CD14

Gene Summary

Gene:CD14; CD14 molecule
Location:5q31.3
Summary:The protein encoded by this gene is a surface antigen that is preferentially expressed on monocytes/macrophages. It cooperates with other proteins to mediate the innate immune response to bacterial lipopolysaccharide. Alternative splicing results in multiple transcript variants encoding the same protein. [provided by RefSeq, Mar 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:monocyte differentiation antigen CD14
Source:NCBIAccessed: 16 March, 2017

Ontology:

What does this gene/protein do?
Show (28)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CD14 (cancer-related)

Yang J, Qin N, Zhang H, et al.
Cellular uptake of exogenous calcineurin B is dependent on TLR4/MD2/CD14 complexes, and CnB is an endogenous ligand of TLR4.
Sci Rep. 2016; 6:24346 [PubMed] Free Access to Full Article Related Publications
Our previous research showed that recombinant calcineurin B (rhCnB) stimulates cytokine secretion by immune cells, probably through TLR4. Exogenous CnB can be incorporated into many different tumour cells in vitro, but the mode of uptake and receptors required remain unknown. Here, we report that exogenous CnB is taken up by cells in a time- and concentration-dependent manner via clathrin-dependent receptor-mediated internalization. Our findings further confirm that uptake is mediated by the TLR4/MD2 complex together with the co-receptor CD14. The MST results revealed a high affinity between CnB and the TLR4 receptor complex. No binding was detected between CnB and LPS. CnB inhibited the uptake of LPS, and LPS also inhibited the uptake of CnB. These results indicate that the uptake of exogenous CnB did not occur through LPS and that CnB was not a chaperone of LPS. Thus, we conclude that TLR4 receptor complexes were required for the recognition and internalization of exogenous CnB. CnB could be a potential endogenous ligand of TLR4 and function as an agonist of TLR4. These properties of CnB support its potential for development as an anti-cancer drug.

Hui H, Zhang X, Li H, et al.
Oroxylin A, a natural anticancer flavonoid compound, induces differentiation of t(8;21)-positive Kasumi-1 and primary acute myeloid leukemia cells.
J Cancer Res Clin Oncol. 2016; 142(7):1449-59 [PubMed] Related Publications
PURPOSE: AML1/ETO fusion gene is one of disease-causing genes of t(8;21)-positive acute myeloid leukemia (AML). Oroxylin A (OA) has showed anticancer effects on other cancer cells. Here, studies were conducted to determine the antileukemia effect of OA on t(8;21)-positive AML cells in vitro and in vivo.
MATERIALS AND METHODS: The effects of OA on cell viability of t(8;21)-positive Kasumi-1 and primary AML cells were analyzed by MTT assay. Cell differentiation was examined by NBT reduction assay, flow cytometry analysis for CD11b/CD14, and Giemsa stain. Protein expressions were determined by Western blots. Immunofluorescence assay was used to verify the effect of OA on HDAC-1 expression in vivo. Immunohistochemical staining was applied to evaluate leukemic infiltration of AML-bearing NOD/SCID mice.
RESULTS: OA enhanced NBT reduction activity and CD11b/CD14 expression of AML1/ETO-positive AML cells markedly. Results of Giemsa staining also demonstrated that OA could induce the morphologic changes with reduction of nuclear/cytoplasmic ratios, suggesting the cell differentiation induced by OA. Further study showed that OA decreased the expression of fusion protein AML1/ETO and down-regulated HDAC-1 protein levels in vitro and in vivo. Moreover, OA increased the expression of differentiation-related proteins C/EBPα and P21. Acetylation levels of histones were also advanced obviously after treatment of OA. In vivo study indicated that OA could prolong the survival of AML-bearing NOD/SCID mice and reduce leukocytic infiltration of the spleen.
CONCLUSIONS: All these results suggested that OA might be a novel candidate agent for differentiation therapy for AML1/ETO-positive AML and the mechanism required further investigation.

Kawaguchi K, Suzuki E, Yamaguchi A, et al.
Altered expression of major immune regulatory molecules in peripheral blood immune cells associated with breast cancer.
Breast Cancer. 2017; 24(1):111-120 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The purpose of this study was to clarify the alterations of major immune regulators in peripheral blood mononuclear cells (PBMCs) of cancer patients and to analyze the association with the disease progression in breast cancer patients.
METHODS: The study included 6 healthy volunteers (HVs), 12 primary breast cancer (PBC) patients, and 30 metastatic breast cancer (MBC) patients. The expression of immune regulators such as, CCR6, CD4, CD8, CD14, CD40, CD56, CD80, CTLA4, CXCR4, FOXP3, IDO-1, IDO-2, NKG2D, NRP-1, PD-1, and PD-L1 mRNA in PBMCs was measured by quantitative RT-PCR. Analysis of variance with contrasts was performed to find expression patterns of the three groups (HVs, PBC, MBC).
RESULTS: We clarified the alterations of mRNA of major immune regulators PD-L1, FOXP3, CD80, CD40, and CD14 in PBMCs of cancer patients and the association of these alternations with disease progression. Furthermore, PD-L1 expression was correlated with serum interferon-γ production.
CONCLUSION: Our data suggested that mRNA expressions of PD-L1, FOXP3, CD80, CD40 and CD14 in PBMCs are affected by disease progression. Understanding the roles of these various interactions will be of importance to future studies aiming to uncover biomarkers for predicting response to immune therapy.

Maeda Y, Echizen K, Oshima H, et al.
Myeloid Differentiation Factor 88 Signaling in Bone Marrow-Derived Cells Promotes Gastric Tumorigenesis by Generation of Inflammatory Microenvironment.
Cancer Prev Res (Phila). 2016; 9(3):253-63 [PubMed] Related Publications
It has been established that COX-2 and downstream signaling by prostaglandin E2 (PGE2) play a key role in tumorigenesis through generation of inflammatory microenvironment. Toll-like receptor (TLR) signaling through myeloid differentiation factor 88 (MyD88) also regulates inflammatory responses in tumors. However, the relationship between these distinct pathways in tumorigenesis is not yet fully understood. We herein investigated the role of MyD88 in gastric tumorigenesis using Gan mice, which develop inflammation-associated gastric tumors due to the simultaneous activation of the COX-2/PGE2 pathway and Wnt signaling. Notably, the disruption of Myd88 in Gan mice resulted in the significant suppression of gastric tumorigenesis with the inhibition of inflammatory responses, even though COX-2/PGE2 pathway is constitutively activated. Moreover, Myd88 disruption in bone marrow-derived cells (BMDCs) in Gan mice also suppressed inflammation and tumorigenesis, indicating that MyD88 signaling in BMDCs regulates the inflammatory microenvironment. We also found that expression of Tlr2 and its coreceptor Cd14 was induced in tumor epithelial cells in Gan mice, which was suppressed by the disruption of Myd88. It has already been shown that TLR2/CD14 signaling is important for stemness of intestinal epithelial cells. These results indicate that MyD88 in BMDCs, together with COX-2/PGE2 pathway, plays an essential role in the generation of the inflammatory microenvironment, which may promote tumorigenesis through induction of TLR2/CD14 pathway in tumor epithelial cells. These results suggest that inhibition of TLR/MyD88 signaling together with COX-2/PGE2 pathway will be an effective preventive strategy for gastric cancer.

Di Liddo R, Bridi D, Gottardi M, et al.
Adrenomedullin in the growth modulation and differentiation of acute myeloid leukemia cells.
Int J Oncol. 2016; 48(4):1659-69 [PubMed] Related Publications
Adrenomedullin (ADM) is a regulatory peptide endowed with multiple biological effects, including the regulation of blood pressure, cell growth and innate host defence. In the present study, we demonstrated that ADM signaling could be involved in the impaired cellular differentiation of myeloid leukemia cells to mature granulocytes or monocytes by modulating RAMPs/CRLR expression, PI3K/Akt cascade and the ERK/MAPK signaling pathway. When exogenously administered to in vitro cultures of HL60 promyelocytic leukemia cells, ADM was shown to exert a strong proliferative effect with minimal upregulation in the expression level of monocyte antigen CD14. Notably, the experimental inhibition of ADM signaling with inhibitor ADM22-52 promoted a differentiative stimulation towards monocytic and granulocytic lineages. Moreover, based on the expression of CD31 relative to CD38, we hypothesized that an excess of ADM in bone marrow (BM) niche could increase the transendothelial migration of leukemia cells while any inhibitory event of ADM activity could raise cell retention in hyaluronate matrix by upregulating CD38. Taken into consideration the above evidence, we concluded that ADM and ADM22-52 could differently affect the growth of leukemia cells by autocrine/paracrine mechanisms and may have clinical relevance as biological targets for the intervention of tumor progression.

Wei W, Liu C, Qin D, et al.
Targeting peroxiredoxin I potentiates 1,25-dihydroxyvitamin D3-induced cell differentiation in leukemia cells.
Mol Med Rep. 2016; 13(3):2201-7 [PubMed] Related Publications
Although 1,25‑dihydroxyvitamin D3 (VD3) is regarded as a promising inducing agent for leukemia cell differentiation, it is not as effective an agent as all‑trans‑retinoic acid, and its usefulness is also limited by the adverse effects of hypercalcemia. The aim of the present study was to determine whether combining VD3 with adenanthin, a peroxiresoxin I (Prx I)‑targeting natural compound, improves the efficacy of VD3. Cell viability was assessed using a trypan blue exclusion assay and flow cytometry was used to evaluate the expression of cell surface markers, CD11b/CD14, and the level of reactive oxygen species (ROS). Wright's staining was used to examine morphological changes and RNA‑interference was used to knockdown Prx I and p65 gene expression. Protein expression was determined by western blot analysis. The results demonstrated that adenanthin markedly enhanced VD3‑induced cell differentiation of leukemia NB4 cells, as evidenced by the increased percentage of CD11b‑ and CD14‑positive cells, the mature morphology of the monocytes and the increased phagocytic ability. Consistent with these results, knockdown of Prx I, but not nuclear factor‑κB (p65), enhanced VD3‑induced cell differentiation. The combinatorial effects of adenanthin and VD3 were shown to be associated with the ROS‑CCAAT‑enhancer‑binding protein (C/EBP)β axis, since N‑acetylcysteine, a ROS scavenger, was able to abrogate the differentiation‑enhancing effects of adenanthin, and the knockdown of C/EBPβ also inhibited the combinatorial effects of adenanthin and VD3. In addition, co‑treatment with adenanthin and VD3 was able to induce differentiation in other non‑acute promyelocytic leukemia cells and primary leukemia cells. In conclusion, the results of the present study revealed a novel role for Prx I in VD3‑induced cell differentiation, and suggested that targeting Prx I may represent a novel strategy to enhance VD3‑induced leukemia cell differentiation.

Polgárová K, Vášková M, Froňková E, et al.
Quantitative expression of regulatory and differentiation-related genes in the key steps of human hematopoiesis: The LeukoStage Database.
Differentiation. 2016 Jan-Mar; 91(1-3):19-28 [PubMed] Related Publications
Differentiation during hematopoiesis leads to the generation of many cell types with specific functions. At various stages of maturation, the cells may change pathologically, leading to diseases including acute leukemias (ALs). Expression levels of regulatory molecules (such as the IKZF, GATA, HOX, FOX, NOTCH and CEBP families, as well as SPI-1/PU1 and PAX5) and lineage-specific molecules (including CD2, CD14, CD79A, and BLNK) may be compared between pathological and physiological cells. Although the key steps of differentiation are known, the available databases focus mainly on fully differentiated cells as a reference. Precursor cells may be a more appropriate reference point for diseases that evolve at immature stages. Therefore, we developed a quantitative real-time polymerase chain reaction (qPCR) array to investigate 90 genes that are characteristic of the lymphoid or myeloid lineages and/or are thought to be involved in their regulation. Using this array, sorted cells of granulocytic, monocytic, T and B lineages were analyzed. For each of these lineages, 3-5 differentiation stages were selected (17 stages total), and cells were sorted from 3 different donors per stage. The qPCR results were compared to similarly processed AL cells of lymphoblastic (n=18) or myeloid (n=6) origins and biphenotypic AL cells of B cell origin with myeloid involvement (n=5). Molecules characteristic of each lineage were found. In addition, cells of a newly discovered switching lymphoblastic AL (swALL) were sorted at various phases during the supposed transdifferentiation from an immature B cell to a monocytic phenotype. As demonstrated previously, gene expression changed along with the immunophenotype. The qPCR data are publicly available in the LeukoStage Database in which gene expression in malignant and non-malignant cells of different lineages can be explored graphically and differentially expressed genes can be identified. In addition, the LeukoStage Database can aid the functional analyses of next-generation sequencing data.

Ma X, Wu D, Zhou S, et al.
The pancreatic cancer secreted REG4 promotes macrophage polarization to M2 through EGFR/AKT/CREB pathway.
Oncol Rep. 2016; 35(1):189-96 [PubMed] Related Publications
In the periphery of pancreatic ductal adenocarcinoma (PDAC), high accumulation of tumor-associated macrophages (TAMs), which exhibit M2 phenotype, has been shown to be correlated with extra-pancreatic invasion, lymph vessel invasion, lymph node involvement and shortened survival time. However, mechanisms by which tumor cells educate and reprogram TAMs remain largely unclear. The phenotype of TAMs in PDAC tissues was confirmed by immunofluoresence and confocal microscopy. Human CD14+ monocytes were incubated with recombinant human REG4 (rREG4) before being stimulated with LPS and IL-10 and IL-6 were measured with ELISA. A panel of M1 and M2 genes were measured by quantitative real-time PCR. Panc1, AsPC1 and BxPC3 cells were cultured in the conditioned medium (CM) and treated with REG4. The macrophages were infected with CREB shRNA or cultured by the CM of Panc1 cells infected with REG4 shRNA. The expression of CD163, CD206 and REG4 and the phosphorylation levels of epidermal growth factor receptor (EGFR), AKT and cAMP response element-binding protein (CREB) in cells were assessed with western blotting. Cell proliferation and invasiveness were also assessed. The rREG4 or the conditioned medium of Panc1 cells which secreted REG4 induced the polarization macrophages to M2 phenotype. Treatment of human macrophages with REG4 resulted in phosphorylation of EGFR, AKT and CREB. The latter was responsible for REG4-mediated macrophage polarization to M2. The conditioned medium of macrophages treated with rREG4 promoted the proliferation and invasion of pancreatic cancer cell lines. REG4, overexpressed in PDAC and secreted by cancer cells, promoted macrophage polarization to M2, through at least in part, activation of ERK1/2 and CREB and changed the microenvironment to facilitate cancer growth and metastasis.

Pham LV, Lu G, Tamayo AT, et al.
Establishment and characterization of a novel MYC/BCL2 "double-hit" diffuse large B cell lymphoma cell line, RC.
J Hematol Oncol. 2015; 8:121 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Diffuse large B cell lymphoma (DLBCL) is the most common type of lymphoid malignancy worldwide. Approximately 5 % of cases of DLBCL are so-called double-hit lymphomas (DHL), defined by a chromosomal translocation or rearrangement involving MYC/8q24.2 in combination with another recurrent breakpoint, usually BCL2/18q21.3. Patients with MYC/BCL2 DHL are resistant to standard front-line therapy, and currently, there is no consensus for a therapeutic strategy to treat these patients. Lack of clinically relevant or validated human experimental DHL models of any type that would improve our understanding of the biologic basis of MYC/BCL2 DHL pathophysiology continues to hamper identification of valid therapeutic targets. We describe a unique MYC/BCL2 DHL cell line with morphologic features of DLBCL that we have established, designated as RC.
METHODS: We used tissue culture techniques to establish the RC cell line from primary DLBCL cells. We also utilized molecular and cellular biological techniques including flow cytometry, polymerase chain reaction (PCR), DNA fingerprinting, reverse-phase protein array, conventional cytogenetics, and fluorescence in situ hybridization (FISH) analysis to characterize the RC cell line. NSG-severe combined immunodeficiency (SCID) mice were utilized as a model for xeno-transplantation of RC cells.
RESULTS: RC cells had the following immunophenotype: positive for CD10, CD19, CD20, CD22, CD38, CD43, CD44, and CD79b and negative for CD3, CD4, CD5, CD8, CD11c, CD14, CD30, CD56, and CD200, which was identical to the primary tumor cells. Conventional cytogenetic analysis showed a t(2;8)(p12;q24.2) and t(14;18)(q32;q21.3), corresponding to MYC and BCL2 gene rearrangements, respectively. DNA fingerprinting authenticated the RC cell line to be of the same clone as the primary tumor cells. In addition, RC cells were established in SCID mice as an in vivo model for translational therapeutics studies. Proteomic analysis showed activation of the mTOR signaling pathway in RC cells that can be targeted with an mTOR inhibitor.
CONCLUSION: The data presented confirm the validity of the RC cell line as a representative model of MYC/BCL2 DHL that will be useful for both in vitro and in vivo studies of DHL pathogenesis and therapeutics.

Zhang H, Li ZL, Ye SB, et al.
Myeloid-derived suppressor cells inhibit T cell proliferation in human extranodal NK/T cell lymphoma: a novel prognostic indicator.
Cancer Immunol Immunother. 2015; 64(12):1587-99 [PubMed] Free Access to Full Article Related Publications
The expansion of myeloid-derived suppressor cells (MDSCs) and its correlation with advanced disease stage have been shown in solid cancers. Here, we investigated the functional features and clinical significance of MDSCs in extranodal NK/T cell lymphoma (ENKL). A higher percentage of circulating HLA-DR(-)CD33(+)CD11b(+) MDSCs was observed in ENKL patients than in healthy controls (P < 0.05, n = 32) by flow cytometry analysis. These MDSCs from ENKL patients (ENKL-MDSCs) consisted of CD14(+) monocytic (Mo-MDSCs, >60 %) and CD15(+) granulocytic (PMN-MDSCs, <20 %) MDSCs. Furthermore, these ENKL-MDSCs expressed higher levels of Arg-1, iNOS and IL-17 compared to the levels of MDSCs from healthy donors, and they expressed moderate levels of TGFβ and IL-10 but lower levels of CD66b. The ENKL-MDSCs strongly suppressed the anti-CD3-induced allogeneic and autologous CD4 T cell proliferation (P < 0.05), but they only slightly suppressed CD8 T cell proliferation (P > 0.05). Interestingly, ENKL-MDSCs inhibited the secretion of IFNγ but promoted IL-10, IL-17 and TGFβ secretion as well as Foxp3 expression in T cells. The administration of inhibitors of iNOS, Arg-1 and ROS significantly reversed the suppression of anti-CD3-induced T cell proliferation by MDSCs (P < 0.05). Importantly, based on multivariate Cox regression analysis, the HLA-DR(-)CD33(+)CD11b(+) cells and CD14(+) Mo-MDSCs were independent predictors for disease-free survival (DFS, P = 0.013 and 0.016) and overall survival (OS, P = 0.017 and 0.027). Overall, our results identified for the first time that ENKL-MDSCs (mainly Mo-MDSCs) have a prognostic value for patients and a suppressive function on T cell proliferation.

Harshyne LA, Nasca BJ, Kenyon LC, et al.
Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients.
Neuro Oncol. 2016; 18(2):206-15 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma (GBM) is an aggressive infiltrative brain tumor with a particularly poor prognosis that is characterized by microvascular proliferation, necrotic tissue, and significant infiltration of M2-like monocytes. Compromised barrier function in tumor vasculature might be expected to permit communication between the tumor microenvironment and peripheral blood.
METHODS: To ascertain whether tumor-derived vesicles and/or factors might reach the bloodstream and what effects these molecules have on the peripheral compartment, we analyzed blood samples collected from primary GBM patients.
RESULTS: Notably, a significant number of patient sera samples contained tumor exosome-reactive immunoglobulin (Ig)G2 and IgG4 antibody isotypes, which are consistent with Th2 immunity. M2-like monocytes expressing CD14+ and CD163+, another indicator of Th2 bias, are elevated in GBM patient blood and associated with high serum concentrations of colony-stimulating factor 2 and 3, as well as interleukin-2, -4, and -13, the latter 2 cytokines being hallmarks of Th2 immunity. GBM patient sera samples induce high levels of CD163 expression when added to normal monocytes, providing mechanistic evidence of a basis for Th2 bias. Fractionation of GBM patient sera into samples enriched for exosomes or soluble factors proved that both fractions are capable of inducing CD163 expression in normal monocytes.
CONCLUSIONS: The results of the current study indicate a Th2 bias in the periphery of GBM patients, likely as a result of products elaborated by the tumor. Consequentially, through immune modulation these brain tumors exert systemic effects beyond the confines of the CNS.

Stigliani S, Croce M, Morandi F, et al.
Expression of FOXP3, CD14, and ARG1 in Neuroblastoma Tumor Tissue from High-Risk Patients Predicts Event-Free and Overall Survival.
Biomed Res Int. 2015; 2015:347867 [PubMed] Free Access to Full Article Related Publications
The prognosis of children with metastatic neuroblastoma (NB) > 18 months at diagnosis is dismal. Since the immune status of the tumor microenvironment could play a role in the history of disease, we evaluated the expression of CD45, CD14, ARG1, CD163, CD4, FOXP3, Perforin-1 (PRF1), Granzyme B (GRMB), and IL-10 mRNAs in primary tumors at diagnosis from children with metastatic NB and tested whether the transcript levels are significantly associated to event-free and overall survival (EFS and OS, resp.). Children with high expression of CD14, ARG1 and FOXP3 mRNA in their primary tumors had significantly better EFS. Elevated expression of CD14, and FOXP3 mRNA was significantly associated to better OS. CD14 mRNA expression levels significantly correlated to all markers, with the exception of CD4. Strong positive correlations were found between PRF1 and CD163, as well as between PFR1 and FOXP3. It is worth noting that the combination of high levels of CD14, FOXP3, and ARG1 mRNAs identified a small group of patients with excellent EFS and OS, whereas low levels of CD14 were sufficient to identify patients with dismal survival. Thus, the immune status of the primary tumors of high-risk NB patients may influence the natural history of this pediatric cancer.

Hoover H, Li J, Marchese J, et al.
Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers.
J Proteome Res. 2015; 14(9):3670-9 [PubMed] Related Publications
Tumor types can be defined cytologically by their regions of chromosomal amplification, which often results in the high expression of both mRNA and proteins of certain genes contained within the amplicon. An important strategy for defining therapeutically relevant targets in these situations is to ascertain which genes are amplified at the protein level and, concomitantly, are key drivers for tumor growth or maintenance. Furthermore, so-called passenger genes that are amplified with driver genes and a manifest on the cell surface can be attractive targets for an antibody-drug conjugate approach (ADC). We employed a tandem mass spectrometry proteomics approach using tumor cell lines to identify the cell surface proteins whose expression correlates with the 11q13 amplicon. The 11q13 amplicon is one of the most frequently amplified chromosomal regions in human cancer, being present in 45% of head and neck and oral squamous cell carcinoma (OSCC) and 13-21% of breast and liver carcinomas. Using a panel of tumor cell lines with defined 11q13 genomic amplification, we identified the membrane proteins that are differentially expressed in an 11q13 amplified cell line panel using membrane-enriched proteomic profiling. We found that DSG3, CD109, and CD14 were differentially overexpressed in head and neck and breast tumor cells with 11q13 amplification. The level of protein expression of each gene was confirmed by Western blot and FACS analysis. Because proteins with high cell surface expression on selected tumor cells could be potential antibody drug conjugate targets, we tested DSG3 and CD109 in antibody piggyback assays and validated that DSG3 and CD109 expression was sufficient to induce antibody internalization and cell killing in 11q13-amplified cell lines. Our results suggest that proteomic profiling using genetically stratified tumors can identify candidate antibody drug conjugate targets. Data are available via ProteomeXchange with the identifier PXD002486.

Tsai YM, Chong IW, Hung JY, et al.
Syringetin suppresses osteoclastogenesis mediated by osteoblasts in human lung adenocarcinoma.
Oncol Rep. 2015; 34(2):617-26 [PubMed] Related Publications
Bone metastasis in lung cancer results in an unfavorable outcome for patients by not only impairing the quality of life, yet also increasing the cancer-related death rates. In the present study, we discuss a novel treatment strategy that may benefit these patients. Human CD14+ monocytes treated with macrophage-colony stimulating factor (M-CSF)/receptor activator of nuclear factor κB ligand (RANKL) differentiated into osteoclasts, whereas syringetin (SGN), a flavonoid derivative found in both grapes and wine, suppressed the osteoclastogenesis in vitro in a dose-dependent manner. In addition, SGN inhibited osteoclast formation induced by human lung adenocarcinoma A549 and CL1-5 cells. The associated signaling transduction pathway in osteoclastogenesis and SGN inhibition was found to be via the AKT/mammalian target of rapamycin (mTOR) signaling pathway. Blocking AKT and mTOR by respective inhibitors significantly decreased lung adenocarcinoma-mediated osteoclastogenesis. Moreover, SGN regulated the lung adenocarcinoma-mediated interaction between osteoblasts and osteoclasts by suppressing the stimulatory effect of lung adenocarcinoma on M-CSF and RANKL production in osteoblasts, and reversing the inhibitory effect of the lung adenocarcinoma on OPG production in osteoblasts. The present study has two novel findings. It is the first to illustrate lung adenocarcinoma-mediated interaction between osteoblasts and osteoclasts, leading to osteolytic bone metastasis. It also reveals that SGN, a flavonoid derivative, directly inhibits osteoclastogenesis and reverses lung adenocarcinoma-mediated osteoclastogenesis. In conclusion, the present study suggests that SGN, a natural compound, prevents and treats bone metastasis in patients with lung cancer.

Bergenfelz C, Larsson AM, von Stedingk K, et al.
Systemic Monocytic-MDSCs Are Generated from Monocytes and Correlate with Disease Progression in Breast Cancer Patients.
PLoS One. 2015; 10(5):e0127028 [PubMed] Free Access to Full Article Related Publications
Myeloid-derived suppressor cells (MDSCs) are highly immunosuppressive myeloid cells, which increase in cancer patients. The molecular mechanism behind their generation and function is unclear. Whereas granulocytic-MDSCs correlate with poor overall survival in breast cancer, the presence and relevance of monocytic-MDSCs (Mo-MDSCs) is unknown. Here we report for the first time an enrichment of functional blood Mo-MDSCs in breast cancer patients before they acquire a typical Mo-MDSC surface phenotype. A clear population of Mo-MDSCs with the typical cell surface phenotype (CD14(+)HLA-DR(low/-)CD86(low/-)CD80(low/-)CD163(low/-)) increased significantly first during disease progression and correlated to metastasis to lymph nodes and visceral organs. Furthermore, monocytes, comprising the Mo-MDSC population, from patients with metastatic breast cancer resemble the reprogrammed immunosuppressive monocytes in patients with severe infections, both by their surface and functional phenotype but also at their molecular gene expression profile. Our data suggest that monitoring the Mo-MDSC levels in breast cancer patients may represent a novel and simple biomarker for assessing disease progression.

Griesinger AM, Josephson RJ, Donson AM, et al.
Interleukin-6/STAT3 Pathway Signaling Drives an Inflammatory Phenotype in Group A Ependymoma.
Cancer Immunol Res. 2015; 3(10):1165-74 [PubMed] Free Access to Full Article Related Publications
Ependymoma (EPN) in childhood is a brain tumor with substantial mortality. Inflammatory response has been identified as a molecular signature of high-risk Group A EPN. To better understand the biology of this phenotype and aid therapeutic development, transcriptomic data from Group A and B EPN patient tumor samples, and additional malignant and normal brain data, were analyzed to identify the mechanism underlying EPN Group A inflammation. Enrichment of IL6 and STAT3 pathway genes were found to distinguish Group A EPN from Group B EPN and other brain tumors, implicating an IL6 activation of STAT3 mechanism. EPN tumor cell growth was shown to be dependent on STAT3 activity, as demonstrated using shRNA knockdown and pharmacologic inhibition of STAT3 that blocked proliferation and induced apoptosis. The inflammatory factors secreted by EPN tumor cells were shown to reprogram myeloid cells, and this paracrine effect was characterized by a significant increase in pSTAT3 and IL8 secretion. Myeloid polarization was shown to be dependent on tumor secretion of IL6, and these effects could be reversed using IL6-neutralizing antibody or IL6 receptor-targeted therapeutic antibody tocilizumab. Polarized myeloid cell production of IL8 drove unpolarized myeloid cells to upregulate CD163 and to produce a number of proinflammatory cytokines. Collectively, these findings indicate that constitutive IL6/STAT3 pathway activation is important in driving tumor growth and inflammatory cross-talk with myeloid cells within the Group A EPN microenvironment. Effective design of Group A-targeted therapy for children with EPN may require reversal of this potentially immunosuppressive and protumor pathway.

Romano E, Kusio-Kobialka M, Foukas PG, et al.
Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients.
Proc Natl Acad Sci U S A. 2015; 112(19):6140-5 [PubMed] Free Access to Full Article Related Publications
Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4-specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14(++)CD16(-) monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68(+)/CD163(+) macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti-CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.

Ou C, Sun Z, Zhang H, et al.
SPLUNC1 reduces the inflammatory response of nasopharyngeal carcinoma cells infected with the EB virus by inhibiting the TLR9/NF-κB pathway.
Oncol Rep. 2015; 33(6):2779-88 [PubMed] Related Publications
Studies indicate that the natural immune-related protein short palate, lung, and nasal epithelium clone 1 (SPLUNC1) plays an antitumor role in nasopharyngeal epithelial tissue. However, the detailed mechanism of the tumor-suppressor effect of SPLUNC1 in the inflammatory microenvironment of Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) remains elusive. The aim of the present study was to explore how SPLUNC1 reduces the inflammatory response of NPC cells infected with EBV by regulating the Toll-like receptor (TLR)9/NF-κB signaling pathway. As detected by immunohistochemistry and western blotting, SPLUNC1 protein expression exhibited low or negative expression in the NPC epithelial samples/cells, while it demonstrated positive expression in normal nasopharyngeal epithelial tissues/cells; this pattern of expression was the contrary to that of TLR9. The poorly differentiated HNE2 cell line had the highest efficiency of transfer of infection with EBV by 'cell-to-cell' contact method. The group of EBV-infected HNE2 cells showed significantly higher activation of the expression of TLR9/NF-κB signaling pathway-associated factors (TLR9, CD14, MyD88, IKK, P-IKβα, P-NF-κB and NF-κB). The levels of inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α in the HNE2 cell group after EBV infection were higher than these levels in the uninfected cell group (P<0.05); Meanwhile, after EBV infection, the expression levels of TLR9/NF-κB pathway associated-protein and inflammatory cytokines IL-6, IL-8, IL-1β and TNF-α in the HNE2/SPLUNC1 cell group were lower than these levels in the HNE2/Vector cell group (P<0.05). After EBV-DNA direct transfection, cytokine mRNA expression levels of TLR9, IL-6, IL-8, IL-1β and TNF-α in the HNE2 cell group were significantly higher than these levels in the NP69 cell group (P<0.05). The expression levels of these cytokines in the HNE2/SPLUNC1 cell group were obviously lower than these levels in the HNE2/Vector cell group (P<0.05). These results suggest that EBV infection of NPC cells can activate the TLR9/NF-κB signaling pathway, promote the release of inflammatory cytokines and consequently enhance the inflammatory response, while SPLUNC1 can weaken the inflammatory response induced by EBV infection in NPC cells through the regulation of the TLR9/NF-κB signaling pathway and control of the tumor inflammatory microenvironment.

Punt S, Houwing-Duistermaat JJ, Schulkens IA, et al.
Correlations between immune response and vascularization qRT-PCR gene expression clusters in squamous cervical cancer.
Mol Cancer. 2015; 14:71 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The tumour microenvironment comprises a network of immune response and vascularization factors. From this network, we identified immunological and vascularization gene expression clusters and the correlations between the clusters. We subsequently determined which factors were correlated with patient survival in cervical carcinoma.
METHODS: The expression of 42 genes was investigated in 52 fresh frozen squamous cervical cancer samples by qRT-PCR. Weighted gene co-expression network analysis and mixed-model analyses were performed to identify gene expression clusters. Correlations and survival analyses were further studied at expression cluster and single gene level.
RESULTS: We identified four immune response clusters: 'T cells' (CD3E/CD8A/TBX21/IFNG/FOXP3/IDO1), 'Macrophages' (CD4/CD14/CD163), 'Th2' (IL4/IL5/IL13/IL12) and 'Inflammation' (IL6/IL1B/IL8/IL23/IL10/ARG1) and two vascularization clusters: 'Angiogenesis' (VEGFA/FLT1/ANGPT2/ PGF/ICAM1) and 'Vessel maturation' (PECAM1/VCAM1/ANGPT1/SELE/KDR/LGALS9). The 'T cells' module was correlated with all modules except for 'Inflammation', while 'Inflammation' was most significantly correlated with 'Angiogenesis' (p < 0.001). High expression of the 'T cells' cluster was correlated with earlier TNM stage (p = 0.007). High CD3E expression was correlated with improved disease-specific survival (p = 0.022), while high VEGFA expression was correlated with poor disease-specific survival (p = 0.032). Independent predictors of poor disease-specific survival were IL6 (hazard ratio = 2.3, p = 0.011) and a high IL6/IL17 ratio combined with low IL5 expression (hazard ratio = 4.2, p = 0.010).
CONCLUSIONS: 'Inflammation' marker IL6, especially in combination with low levels of IL5 and IL17, was correlated with poor survival. This suggests that IL6 promotes tumour growth, which may be suppressed by a Th17 and Th2 response. Measuring IL6, IL5 and IL17 expression may improve the accuracy of predicting prognosis in cervical cancer.

Selimoglu-Buet D, Wagner-Ballon O, Saada V, et al.
Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia.
Blood. 2015; 125(23):3618-26 [PubMed] Free Access to Full Article Related Publications
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/ myeloproliferative neoplasm whose diagnosis is currently based on the elevation of peripheral blood monocytes to >1 × 10(9)/L, measured for ≥3 months. Diagnosis can be ambiguous; for example, with prefibrotic myelofibrosis or reactive monocytosis. We set up a multiparameter flow cytometry assay to distinguish CD14(+)/CD16(-) classical from CD14(+)/CD16(+) intermediate and CD14(low)/CD16(+) nonclassical monocyte subsets in peripheral blood mononucleated cells and in total blood samples. Compared with healthy donors and patients with reactive monocytosis or another hematologic malignancy, CMML patients demonstrate a characteristic increase in the fraction of CD14(+)/CD16(-) cells (cutoff value, 94.0%). The associated specificity and sensitivity values were 95.1% and 90.6% in the learning cohort (175 samples) and 94.1% and 91.9% in the validation cohort (307 samples), respectively. The accumulation of classical monocytes, which demonstrate a distinct gene expression pattern, is independent of the mutational background. Importantly, this increase disappears in patients who respond to hypomethylating agents. We conclude that an increase in the fraction of classical monocytes to >94.0% of total monocytes is a highly sensitive and specific diagnostic marker that rapidly and accurately distinguishes CMML from confounding diagnoses.

Komura T, Sakai Y, Harada K, et al.
Inflammatory features of pancreatic cancer highlighted by monocytes/macrophages and CD4+ T cells with clinical impact.
Cancer Sci. 2015; 106(6):672-86 [PubMed] Free Access to Full Article Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is among the most fatal of malignancies with an extremely poor prognosis. The objectives of this study were to provide a detailed understanding of PDAC pathophysiology in view of the host immune response. We examined the PDAC tissues, sera, and peripheral blood cells of PDAC patients using immunohistochemical staining, the measurement of cytokine/chemokine concentrations, gene expression analysis, and flow cytometry. The PDAC tissues were infiltrated by macrophages, especially CD33+CD163+ M2 macrophages and CD4+ T cells that concomitantly express programmed cell death-1 (PD-1). Concentrations of interleukin (IL)-6, IL-7, IL-15, monocyte chemotactic protein-1, and interferon-γ-inducible protein-1 in the sera of PDAC patients were significantly elevated. The gene expression profile of CD14+ monocytes and CD4+ T cells was discernible between PDAC patients and healthy volunteers, and the differentially expressed genes were related to activated inflammation. Intriguingly, PD-1 was significantly upregulated in the peripheral blood CD4+ T cells of PDAC patients. Correspondingly, the frequency of CD4+PD-1+ T cells was increased in the peripheral blood cells of PDAC patients, and this increase correlated to chemotherapy resistance. In conclusion, inflammatory conditions in both PDAC tissue and peripheral blood cells in PDAC patients were prominent, highlighting monocytes/macrophages as well as CD4+ T cells with influence of the clinical prognosis.

Cheah MT, Chen JY, Sahoo D, et al.
CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer.
Proc Natl Acad Sci U S A. 2015; 112(15):4725-30 [PubMed] Free Access to Full Article Related Publications
Nonresolving chronic inflammation at the neoplastic site is consistently associated with promoting tumor progression and poor patient outcomes. However, many aspects behind the mechanisms that establish this tumor-promoting inflammatory microenvironment remain undefined. Using bladder cancer (BC) as a model, we found that CD14-high cancer cells express higher levels of numerous inflammation mediators and form larger tumors compared with CD14-low cells. CD14 antigen is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein and has been shown to be critically important in the signaling pathways of Toll-like receptor (TLR). CD14 expression in this BC subpopulation of cancer cells is required for increased cytokine production and increased tumor growth. Furthermore, tumors formed by CD14-high cells are more highly vascularized with higher myeloid cell infiltration. Inflammatory factors produced by CD14-high BC cells recruit and polarize monocytes and macrophages to acquire immune-suppressive characteristics. In contrast, CD14-low BC cells have a higher baseline cell division rate than CD14-high cells. Importantly, CD14-high cells produce factors that further increase the proliferation of CD14-low cells. Collectively, we demonstrate that CD14-high BC cells may orchestrate tumor-promoting inflammation and drive tumor cell proliferation to promote tumor growth.

McClellan JS, Dove C, Gentles AJ, et al.
Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages.
Proc Natl Acad Sci U S A. 2015; 112(13):4074-9 [PubMed] Free Access to Full Article Related Publications
BCR-ABL1(+) precursor B-cell acute lymphoblastic leukemia (BCR-ABL1(+) B-ALL) is an aggressive hematopoietic neoplasm characterized by a block in differentiation due in part to the somatic loss of transcription factors required for B-cell development. We hypothesized that overcoming this differentiation block by forcing cells to reprogram to the myeloid lineage would reduce the leukemogenicity of these cells. We found that primary human BCR-ABL1(+) B-ALL cells could be induced to reprogram into macrophage-like cells by exposure to myeloid differentiation-promoting cytokines in vitro or by transient expression of the myeloid transcription factor C/EBPα or PU.1. The resultant cells were clonally related to the primary leukemic blasts but resembled normal macrophages in appearance, immunophenotype, gene expression, and function. Most importantly, these macrophage-like cells were unable to establish disease in xenograft hosts, indicating that lineage reprogramming eliminates the leukemogenicity of BCR-ABL1(+) B-ALL cells, and suggesting a previously unidentified therapeutic strategy for this disease. Finally, we determined that myeloid reprogramming may occur to some degree in human patients by identifying primary CD14(+) monocytes/macrophages in BCR-ABL1(+) B-ALL patient samples that possess the BCR-ABL1(+) translocation and clonally recombined VDJ regions.

Piltonen TT, Chen JC, Khatun M, et al.
Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro.
Hum Reprod. 2015; 30(5):1203-15 [PubMed] Free Access to Full Article Related Publications
STUDY QUESTION: Do endometrial stromal fibroblasts (eSF) in women with polycystic ovary syndrome (PCOS) (eSFpcos) exhibit altered estrogen and/or progesterone (P4) responses, which may explain some of the adverse reproductive outcomes and endometrial pathologies in these women?
SUMMARY ANSWER: In vitro, eSF from women with PCOS exhibit an aberrant decidualization response and concomitant changes in pro-inflammatory cytokine, chemokine and matrix metalloproteinase (MMP) release and immune cell chemoattraction. In vivo these aberrations may result in suboptimal implantation and predisposition to endometrial cancer.
WHAT IS KNOWN ALREADY: The endometrium in women with PCOS has several abnormalities including progesterone (P4) resistance at the gene expression level, likely contributing to subfertility, pregnancy complications and increased endometrial cancer risk in PCOS women.
STUDY DESIGN, SIZE, DURATION: Prospective, university-based, case-control, in vitro study.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Cultures of eSFPCOS (n = 12, Rotterdam and NIH criteria) and eSFControl (Ctrl) (n = 6, regular cycle length, no signs of hyperandrogenism) were treated with vehicle, estradiol (E2, 10 nM) or E2P4 (10 nM/1 μM) for 14 days. Progesterone receptor (PGR) mRNA was assessed with quantitative real-time PCR (qRT-PCR) and eSF decidualization was confirmed by insulin-like growth factor-binding protein-1 (IGFBP-1) transcript and protein expression. Fractalkine (CX3CL1), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL) 6, 8 and 11, macrophage chemoattractant protein (MCP) 1 and 3, CCL5 (RANTES) and MMPs (MMP1, 2, 3, 7, 9, 10 and 12) were measured in conditioned media by Luminex multiplex assays, and chemotactic activity of the conditioned media was tested in a migration assay using CD14+ monocyte and CD4+ T-cell migration assay. Effects of IL-6 (0.02, 0.2, 2 or 20 ng/ml) or IL-8 (0.04, 0.4, 4, or 40 ng/ml) or combination (0.2 ng/ml IL-6 and 4.0 ng/ml IL-8) on 14-d decidualization were also tested. ANOVA with pre-planned contrasts was used for statistical analysis.
MAIN RESULTS AND THE ROLE OF CHANCE: Hormonal challenge with E2P4 to induce decidualization revealed two distinct subsets of eSFPCOS. Eight eSFPCOS (dPCOS) and all eSFCtrl (dCtrl) cultures showed a normal decidualization response to E2P4 as determined by morphology and IGFBP-1 secretion. However, 4 eSFPCOS cultures showed blunted decidualization (ndPCOS) in morphological assessment and low IGFBP-1 levels even though all three groups exhibited normal estrogen-mediated increase in PGR expression. Interestingly dPCOS had decreased IL-6 and GM-SCF secretion compared with dCtrl, whereas the ndPCOS cultures showed increased IL-6 and 8, MCP1, RANTES and GM-CSF secretion at base-line and/or in response to E2 or E2P4 compared with dCtrl and/or dPCOS. Furthermore, even though PGR expression was similar in all three groups, P4 inhibition of MMP secretion was attenuated in ndPCOS resulting in higher MMP2 and 3 levels. The conditioned media from ndPCOS had increased chemoattractic activity compared with dCtrl and dPCOS media. Exogenously added IL-6 and/or 8 did not inhibit decidualization in eSFCtrl indicating that high levels of these cytokines in ndPCOS samples were not likely a cause for the aberrant decidualization.
LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study with a small sample size, utilizing stromal cell cultures from proliferative and secretory phase endometrium. The effect of PCOS on endometrial epithelium, another major histoarchitectural cell compartment of the endometrium, was not evaluated and should be considered in future studies. Furthermore, results obtained should also be confirmed in a larger data set and with mid/late secretory phase in vivo samples and models.
WIDER IMPLICATIONS OF THE FINDINGS: The alterations seen in ndPCOS may contribute to endometrial dysfunction, subfertility and pregnancy complications in PCOS women. The results emphasize the importance of understanding immune responses related to the implantation process and normal endometrial homeostasis in women with PCOS.
STUDY FUNDING/COMPETING INTERESTS: Sigrid Juselius Foundation, Academy of Finland, Finnish Medical Foundation, Orion-Farmos Research Foundation (to T.T.P.), the NIH Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) U54HD 055764-07 Specialized Cooperative Centers Program in Reproduction and Infertility Research (to L.C.G.), the NICHD the Ruth L. Kirschstein National Research Service Awards grant 1F32HD074423-03 (to J.C.C.). The authors have no competing interests.

Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, et al.
Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth.
Oncotarget. 2015; 6(6):4266-73 [PubMed] Free Access to Full Article Related Publications
Increased adrenergic signaling facilitates tumor progression, but the underlying mechanisms remain poorly understood. We examined factors responsible for stress-mediated effects on monocyte/macrophage recruitment into the tumor microenvironment, and the resultant effects on tumor growth. In vitro, MCP1 was significantly increased after catecholamine exposure, which was mediated by cAMP and PKA. Tumor samples from mice subjected to daily restraint stress had elevated MCP1 gene and protein levels, increased CD14+ cells, and increased infiltration of CD68+ cells. hMCP1 siRNA-DOPC nanoparticles significantly abrogated daily restraint stress-induced tumor growth and inhibited infiltration of CD68+ and F4/80+ cells. In ovarian cancer patients, elevated peripheral blood monocytes and tumoral macrophages were associated with worse overall survival. Collectively, we demonstrate that increased adrenergic signaling is associated with macrophage infiltration and mediated by tumor cell-derived MCP1 production.

Simmons KM, Beaudin SG, Narvaez CJ, Welsh J
Gene Signatures of 1,25-Dihydroxyvitamin D3 Exposure in Normal and Transformed Mammary Cells.
J Cell Biochem. 2015; 116(8):1693-711 [PubMed] Related Publications
To elucidate potential mediators of vitamin D receptor (VDR) action in breast cancer, we profiled the genomic effects of its ligand 1,25-dihydroxyvitamin D3 (1,25D) in cells derived from normal mammary tissue and breast cancer. In non-transformed hTERT-HME cells, 483 1,25D responsive entities in 42 pathways were identified, whereas in MCF7 breast cancer cells, 249 1,25D responsive entities in 31 pathways were identified. Only 21 annotated genes were commonly altered by 1,25D in both MCF7 and hTERT-HME cells. Gene set enrichment analysis highlighted eight pathways (including senescence/autophagy, TGFβ signaling, endochondral ossification, and adipogenesis) commonly altered by 1,25D in hTERT-HME and MCF7 cells. Regulation of a subset of immune (CD14, IL1RL1, MALL, CAMP, SEMA6D, TREM1, CSF1, IL33, TLR4) and metabolic (ITGB3, SLC1A1, G6PD, GLUL, HIF1A, KDR, BIRC3) genes by 1,25D was confirmed in hTERT-HME cells and similar changes were observed in another comparable non-transformed mammary cell line (HME cells). The effects of 1,25D on these genes were retained in HME cells expressing SV40 large T antigen but were selectively abrogated in HME cells expressing SV40 + RAS and in MCF7 cells. Integration of the datasets from hTERT-HME and MCF7 cells with publically available RNA-SEQ data from 1,25D treated SKBR3 breast cancer cells enabled identification of an 11-gene signature representative of 1,25D exposure in all three breast-derived cell lines. Four of these 11 genes (CYP24A1, CLMN, EFTUD1, and SERPINB1) were also identified as 1,25D responsive in human breast tumor explants, suggesting that this gene signature may prove useful as a biomarker of vitamin D exposure in breast tissue.

Cheng L, Tang X, Liu L, et al.
Monoclonal antibodies specific to human Δ42PD1: A novel immunoregulator potentially involved in HIV-1 and tumor pathogenesis.
MAbs. 2015; 7(3):620-9 [PubMed] Free Access to Full Article Related Publications
We recently reported the identification of Δ42PD1, a novel alternatively spliced isoform of human PD1 that induces the production of pro-inflammatory cytokines from human peripheral blood mononuclear cells and enhances HIV-specific CD8(+) T cell immunity in mice when engineered in a fusion DNA vaccine. The detailed functional study of Δ42PD1, however, has been hampered due to the lack of a specific monoclonal antibody (mAb). In this study, we generated 2 high-affinity mAbs, clones CH34 (IgG2b) and CH101 (IgG1), from Δ42PD1-immunized mice. They recognize distinct domains of Δ42PD1 as determined by a yeast surface-displaying assay and ELISA. Moreover, they recognize native Δ42PD1 specifically, but not PD1, on cell surfaces by both flow cytometry and immunohistochemical assays. Δ42PD1 appeared to be expressed constitutively on healthy human CD14(+) monocytes, but its level of expression was down-regulated significantly during chronic HIV-1 infection. Since the level of Δ42PD1 expression on CD14(+) monocytes was negatively correlated with the CD4 count of untreated patients in a cross-sectional study, Δ42PD1 may play a role in HIV-1 pathogenesis. Lastly, when examining Δ42PD1 expression in human esophageal squamous-cell carcinoma tissues, we found high-level expression of Δ42PD1 on a subset of tumor-infiltrating T cells. Our study, therefore, resulted in 2 Δ42PD1-specific mAbs that can be used to further investigate Δ42PD1, a novel immune regulatory protein implicated in HIV-1 and tumor pathogenesis as well as other immune diseases.

Isobe A, Sawada K, Kinose Y, et al.
Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer.
PLoS One. 2015; 10(2):e0118080 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer remains the most lethal gynecologic cancer and new targeted molecular therapies against this miserable disease continue to be challenging. In this study, we analyzed the expressional patterns of Interleukin-6 (IL-6) and its receptor (IL-6R) expression in ovarian cancer tissues, evaluated the impact of these expressions on clinical outcomes of patients, and found that a high-level of IL-6R expression but not IL-6 expression in cancer cells is an independent prognostic factor. In in vitro analyses using ovarian cell lines, while six (RMUG-S, RMG-1, OVISE, A2780, SKOV3ip1 and OVCAR-3) of seven overexpressed IL-6R compared with a primary normal ovarian surface epithelium, only two (RMG-1, OVISE) of seven cell lines overexpressed IL-6, suggesting that IL-6/IL-6R signaling exerts in a paracrine manner in certain types of ovarian cancer cells. Ovarian cancer ascites were collected from patients, and we found that primary CD11b+CD14+ cells, which were predominantly M2-polarized macrophages, are the major source of IL-6 production in an ovarian cancer microenvironment. When CD11b+CD14+ cells were co-cultured with cancer cells, both the invasion and the proliferation of cancer cells were robustly promoted and these promotions were almost completely inhibited by pretreatment with anti-IL-6R antibody (tocilizumab). The data presented herein suggest a rationale for anti-IL-6/IL-6R therapy to suppress the peritoneal spread of ovarian cancer, and represent evidence of the therapeutic potential of anti-IL-6R therapy for ovarian cancer treatment.

Suzuki E, Kataoka TR, Hirata M, et al.
Trogocytosis-mediated expression of HER2 on immune cells may be associated with a pathological complete response to trastuzumab-based primary systemic therapy in HER2-overexpressing breast cancer patients.
BMC Cancer. 2015; 15:39 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Trogocytosis is defined as the transfer of cell-surface membrane proteins and membrane patches from one cell to another through contact. It is reported that human epidermal growth factor receptor 2 (HER2) could be transferred from cancer cells to monocytes via trogocytosis; however, the clinical significance of this is unknown. The aim of this study is to demonstrate the presence and evaluate the clinical significance of HER2(+) tumor-infiltrated immune cells (arising through HER2 trogocytosis) in HER2-overexpressing (HER2+) breast cancer patients receiving trastuzumab-based primary systemic therapy (PST).
METHODS: To assess the trogocytosis of HER2 from cancer cells to immune cells, and to evaluate the up- and down-regulation of HER2 on immune and cancer cells, peripheral blood mononuclear cells from healthy volunteers and breast cancer patients were co-cultured with HER2+ and HER2-negative breast cancer cell lines with and without trastuzumab, respectively. The correlation between HER2 expression on tumor-infiltrated immune cells and a pathological complete response (pCR) in HER2+ breast cancer patients treated with trastuzumab-based PST was analyzed.
RESULTS: HER2 was transferred from HER2+ breast cancer cells to monocytes and natural killer cells by trogocytosis. Trastuzumab-mediated trogocytosed-HER2(+) effector cells exhibited greater CD107a expression than non-HER2-trogocytosed effector cells. In breast cancer patients, HER2 expression on tumor-infiltrated immune cells in treatment naïve HER2+ tumors was associated with a pCR to trastuzumab-based PST.
CONCLUSIONS: HER2-trogocytosis is visible evidence of tumor microenvironment interaction between cancer cells and immune cells. Given that effective contact between these cells is critical for immune destruction of target cancer cells, this interaction is of great significance. It is possible that HER2 trogocytosis could be used as a predictive biomarker for trastuzumab-based PST efficacy in HER2(+) breast cancer patients.

Kuo WT, Lee TC, Yang HY, et al.
LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis.
Cell Death Differ. 2015; 22(10):1590-604 [PubMed] Free Access to Full Article Related Publications
Colorectal carcinoma (CRC) is characterized by unlimited proliferation and suppression of apoptosis, selective advantages for tumor survival, and chemoresistance. Lipopolysaccharide (LPS) signaling is involved in both epithelial homeostasis and tumorigenesis, but the relative roles had by LPS receptor subunits CD14 and Toll-like receptor 4 (TLR4) are poorly understood. Our study showed that normal human colonocytes were CD14(+)TLR4(-), whereas cancerous tissues were CD14(+)TLR4(+), by immunofluorescent staining. Using a chemical-induced CRC model, increased epithelial apoptosis and decreased tumor multiplicity and sizes were observed in TLR4-mutant mice compared with wild-type (WT) mice with CD14(+)TLR4(+) colonocytes. WT mice intracolonically administered a TLR4 antagonist displayed tumor reduction associated with enhanced apoptosis in cancerous tissues. Mucosa-associated LPS content was elevated in response to CRC induction. Epithelial apoptosis induced by LPS hypersensitivity in TLR4-mutant mice was prevented by intracolonic administration of neutralizing anti-CD14. Moreover, LPS-induced apoptosis was observed in primary colonic organoid cultures derived from TLR4 mutant but not WT murine crypts. Gene silencing of TLR4 increased cell apoptosis in WT organoids, whereas knockdown of CD14 ablated cell death in TLR4-mutant organoids. In vitro studies showed that LPS challenge caused apoptosis in Caco-2 cells (CD14(+)TLR4(-)) in a CD14-, phosphatidylcholine-specific phospholipase C-, sphingomyelinase-, and protein kinase C-ζ-dependent manner. Conversely, expression of functional but not mutant TLR4 (Asp299Gly, Thr399Ile, and Pro714His) rescued cells from LPS/CD14-induced apoptosis. In summary, CD14-mediated lipid signaling induced epithelial apoptosis, whereas TLR4 antagonistically promoted cell survival and cancer development. Our findings indicate that dysfunction in the CD14/TLR4 antagonism may contribute to normal epithelial transition to carcinogenesis, and provide novel strategies for intervention against colorectal cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CD14, Cancer Genetics Web: http://www.cancer-genetics.org/CD14.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999