately. In order to fully understand the exact mechanism of action in combination, we assessed effects on the cell cycle of SKOV-3 cells. We evaluated three control points essential for WP 631 and Epo B action to determine which cell cycle-regulating proteins (CDK1/cyclin B complex, EpCAM or HMGB1) mediate activity. The effects of the drug on the cell cycle were measured based on the nuclear DNA content using flow cytometry. Expression of cell cycle-regulating genes was analyzed using real-time PCR. It was discovered that WP 631, at the tested concentration, did not affect the SKOV-3 cell cycle. Epo B caused significant G2/M arrest, whereas the drug combination induced stronger apoptosis and lower mitotic arrest than Epo B alone. This is very important information from the point of view of the fight against cancer, as, while mitotic arrest in Epo B-treated cells could be overcame after DNA damage repair, apoptosis which occurs after mitotic slippage in combination-treated cells is irreversible. It clearly explains the higher activity of the drug combination in comparison to Epo B alone. Epo B acts via the CDK1/cyclin B complex and has the ability to inhibit CDK1, which may be a promising strategy for ovarian cancer treatment in the future. The drug combination diminishes EpCAM and HMGB1 expression to a greater degree than either WP 631 and Epo B alone. Owing to the fact that the high expression of these two proteins is a poor prognostic factor for ovarian cancer, a decrease in their expression, observed in our studies, may result in improved efficacy of cancer therapy. The presented findings show that the combination of WP 631 and Epo B is a better therapeutic option than either of these drugs alone.

Wang Q, Ao Y, Yang K, et al.
Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis and cell cycle progression in human oral squamous cell carcinoma.
Oncol Rep. 2016; 35(6):3387-94 [PubMed] Related Publications
Previous studies have shown that the aberrant expression of period circadian clock 2 (Per2) is closely related to the occurrence and development of cancers, but the specific mechanism remains unclear. In the present study, we used shRNA to downregulate Per2 in oral squamous cell carcinoma (OSCC) Tca8113 cells, and then detected the alterations in cell cycle, cell proliferation and apoptosis by flow cytometric analysis and mRNA expression alterations in all the important genes in the cyclin/cyclin-dependent protein kinase (CDK)/cyclin-dependent kinase inhibitor (CKI) cell cycle network by RT-qPCR. We found that in the Tca8113 cells, after Per2 downregulation, the mRNA expression levels of cyclin A2, B1 and D1, CDK4, CDK6 and E2F1 were significantly increased (P<0.05), the mRNA expression levels of p53, p16 and p21 were significantly decreased (P<0.05), cell proliferation was significantly higher (P<0.05), apoptosis was significantly lower (P<0.05) and the number of cells in the G1/G0 phase was significantly decreased (P<0.05). The present study proves that in OSCC, clock gene Per2 plays an important role in cell cycle progression and the balance of cell proliferation and apoptosis by regulation of the cyclin/CDK/CKI cell cycle network. Further research on Per2 may provide a new effective molecular target for cancer treatments.

Pan XW, Chen L, Hong Y, et al.
EIF3D silencing suppresses renal cell carcinoma tumorigenesis via inducing G2/M arrest through downregulation of Cyclin B1/CDK1 signaling.
Int J Oncol. 2016; 48(6):2580-90 [PubMed] Related Publications
There are no effective therapies for advanced renal cell carcinoma (RCC), except for VEGFR inhibitors with only ~50% response rate. To identify novel targets and biomarkers for RCC is of great importance in treating RCC. In this study, we observed that eukaryotic initiation factor 3d (EIF3D) expression was significantly increased in RCC compared with paracarcinoma tissue using immunohistochemistry staining and western blot analysis. Furthermore, bioinformatics meta-analysis using ONCOMINE microarray datasets showed that EIF3D mRNA expressions in CCRCC tissue specimens were significantly higher than that in normal tissue specimens. In addition, RCC tissue microarray demonstrated that elevated EIF3D expression was positively correlated with TNM stage and tumor size. EIF3D silencing in human 786-O and ACHN CCRCC cell lines by RNA interference demonstrated that EIF3D knockdown obviously inhibited cell proliferation and colony formation, caused G2/M arrest through downregulation of Cyclin B1 and Cdk1 and upregulation of p21, and induced apoptosis shown by sub-G1 accumulation and RARP cleavage. Moreover, correlation analysis using ONCOMINE microarray datasets indicated that increased EIF3D mRNA expression was positively correlated to PCNA, Cyclin B1 and CDK1 mRNA expression in RCC. Collectively, these results provide reasonable evidences that EIF3D may function as a potential proto-oncogene that participates in the occurrence and progression of RCC.

Wang YZ, Qiu SC
Prediction of key genes in ovarian cancer treated with decitabine based on network strategy.
Oncol Rep. 2016; 35(6):3548-58 [PubMed] Related Publications
The objective of the present study was to predict key genes in ovarian cancer before and after treatment with decitabine utilizing a network approach and to reveal the molecular mechanism. Pathogenic networks of ovarian cancer before and after treatment were identified based on known pathogenic genes (seed genes) and differentially expressed genes (DEGs) detected by Significance Analysis of Microarrays (SAM) method. A weight was assigned to each gene in the pathogenic network and then candidate genes were evaluated. Topological properties (degree, betweenness, closeness and stress) of candidate genes were analyzed to investigate more confident pathogenic genes. Pathway enrichment analysis for candidate and seed genes were conducted. Validation of candidate gene expression in ovarian cancer was performed by reverse transcriptase-polymerase chain reaction (RT-PCR) assays. There were 73 nodes and 147 interactions in the pathogenic network before treatment, while 47 nodes and 66 interactions after treatment. A total of 32 candidate genes were identified in the before treatment group of ovarian cancer, of which 16 were rightly candidate genes after treatment and the others were silenced. We obtained 5 key genes (PIK3R2, CCNB1, IL2, IL1B and CDC6) for decitabine treatment that were validated by RT-PCR. In conclusion, we successfully identified 5 key genes (PIK3R2, CCNB1, IL2, IL1B and CDC6) and validated them, which provides insight into the molecular mechanisms of decitabine treatment and may be potential pathogenic biomarkers for the therapy of ovarian cancer.

Hasanpourghadi M, Karthikeyan C, Pandurangan AK, et al.
Targeting of tubulin polymerization and induction of mitotic blockage by Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) in human cervical cancer HeLa cell.
J Exp Clin Cancer Res. 2016; 35:58 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Microtubule Targeting Agents (MTAs) including paclitaxel, colchicine and vinca alkaloids are widely used in the treatment of various cancers. As with most chemotherapeutic agents, adverse effects and drug resistance are commonly associated with the clinical use of these agents. Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H- benzo[d]imidazole-5-carboxylate (MBIC), a benzimidazole derivative displays greater toxicity against various cancer compared to normal human cell lines. The present study, focused on the cytotoxic effects of MBIC against HeLa cervical cancer cells and possible actions on the microtubule assembly.
METHODS: Apoptosis detection and cell-cycle assays were performed to determine the type of cell death and the phase of cell cycle arrest in HeLa cells. Tubulin polymerization assay and live-cell imaging were performed to visualize effects on the microtubule assembly in the presence of MBIC. Mitotic kinases and mitochondrial-dependent apoptotic proteins were evaluated by Western blot analysis. In addition, the synergistic effect of MBIC with low doses of selected chemotherapeutic actions were examined against the cancer cells.
RESULTS: Results from the present study showed that following treatment with MBIC, the HeLa cells went into mitotic arrest comprising of multi-nucleation and unsegregated chromosomes with a prolonged G2-M phase. In addition, the HeLa cells showed signs of mitochondrial-dependant apoptotic features such as the release of cytochrome c and activation of caspases. MBIC markedly interferes with tubulin polymerization. Western blotting results indicated that MBIC affects mitotic regulatory machinery by up-regulating BubR1, Cyclin B1, CDK1 and down-regulation of Aurora B. In addition, MBIC displayed synergistic effect when given in combination with colchicine, nocodazole, paclitaxel and doxorubicin.
CONCLUSION: Taken together, our study demonstrated the distinctive microtubule destabilizing effects of MBIC against cervical cancer cells in vitro. Besides that, MBIC exhibited synergistic effects with low doses of selected anticancer drugs and thus, may potentially reduce the toxicity and drug resistance to these agents.

Zhou J, Zhao M, Tang Y, et al.
The milk-derived fusion peptide, ACFP, suppresses the growth of primary human ovarian cancer cells by regulating apoptotic gene expression and signaling pathways.
BMC Cancer. 2016; 16:246 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: ACFP is an anti-cancer fusion peptide derived from bovine milk protein. This study was to investigate the anti-cancer function and underlying mechanisms of ACFP in ovarian cancer.
METHODS: Fresh ovarian tumor tissues were collected from 53 patients who underwent initial debulking surgery, and primary cancer cells were cultured. Normal ovarian surface epithelium cells (NOSECs), isolated from 7 patients who underwent surgery for uterine fibromas, were used as normal control tissue. Anti-viabilities of ACFP were assessed by WST-1 (water-soluble tetrazolium 1), and apoptosis was measured using a flow cytometry-based assay. Gene expression profiles of ovarian cancer cells treated with ACFP were generated by cDNA microarray, and the expression of apoptotic-specific genes, such as bcl-xl, bax, akt, caspase-3, CDC25C and cyclinB1, was assessed by real time PCR and western blot analysis.
RESULTS: Treatment with ACFP inhibited the viability and promoted apoptosis of primary ovarian cancer cells but exhibited little or no cytotoxicity toward normal primary ovarian cells. Mechanistically, the anti-cancer effects of ACFP in ovarian cells were shown to occur partially via changes in gene expression and related signal pathways. Gene expression profiling highlighted that ACFP treatment in ovarian cancer cells repressed the expression of bcl-xl, akt, CDC25C and cyclinB1 and promoted the expression of bax and caspase-3 in a time- and dose-dependent manner.
CONCLUSIONS: Our results suggest that ACFP may represent a potential therapeutic agent for ovarian cancer that functions by altering the expression and signaling of cancer-related pathways in ovarian cancer cells.

Chan CK, Chan G, Awang K, Abdul Kadir H
Deoxyelephantopin from Elephantopus scaber Inhibits HCT116 Human Colorectal Carcinoma Cell Growth through Apoptosis and Cell Cycle Arrest.
Molecules. 2016; 21(3):385 [PubMed] Related Publications
Deoxyelephantopin (DET), one of the major sesquiterpene lactones derived from Elephantopus scaber was reported to possess numerous pharmacological functions. This study aimed to assess the apoptosis inducing effects and cell cycle arrest by DET followed by elucidation of the mechanisms underlying cell death in HCT116 cells. The anticancer activity of DET was evaluated by a MTT assay. Morphological and biochemical changes were detected by Hoescht 33342/PI and Annexin V/PI staining. The results revealed that DET and isodeoxyelephantopin (isoDET) could be isolated from the ethyl acetate fraction of E. scaber leaves via a bioassay-guided approach. DET induced significant dose- and time-dependent growth inhibition of HCT116 cells. Characteristics of apoptosis including nuclear morphological changes and externalization of phosphatidylserine were observed. DET also significantly resulted in the activation of caspase-3 and PARP cleavage. Additionally, DET induced cell cycle arrest at the S phase along with dose-dependent upregulation of p21 and phosphorylated p53 protein expression. DET dose-dependently downregulated cyclin D1, A2, B1, E2, CDK4 and CDK2 protein expression. In conclusion, our data showed that DET induced apoptosis and cell cycle arrest in HCT116 colorectal carcinoma, suggesting that DET has potential as an anticancer agent for colorectal carcinoma.

Yi X, Li Y, Zai H, et al.
KLF8 knockdown triggered growth inhibition and induced cell phase arrest in human pancreatic cancer cells.
Gene. 2016; 585(1):22-7 [PubMed] Related Publications
BACKGROUND: The transcription factor Krüppel-like factor 8 (KLF8) plays an important role in tumor development and growth, but its role in pancreatic cancer (PC) is not clear.
METHODS: KLF8 expression in human PC cell lines and tumor tissues was measured by quantitative real-time polymerase chain reaction and Western blot analyses. The effects of lentivirus mediated knockdown of KLF8 on proliferation and growth in Panc-1 pancreatic cancer cells were examined.
RESULTS: KLF8 was overexpressed in 5 pancreatic cancer cell lines and in samples from patients with PC. In Panc-1 cells, KLF8 knockdown inhibited cell proliferation, tumorigenicity, and induced G2/M phase arrest. KLF8 knockdown suppressed PC tumor growth in nude mice model. Western blot analysis showed that KLF8 knockdown in Panc-1 cells down-regulated the expression of CDK1/CDC2, cyclin B1, and cyclin D1 and up-regulated the expression of p21, and p27.
CONCLUSIONS: Overexpression of KLF8 may contribute to the progression of pancreatic cancer, and downregulation of KLF8 expression by lentivirus-delivered shRNA is a novel therapeutic approach for PC.

Hu K, Tian Y, Du Y, et al.
Atrazine promotes RM1 prostate cancer cell proliferation by activating STAT3 signaling.
Int J Oncol. 2016; 48(5):2166-74 [PubMed] Related Publications
Atrazine, a widely used pesticide, is frequently detected in soil and surface water, which alarms epidemiologists and medical professionals because of its potential deleterious effects on health. Indeed, atrazine is a potent endocrine disruptor that increases aromatase expression in some human cancer cell lines. Both animal and human studies have suggested that atrazine is possibly carcinogenic, although discrepant results have been reported. In this study, RM1 cells were used to explore the atrazine effects on prostate cancer. Proliferation, migration and invasion of RM1 cells were assessed by colony formation, wound-healing and invasion assays, respectively, after in vitro exposure to atrazine. In addition, an RM1 cell xenograft model was generated to evaluate the effects of atrazine in vivo. To explore the molecular mechanisms, qRT‑PCR, immunohistochemistry, and western blot analyses were employed to detect mRNA and protein levels of STAT3 signaling and cell cycle related proteins, including p53, p21, cyclin B1 and cyclin D1. Interestingly, RM1 cell proliferation was increased after treatment with atrazine, concomitantly with STAT3 signaling activation. These results suggest that atrazine promotes RM1 cell growth in vitro and in vivo by activating STAT3 signaling.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCNB1, Cancer Genetics Web: http://www.cancer-genetics.org/CCNB1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999