Gene Summary

Gene:DNMT3B; DNA (cytosine-5-)-methyltransferase 3 beta
Aliases: ICF, ICF1, M.HsaIIIB
Summary:CpG methylation is an epigenetic modification that is important for embryonic development, imprinting, and X-chromosome inactivation. Studies in mice have demonstrated that DNA methylation is required for mammalian development. This gene encodes a DNA methyltransferase which is thought to function in de novo methylation, rather than maintenance methylation. The protein localizes primarily to the nucleus and its expression is developmentally regulated. Mutations in this gene cause the immunodeficiency-centromeric instability-facial anomalies (ICF) syndrome. Eight alternatively spliced transcript variants have been described. The full length sequences of variants 4 and 5 have not been determined. [provided by RefSeq, May 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:DNA (cytosine-5)-methyltransferase 3B
Source:NCBIAccessed: 20 August, 2015


What does this gene/protein do?
Show (31)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 20 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Genetic Predisposition
  • Tumor Stem Cell Assay
  • Colonic Neoplasms
  • Western Blotting
  • Histones
  • Cancer Gene Expression Regulation
  • Neurons
  • DNA-Binding Proteins
  • Molecular Sequence Data
  • Colorectal Cancer
  • CpG Islands
  • Liver Cancer
  • Transcriptional Activation
  • DNA (Cytosine-5-)-Methyltransferase
  • Chromosome 20
  • Zinc Fingers
  • Neoplasm Proteins
  • Tumor Suppressor Gene
  • Case-Control Studies
  • Gene Expression Profiling
  • Y Chromosome
  • Oligonucleotide Array Sequence Analysis
  • Epigenetics
  • Risk Factors
  • Cancer DNA
  • Genotype
  • Testicular Cancer
  • Single Nucleotide Polymorphism
  • ras Proteins
  • Base Sequence
  • Azacitidine
  • Down-Regulation
  • DNA Methylation
  • Cell Proliferation
  • Radiation-Sensitizing Agents
  • Lung Cancer
  • Breast Cancer
  • Gene Silencing
  • Polymerase Chain Reaction
Tag cloud generated 20 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: DNMT3B (cancer-related)

Kühnl A, Valk PJ, Sanders MA, et al.
Downregulation of the Wnt inhibitor CXXC5 predicts a better prognosis in acute myeloid leukemia.
Blood. 2015; 125(19):2985-94 [PubMed] Free Access to Full Article Related Publications
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.

Xue G, Ren Z, Chen Y, et al.
A feedback regulation between miR-145 and DNA methyltransferase 3b in prostate cancer cell and their responses to irradiation.
Cancer Lett. 2015; 361(1):121-7 [PubMed] Related Publications
It is believed that epigenetic modification plays roles in cancer initiation and progression. Both microRNA and DNA methyltransferase are epigenetic regulation factors. It was found that miR-145 upregulates while DNMT3b downregulates in PC3 cells. Presence of any negative correlationship and their response to irradiation were investigated in the current study. We found that miR-145 downregulated DNMT3b expression by directly targeting the 3'-UTR of DNMT3b mRNA and knockdown of DNMT3b increased expression of miR-145 via CpG island promoter hypomethylation, suggesting that there is a crucial crosstalk between miR-145 and DNMT3b via a double-negative feedback loop. Responses of the miR-145 and DNMT3b to irradiation are a negative correlation. We also found that either overexpression of miR-145 or knockdown of DNMT3b sensitized prostate cancer cells to X-ray radiation. Our findings enrich the complex relationships between miRNA and DNMTs in carcinogenesis and irradiation stress. It also sheds light on the potential combination of ionizing radiation and epigenetic regulation in prostate cancer therapy.

Robaina MC, Mazzoccoli L, Arruda VO, et al.
Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis.
Exp Mol Pathol. 2015; 98(2):200-7 [PubMed] Related Publications
Methylation of CpG islands in promoter gene regions is frequently observed in lymphomas. DNA methylation is established by DNA methyltransferases (DNMTs). DNMT1 maintains methylation patterns, while DNMT3A and DNMT3B are critical for de novo DNA methylation. Little is known about the expression of DNMTs in lymphomas. DNMT3A and 3B genes can be regulated post-transcriptionally by miR-29 family. Here, we demonstrated for the first time the overexpression of DNMT1 and DNMT3B in Burkitt lymphoma (BL) tumor samples (69% and 86%, respectively). Specifically, the treatment of two BL cell lines with the DNMT inhibitor 5-aza-dC decreased DNMT1 and DNMT3B protein levels and inhibited cell growth. Additionally, miR-29a, miR-29b and miR-29c levels were significantly decreased in the BL tumor samples. Besides, the ectopic expression of miR-29a, miR-29b and miR-29c reduced the DNMT3B expression and miR-29a and miR-29b lead to increase of p16(INK4a) mRNA expression. Altogether, our data suggest that deregulation of DNMT1, DNMT3B and miR29 may be involved in BL pathogenesis.

Duan F, Cui S, Song C, et al.
Systematic evaluation of cancer risk associated with DNMT3B polymorphisms.
J Cancer Res Clin Oncol. 2015; 141(7):1205-20 [PubMed] Related Publications
PURPOSE: The aim of our study is to provide a precise quantification for the association between DNA methyltransferase 3B (DNMT3B) variations (rs2424913 C/T, rs1569686 G/T, rs6087990 T/C and rs2424908 T/C) and the risk of cancer.
METHODS: We performed a systematic literature review and assessed the methodological quality of included case-control designed studies based on Newcastle-Ottawa Scale. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were calculated to assess the strengths of the associations.
RESULTS: We identified 34 studies for pooled analyses. Overall, the results demonstrated that rs2424913 polymorphism was significantly associated with negative cancer risk in the African population (CT vs TT: OR 0.10, 95% CI 0.02-0.63, P = 0.01; CT+CC vs TT: OR 0.14, 95% CI 0.03-0.76, P = 0.02), and the rs1569686 polymorphism was significantly associated with a subtly decreased cancer risk (GT vs TT: OR 0.80, 95% CI 0.72-0.90, P < 0.01; GT+GG vs TT: OR 0.84, 95% CI 0.76-0.94, P < 0.01), particularly in the Asian population (GT vs TT: OR 0.79, 95% CI 0.66-0.96, P < 0.01) and in colorectal cancer subgroup (G vs T: OR 0.69, 95% CI 0.54-0.88, P < 0.01). In addition, the rs6087990 polymorphism was associated with decreased risk in Asian population (T vs C: OR 0.77, 95% CI 0.62-0.96, P = 0.02). Similarly, the rs2424908 polymorphism was observed as a protective factor for cancer in the Asian population (CT+CC vs TT: OR 0.79, 95% CI 0.66-0.95, P = 0.01).
CONCLUSIONS: DNMT3B polymorphisms might be associated with decreased cancer risk especially in the Asian population and for colorectal cancer. Further multicentric studies are still needed to confirm the results.

Wang L, Zhang C, Guo Y, et al.
Blocking of JB6 cell transformation by tanshinone IIA: epigenetic reactivation of Nrf2 antioxidative stress pathway.
AAPS J. 2014; 16(6):1214-25 [PubMed] Article available free on PMC after 02/10/2015 Related Publications
Increasing numbers of natural products have been found to possess anticancer effects. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a master regulator of the antioxidative stress response, and our previous studies found that epigenetic modification of the Nrf2 gene appears to be a critical mechanism. Salvia miltiorrhiza, a Chinese herbal medicine widely used in Asian countries, has been shown to possess anticancer and antioxidant effects. Tanshinone IIA (TIIA), an active component in S. miltiorrhiza, has been reported to activate Nrf2 pathway. The objective of this study was to investigate the epigenetic regulation of Nrf2 by TIIA in mouse skin epidermal JB6 cells and the functional consequences for cell transformation. TIIA was found to induce antioxidant response element-luciferase and upregulate the mRNA and protein levels of Nrf2 and Nrf2 downstream target genes HO-1 and NQO-1. TIIA decreased the colony formation of JB6 cells by approximately 80%. TIIA decreased the protein levels of DNMT1, DNMT3a, DNMT3b, and HDAC3 and inhibited the enzymatic activity of HDACs. Bisulfite genomic sequencing indicated that TIIA demethylated the first five CpGs in the promoter region of the Nrf2 gene. Chromatin immunoprecipitation assays showed that TIIA treatment increased the recruitment of RNA polymerase II at Nrf2 transcription start site but had limited effects on enrichment of Ac-H3 in Nrf2 promoter. Taken together, our results show that TIIA activates the Nrf2 signaling pathway and induces epigenetic demethylation of the CpGs of Nrf2. The epigenetic reactivation of the Nrf2 signaling pathway by TIIA could potentially contribute to the attenuation of JB6 cellular transformation and anticancer effects.

Yang X, Han H, De Carvalho DD, et al.
Gene body methylation can alter gene expression and is a therapeutic target in cancer.
Cancer Cell. 2014; 26(4):577-90 [PubMed] Article available free on PMC after 13/10/2015 Related Publications
DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression, yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the overexpression of genes, many of which are involved in metabolic processes regulated by c-MYC. Downregulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may, therefore, be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene overexpression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription.

Fang M, Ou J, Hutchinson L, Green MR
The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG Island Methylator phenotype.
Mol Cell. 2014; 55(6):904-15 [PubMed] Article available free on PMC after 18/09/2015 Related Publications
Most colorectal cancers (CRCs) containing activated BRAF (BRAF[V600E]) have a CpG island methylator phenotype (CIMP) characterized by aberrant hypermethylation of many genes, including the mismatch repair gene MLH1. MLH1 silencing results in microsatellite instability and a hypermutable phenotype. Through an RNAi screen, here we identify the transcriptional repressor MAFG as the pivotal factor required for MLH1 silencing and CIMP in CRCs containing BRAF(V600E). In BRAF-positive human CRC cell lines and tumors, MAFG is bound at the promoters of MLH1 and other CIMP genes, and recruits a corepressor complex that includes its heterodimeric partner BACH1, the chromatin remodeling factor CHD8, and the DNA methyltransferase DNMT3B, resulting in hypermethylation and transcriptional silencing. BRAF(V600E) increases BRAF/MEK/ERK signaling resulting in phosphorylation and elevated levels of MAFG, which drives DNA binding. Analysis of transcriptionally silenced CIMP genes in KRAS-positive CRCs indicates that different oncoproteins direct the assembly of distinct repressor complexes on common promoters.

Niederwieser C, Kohlschmidt J, Volinia S, et al.
Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia.
Leukemia. 2015; 29(3):567-75 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
DNMT3B encodes a DNA methyltransferase implicated in aberrant epigenetic changes contributing to leukemogenesis. We tested whether DNMT3B expression, measured by NanoString nCounter assay, associates with outcome, gene and microRNA expression and DNA methylation profiles in 210 older (⩾60 years) adults with primary, cytogenetically normal acute myeloid leukemia (CN-AML). Patients were dichotomized into high versus low expressers using median cut. Outcomes were assessed in the context of known CN-AML prognosticators. Gene and microRNA expression, and DNA methylation profiles were analyzed using microarrays and MethylCap-sequencing, respectively. High DNMT3B expressers had fewer complete remissions (CR; P=0.002) and shorter disease-free (DFS; P=0.02) and overall (OS; P<0.001) survival. In multivariable analyses, high DNMT3B expression remained an independent predictor of lower CR rates (P=0.04) and shorter DFS (P=0.04) and OS (P=0.001). High DNMT3B expression associated with a gene expression profile comprising 363 genes involved in differentiation, proliferation and survival pathways, but with only four differentially expressed microRNAs (miR-133b, miR-148a, miR-122, miR-409-3p) and no differential DNA methylation regions. We conclude that high DNMT3B expression independently associates with adverse outcome in older CN-AML patients. Gene expression analyses suggest that DNMT3B is involved in the modulation of several genes, although the regulatory mechanisms remain to be investigated to devise therapeutic approaches specific for these patients.

Sin-Chan P, Huang A
DNMTs as potential therapeutic targets in high-risk pediatric embryonal brain tumors.
Expert Opin Ther Targets. 2014; 18(10):1103-7 [PubMed] Related Publications
Malignant brain tumors, which are the leading cause of cancer-related morbidity and mortality in children, span a wide spectrum of diseases with distinct clinical phenotypes but may share remarkably similar morphologic features. Until recently, few molecular markers of childhood brain tumors have been identified, which has limited therapeutic advances. Recent global genomic studies have enabled robust molecular classification of childhood brain tumors and the identification and consolidation of rare, seemingly disparate clinical entities. It is now increasingly evident that deregulation of epigenetic processes contributes substantially to heterogeneity in tumor phenotypes and comprise significant drivers of cancer initiation and progression. Specifically, DNA hypermethylation and silencing of critical tumor suppressor genes by DNA methyltransferases (DNMT) has emerged as an important and fundamental mechanism in brain tumor pathogenesis. These observations have been underscored by the recent discovery of TTYH1-C19MC gene fusions in an aggressive pediatric embryonal brain tumor, which results in deregulation and increased expression of a neural-specific DNMT3B isoform in C19MC-associated brain tumors. Our observations that pharmacological inhibitors of DNMTs and histone deacetylases significantly inhibit growth of cells derived from C19MC-associated tumors indicate targeting of epigenomic modifiers as a novel therapeutic approach for these highly treatment-resistant tumors.

Yang YC, Tang YA, Shieh JM, et al.
DNMT3B overexpression by deregulation of FOXO3a-mediated transcription repression and MDM2 overexpression in lung cancer.
J Thorac Oncol. 2014; 9(9):1305-15 [PubMed] Related Publications
INTRODUCTION: DNA methyltransferase 3B (DNMT3B) contributes to de novo DNA methylation and its overexpression promotes tumorigenesis. However, whether DNMT3B is upregulated by transcriptional deregulation remains unclear.
METHODS: We studied the transcriptional repression of DNMT3B by forkhead O transcription factor 3a (FOXO3a) in lung cancer cell, animal, and clinical models.
RESULTS: The results of luciferase reporter assay showed that FOXO3a negatively regulated DNMT3B promoter activity by preferentially interacting with the binding element FOXO3a-E (+166 to +173) of DNMT3B promoter. Ectopically overexpressed FOXO3a or combined treatment with doxorubicin to induce FOXO3a nuclear accumulation further bound at the distal site, FOXO3a-P (-249 to -242) by chromatin-immunoprecipitation assay. Knockdown of FOXO3a resulted in an open chromatin structure and high DNMT3B mRNA and protein expression. Abundant FOXO3a repressed DNMT3B promoter by establishing a repressed chromatin structure. Note that FOXO3a is a degradation substrate of MDM2 E3-ligase. Cotreatment with doxorubicin and MDM2 inhibitor, Nutlin-3, further enforced abundant nuclear accumulation of FOXO3a resulting in decrease expression of DNMT3B leading to synergistic inhibition of tumor growth and decrease of methylation status on tumor suppressor genes in xenograft specimens. Clinically, lung cancer patients with DNMT3B high, FOXO3a low, and MDM2 high expression profile correlated with poor prognosis examined by immunohistochemistry and Kaplan-Meier survival analysis.
CONCLUSIONS: We reveal a new mechanism that FOXO3a transcriptionally represses DNMT3B expression and this regulation can be attenuated by MDM2 overexpression in human lung cancer model. Cotreatment with doxorubicin and Nutlin-3 is a novel therapeutic strategy through epigenetic modulation.

Martin M, Ancey PB, Cros MP, et al.
Dynamic imbalance between cancer cell subpopulations induced by transforming growth factor beta (TGF-β) is associated with a DNA methylome switch.
BMC Genomics. 2014; 15:435 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Distinct subpopulations of neoplastic cells within tumors, including hepatocellular carcinoma (HCC), display pronounced ability to initiate new tumors and induce metastasis. Recent evidence suggests that signals from transforming growth factor beta (TGF-β) may increase the survival of these so called tumor initiating cells leading to poor HCC prognosis. However, how TGF-β establishes and modifies the key features of these cell subpopulations is not fully understood.
RESULTS: In the present report we describe the differential DNA methylome of CD133-negative and CD133-expressing liver cancer cells. Next, we show that TGF-β is able to increase the proportion of CD133+ cells in liver cancer cell lines in a way that is stable and persistent across cell division. This process is associated with stable genome-wide changes in DNA methylation that persist through cell division. Differential methylation in response to TGF-β is under-represented at promoter CpG islands and enriched at gene bodies, including a locus in the body of the de novo DNA methyl-transferase DNMT3B gene. Moreover, phenotypic changes induced by TGF-β, including the induction of CD133, are impaired by siRNA silencing of de novo DNA methyl-transferases.
CONCLUSIONS: Our study reveals a self-perpetuating crosstalk between TGF-β signaling and the DNA methylation machinery, which can be relevant in the establishment of cellular phenotypes. This is the first indication of the ability of TGF-β to induce genome-wide changes in DNA methylation, resulting in a stable change in the proportion of liver cancer cell subpopulations.

Qing Y, Hu H, Liu Y, et al.
Berberine induces apoptosis in human multiple myeloma cell line U266 through hypomethylation of p53 promoter.
Cell Biol Int. 2014; 38(5):563-70 [PubMed] Related Publications
Berberine has multiple pharmacological activities, such as anti-oxidative, anti-inflammation and anticancer activity. It reduces the proliferation and induces apoptosis in the multiple myeloma cell line, U266. Here we explored the detailed mechanism by analysing the gene expression profiles in U266 treated with or without berberine. DNMT1 andDNMT3B, encoding for a highly conserved member of the DNA methyltransferases, decreased significantly. By dissection of biochemical network database (BNDB) with Kyoto Encyclopaedia of Genes and Genomes (KEGG) annotation, the p53 signalling pathway related genes were altered. By using epigenetic chromatin modification enzymes PCR Array, gene expression microarray, RT-PCR and Bisulphite sequencing, the results show that berberine can repress the expression of DNMT1 and DNMT3B, which triggers hypomethylation of TP53 by changing the DNA methylation level and the alteration of p53 dependent signal pathway in human multiple melanoma cell U266.

Spence T, Sin-Chan P, Picard D, et al.
CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity.
Acta Neuropathol. 2014; 128(2):291-303 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity.

Morscio J, Dierickx D, Nijs J, et al.
Clinicopathologic comparison of plasmablastic lymphoma in HIV-positive, immunocompetent, and posttransplant patients: single-center series of 25 cases and meta-analysis of 277 reported cases.
Am J Surg Pathol. 2014; 38(7):875-86 [PubMed] Related Publications
Plasmablastic lymphoma (PBL) is a rare B-cell non-Hodgkin lymphoma often associated with Epstein-Barr virus (EBV) infection. To gain insight in this aggressive lymphoma subtype, the clinicopathologic characteristics of 25 unpublished single-center PBLs (2 in acquired immunodeficiency syndrome patients, 11 in immunocompetent individuals [IC-PBL], 12 in transplant recipients [PT-PBL]) and of 277 reported PBLs were summarized. In the reported series, PBL patients were predominantly male (77%) with a median age at diagnosis of 46 years (range, 1.2 to 87 y). The majority of the biopsies (66%) was EBV positive. Extranodal presentation was most frequent (88%, of which 35% were oral, 18% gastrointestinal, 12% cutaneous). PBL was diagnosed in acquired immunodeficiency syndrome patients (50%), immunocompetent individuals (35%), and transplant recipients (14%). These subgroups differed in age at diagnosis (median: 41, 64, 47 y, respectively), primary localization (oral, oral, cutaneous, respectively), EBV positivity (75%, 50%, 67%, respectively), CD45 expression (31%, 33%, 70%, respectively), and C-MYC aberrations (78%, 44%, 38%, respectively). Ann Arbor stage I, EBV positivity, CD45 expression, and lack of C-MYC aberrations were associated with better outcome (P<0.05). Our series of IC-PBL and PT-PBL cases revealed differential expression of CD10 (0% vs. 42%, respectively), CD56 (22% vs. 42%, respectively), TP53 (67% vs. 8%, respectively), and BCL2 (88% vs. 25%, respectively). Gene expression analysis of 5 of our PT-PBLs revealed upregulation of DNMT3B, PTP4A3, and CD320 in EBV-positive PT-PBL and suggested a role for cancer/testis antigens. The results of this retrospective study suggest different pathogenic mechanisms of PBL in different immunologic settings and a potentially important impact of EBV and CD45 on prognosis.

Kvaratskhelia E, Tkemaladze T, Abzianidze E
Expression pattern of DNA-methyltransferases and its health implication (short review).
Georgian Med News. 2014; (228):76-81 [PubMed] Related Publications
Epigenetics is heritable and reversible alterations of gene expression without direct alteration of DNA sequences. One example of epigenetic factors is DNA methylation, which prevents certain genes from being expressed. Another example is histone modifications. In addition, miRNAs can silence genes at transcriptional and posttranscriptional level. DNA methylation is regulated by DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b). Aberrant DNMTs expression is the dominant mechanism for the genome instability which associates with a wide range of diseases such as a cancer, autoimmune diseases, mental disorders. In this article we reviewed the major mechanisms of changes of DNA methylation regulated by DNMTs and the role of this changes in pathogenesis of various diseases. In addition we briefly reviewed epigenetic agents, such as inhibitors of DNA methyltransferases or HDAC (histone deacetylase) targeting oncology, hematology, immunology, and neurologic disease indications, and which are in various phases of study or have been clinically tested and approved by FDA (Food and Drug Administration).

Liu F, Zhou Y, Zhou D, et al.
Whole DNA methylome profiling in lung cancer cells before and after epithelial-to-mesenchymal transition.
Diagn Pathol. 2014; 9:66 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Metastatic lung cancer is one of the leading causes of cancer death. In recent years, epithelial-to-mesenchymal transition (EMT) has been found to contribute to metastasis, as it enables migratory and invasive properties in cancer cells. Previous genome-wide studies found that DNA methylation was unchanged during EMT induced by TGF-β in AML12 cells. In this study, we aimed to discover EMT-related changes in DNA methylation in cancer cells, which are poorly understood.
METHODS: We employed a next-generation sequencing-based method, MSCC (methyl-sensitive cut counting), to investigate DNA methylation during EMT in the A549 lung cancer cell line.
RESULTS: We found that methylation levels were highly correlated to gene expression, histone modifications and small RNA expression. However, no differentially methylated regions (DMRs) were found in A549 cells treated with TGF-β for 4 h, 12 h, 24 h and 96 h. Additionally, CpG islands (CGIs) showed no overall change in methylation levels, and at the single-base level, almost all of the CpGs showed conservation of DNA methylation levels. Furthermore, we found that the expression of DNA methyltransferase 1, 3a, 3b (DNMT1, DNMT3a, DNMT3b) and ten-eleven translocation 1 (TET1) was altered after EMT. The level of several histone methylations was also changed.
CONCLUSIONS: DNA methylation-related enzymes and histone methylation might have a role in TGF-β-induced EMT without affecting the whole DNA methylome in cancer cells. Our data provide new insights into the global methylation signature of lung cancer cells and the role of DNA methylation in EMT.
VIRTUAL SLIDES: The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1112892497119603.

Espinosa-Parrilla Y, Muñoz X, Bonet C, et al.
Genetic association of gastric cancer with miRNA clusters including the cancer-related genes MIR29, MIR25, MIR93 and MIR106: results from the EPIC-EURGAST study.
Int J Cancer. 2014; 135(9):2065-76 [PubMed] Related Publications
MicroRNAs (miRNAs) are post-transcriptional gene regulators involved in a wide range of biological processes including tumorigenesis. Deregulation of miRNA pathways has been associated with cancer but the contribution of their genetic variability to this disorder is poorly known. We analyzed the genetic association of gastric cancer (GC) and its anatomical and histological subtypes, with 133 single-nucleotide polymorphisms (SNPs) tagging 15 isolated miRNAs and 24 miRNA clusters potentially involved in cancer, in 365 GC cases and 1,284 matched controls within the European Prospective Investigation into Cancer and Nutrition cohort. Various SNPs were associated with GC under the log-additive model. Furthermore, several of these miRNAs passed the gene-based permutation test when analyzed according to GC subtypes: three tagSNPs of the miR-29a/miR-29b-1 cluster were associated with diffuse subtype (minimum p-value = 1.7 × 10(-4) ; odds ratio, OR = 1.72; 95% confidence interval, CI = 1.30-2.28), two tagSNPs of the miR-25/miR-93/miR-106b cluster were associated with cardia GC (minimum p-value = 5.38 × 10(-3) ; OR = 0.56, 95% CI = 0.37-0.86) and one tagSNP of the miR-363/miR-92a-2/miR-19b-2/miR-20b/miR-18b/miR-106a cluster was associated with noncardia GC (minimum p-value = 5.40 × 10(-3) ; OR = 1.41, 95% CI = 1.12-1.78). Some functionally validated target genes of these miRNAs are implicated in cancer-related processes such as methylation (DNMT3A, DNMT3B), cell cycle (E2F1, CDKN1A, CDKN1C), apoptosis (BCL2L11, MCL1), angiogenesis (VEGFA) and progression (PIK3R1, MYCN). Furthermore, we identified genetic interactions between variants tagging these miRNAs and variants in their validated target genes. Deregulation of the expression of these miRNAs in GC also supports our findings, altogether suggesting for the fist time that genetic variation in MIR29, MIR25, MIR93 and MIR106b may have a critical role in genetic susceptibility to GC and could contribute to the molecular mechanisms of gastric carcinogenesis.

Li W, Zheng J, Deng J, et al.
Increased levels of the long intergenic non-protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells.
Gastroenterology. 2014; 146(7):1714-26.e5 [PubMed] Related Publications
BACKGROUND & AIMS: Thousands of long intergenic non-protein coding RNAs (lincRNAs) have been identified in mammals via genome-wide sequencing studies. Many are functional, but are expressed aberrantly by cancer cells. We investigated whether levels of lincRNAs are altered during the development of esophageal squamous cell carcinoma (ESCC).
METHODS: We used quantitative real-time polymerase chain reaction to measure levels of 26 highly conserved lincRNAs in ESCC and surrounding nontumor tissues. A total of 182 ESCC and paired adjacent nontumor tissue samples were collected from patients undergoing tylectomy at The First Affiliate Hospital of Soochow University from 2001 through 2009; another 178 ESCC tissue pairs were collected from Guangzhou Medical University from 2002 through 2009. LincRNAs were expressed from lentiviral vectors or knocked down with small hairpin RNAs in Eca-109 and TE-1 cells.
RESULTS: Levels of a lincRNA encoded by a gene located next to POU3F3 (linc-POU3F3) were significantly higher in ESCC than neighboring nontumor tissues. In RNA immunoprecipitation assays, linc-POU3F3 was associated with the EZH2 messenger RNA (mRNA). Overexpression of linc-POU3F3 in cell lines increased their proliferation and ability to form colonies, and reduced the expression of POU3F3 mRNA, whereas knockdown of linc-POU3F3 increased the levels of POU3F3 mRNA. CpG islands in POU3F3 were densely hypermethylated in cell lines that overexpressed linc-POU3F3; methylation at these sites was reduced by knockdown of linc-POU3F3. Pharmacologic inhibition of EZH2 increased the levels of POU3F3 mRNA and significantly reduced binding of DNA methyltransferase (DNMT)1, DNMT3A, and DNMT3B to POU3F3. ESCC cells with knockdown of linc-POU3F3 formed xenograft tumors more slowly in mice than control ESCC cells.
CONCLUSIONS: Levels of linc-POU3F3 are increased in ESCC samples from patients compared with nontumor tissues. This noncoding RNA contributes to the development of ESCC by interacting with EZH2 to promote methylation of POU3F3, which encodes a transcription factor.

Wongtrakoongate P, Li J, Andrews PW
Aza-deoxycytidine induces apoptosis or differentiation via DNMT3B and targets embryonal carcinoma cells but not their differentiated derivatives.
Br J Cancer. 2014; 110(8):2131-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Teratocarcinoma is a malignant male germ cell tumour, which contains stem cells and differentiated cancer tissues. DNMT3B has been shown to be highly expressed in human teratocarcinoma stem cells, and to mediate cytotoxicity of Aza-deoxycytidine (Aza-dC) in a pluripotent stem cell line NTERA2.
METHODS: We have established DNMT3B or POU5F1 (hereafter referred to as OCT4) knockdown in teratocarcinoma stem cells N2102Ep and TERA1 and in the pluripotent NTERA2 by a doxycycline-inducible system, and tested the cytotoxicity induced by Aza-dC.
RESULTS: Silencing of DNMT3B led to apoptosis of human teratocarcinoma stem cells N2102Ep and TERA1. Further, we found that induction of apoptosis or differentiation in NTERA2 and human embryonic stem cells by Aza-dC requires DNMT3B. To test whether Aza-dC inhibits proliferation of differentiated teratocarcinoma cells, we depleted OCT4 expression in N2102Ep and TERA1 cells treated with Aza-dC. Treatment with Aza-dC reduced cell number of differentiated cells to a lesser extent than their undifferentiated parental stem cells. Moreover, in contrast to the stem cells, Aza-dC failed to induce apoptosis of differentiated cells.
CONCLUSIONS: Our finding suggests that DNMT3B acts as an antiapoptotic gene in teratocarcinoma stem cells, and mediates apoptosis and differentiation of human pluripotent stem cells induced by Aza-dC, and that Aza-dC specifically induces apoptosis of teratocarcinoma stem cells.

Xie Q, Bai Q, Zou LY, et al.
Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells.
Genes Chromosomes Cancer. 2014; 53(5):422-31 [PubMed] Related Publications
It has been previously demonstrated that genistein exhibits anticancer activity against breast cancer. However, the precise mechanisms underlying the anticancer effect of genistein, in particular the epigenetic basis, remain unclear. In this study, we investigated whether genistein could modulate the DNA methylation status and expression of cancer-related genes in breast cancer cells. We treated MCF-7 and MDA-MB-231 human breast cancer cells with genistein in vitro. We found that genistein decreased the levels of global DNA methylation, DNA methyltransferase (DNMT) activity and expression of DNMT1. Yet, the expression of DNMT3A and DNMT3B showed no significant change. Using molecular modeling, we observed that genistein might directly interact with the catalytic domain of DNMT1, thus competitively inhibiting the binding of hemimethylated DNA to the catalytic domain of DNMT1. Furthermore, genistein decreased DNA methylation in the promoter region of multiple tumor suppressor genes (TSGs) such as ataxia telangiectasia mutated (ATM), adenomatous polyposis coli (APC), phosphatase and tensin homolog (PTEN), mammary serpin peptidase inhibitor (SERPINB5), and increased the mRNA expression of these genes. However, we detected no significant changes in the DNA methylation status or mRNA expression of stratifin (SFN). These results suggest that the anticancer effect of genistein on breast cancer may be partly due to its ability to demethylate and reactivate methylation-silenced TSGs through direct interaction with the DNMT1 catalytic domain and inhibition of DNMT1 expression.

Coppedè F, Migheli F, Lopomo A, et al.
Gene promoter methylation in colorectal cancer and healthy adjacent mucosa specimens: correlation with physiological and pathological characteristics, and with biomarkers of one-carbon metabolism.
Epigenetics. 2014; 9(4):621-33 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
We evaluated the promoter methylation levels of the APC, MGMT, hMLH1, RASSF1A and CDKN2A genes in 107 colorectal cancer (CRC) samples and 80 healthy adjacent tissues. We searched for correlation with both physical and pathological features, polymorphisms of folate metabolism pathway genes (MTHFR, MTRR, MTR, RFC1, TYMS, and DNMT3B), and data on circulating folate, vitamin B12 and homocysteine, which were available in a subgroup of the CRC patients. An increased number of methylated samples were found in CRC respect to adjacent healthy tissues, with the exception of APC, which was also frequently methylated in healthy colonic mucosa. Statistically significant associations were found between RASSF1A promoter methylation and tumor stage, and between hMLH1 promoter methylation and tumor location. Increasing age positively correlated with both hMLH1 and MGMT methylation levels in CRC tissues, and with APC methylation levels in the adjacent healthy mucosa. Concerning gender, females showed higher hMLH1 promoter methylation levels with respect to males. In CRC samples, the MTR 2756AG genotype correlated with higher methylation levels of RASSF1A, and the TYMS 1494 6bp ins/del polymorphism correlated with the methylation levels of both APC and hMLH1. In adjacent healthy tissues, MTR 2756AG and TYMS 1494 6bp del/del genotypes correlated with APC and MGMT promoter methylation, respectively. Low folate levels were associated with hMLH1 hypermethylation. Present results support the hypothesis that DNA methylation in CRC depends from both physiological and environmental factors, with one-carbon metabolism largely involved in this process.

Teneng I, Tellez CS, Picchi MA, et al.
Global identification of genes targeted by DNMT3b for epigenetic silencing in lung cancer.
Oncogene. 2015; 34(5):621-30 [PubMed] Related Publications
The maintenance cytosine DNA methyltransferase DNMT1 and de novo methyltransferase DNMT3b cooperate to establish aberrant DNA methylation and chromatin complexes to repress gene transcription during cancer development. The expression of DNMT3b was constitutively increased 5-20-fold in hTERT/CDK4-immortalized human bronchial epithelial cells (HBECs) before treatment with low doses of tobacco carcinogens. Overexpression of DNMT3b increased and accelerated carcinogen-induced transformation. Genome-wide profiling of transformed HBECs identified 143 DNMT3b-target genes, many of which were transcriptionally regulated by the polycomb repressive complex 2 (PRC2) complex and silenced through aberrant methylation in non-small-cell lung cancer cell lines. Two genes studied in detail, MAL and OLIG2, were silenced during transformation, initially through enrichment for H3K27me3 and H3K9me2, commonly methylated in lung cancer, and exert tumor suppressor effects in vivo through modulating cancer-related pathways. Re-expression of MAL and OLIG2 to physiological levels dramatically reduced the growth of lung tumor xenografts. Our results identify a key role for DNMT3b in the earliest stages of initiation and provide a comprehensive catalog of genes targeted for silencing by this methyltransferase in non-small-cell lung cancer.

Itonaga H, Imanishi D, Wong YF, et al.
Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B.
Leukemia. 2014; 28(7):1459-66 [PubMed] Related Publications
Myeloperoxidase (MPO) has been associated with both a myeloid lineage commitment and favorable prognosis in patients with acute myeloid leukemia (AML). DNA methyltransferase inhibitors (decitabine and zeburaline) induced MPO gene promoter demethylation and MPO gene transcription in AML cells with low MPO activity. Therefore, MPO gene transcription was directly and indirectly regulated by DNA methylation. A DNA methylation microarray subsequently revealed a distinct methylation pattern in 33 genes, including DNA methyltransferase 3 beta (DNMT3B), in CD34-positive cells obtained from AML patients with a high percentage of MPO-positive blasts. Based on the inverse relationship between the methylation status of DNMT3B and MPO, we found an inverse relationship between DNMT3B and MPO transcription levels in CD34-positive AML cells (P=0.0283). In addition, a distinct methylation pattern was observed in five genes related to myeloid differentiation or therapeutic sensitivity in CD34-positive cells from AML patients with a high percentage of MPO-positive blasts. Taken together, the results of the present study indicate that MPO may serve as an informative marker for identifying a distinct and crucial DNA methylation profile in CD34-positive AML cells.

Li H, Kaminski MS, Li Y, et al.
Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma.
Blood. 2014; 123(10):1487-98 [PubMed] Related Publications
Follicular lymphoma (FL) constitutes the second most common non-Hodgkin lymphoma in the western world. FL carries characteristic recurrent structural genomic aberrations. However, information regarding the coding genome in FL is still evolving. Here, we describe the results of massively parallel exome sequencing and single nucleotide polymorphism 6.0 array genomic profiling of 11 highly purified FL cases, and 1 transformed FL case and the validation of selected mutations in 102 FL cases. We report the identification of 15 novel recurrently mutated genes in FL. These include frequent mutations in the linker histone genes HIST1H1 B-E (27%) and mutations in OCT2 (also known as POU2F2; 8%), IRF8 (6%), and ARID1A (11%). A subset of the mutations in HIST1H1 B-E affected binding to DNMT3B, and mutations in HIST1H1 B-E and in EZH2 or ARID1A were largely mutually exclusive, implicating HIST1H1 B-E in epigenetic deregulation in FL. Mutations in OCT2 (POU2F2) affected its transcriptional and functional properties as measured through luciferase assays, the biological analysis of stably transduced cell lines, and global expression profiling. Finally, multiple novel mutated genes located within regions of acquired uniparental disomy in FL are identified. In aggregate, these data substantially broaden our understanding of the genomic pathogenesis of FL.

Gao J, Wang L, Xu J, et al.
Aberrant DNA methyltransferase expression in pancreatic ductal adenocarcinoma development and progression.
J Exp Clin Cancer Res. 2013; 32:86 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Altered gene methylation, regulated by DNA methyltransferases (DNMT) 1, 3a and 3b, contributes to tumorigenesis. However, the role of DNMT in pancreatic ductal adenocarcinoma (PDAC) remains unknown.
METHODS: Expression of DNMT 1, 3a and 3b was detected in 88 Pancreatic ductal adenocarcinoma (PDAC) and 10 normal tissue samples by immunohistochemistry. Changes in cell viability, cell cycle distribution, and apoptosis of PDAC cell lines (Panc-1 and SW1990) were assessed after transfection with DNMT1 and 3b siRNA. Levels of CDKN1A, Bcl-2 and Bax mRNA were assessed by qRT-PCR, and methylation of the Bax gene promoter was assayed by methylation-specific PCR (MSP).
RESULTS: DNMT1, 3a and 3b proteins were expressed in 46.6%, 23.9%, and 77.3% of PDAC tissues, respectively, but were not expressed in normal pancreatic tissues. There was a co-presence of DNMT3a and DNMT3b expression and an association of DNMT1 expression with alcohol consumption and poor overall survival. Moreover, knockdown of DNMT1 and DNMT3b expression significantly inhibited PDAC cell viability, decreased S-phase but increased G1-phase of the cell cycle, and induced apoptosis. Molecularly, expression of CDKN1A and Bax mRNA was upregulated, and the Bax gene promoter was demethylated. However, a synergistic effect of combined DNMT1 and 3b knockdown was not observed.
CONCLUSION: Expression of DNMT1, 3a and 3b proteins is increased in PDAC tissues, and DNMT1 expression is associated with poor prognosis of patients. Knockdown of DNMT1 and 3b expression arrests tumor cells at the G1 phase of the cell cycle and induces apoptosis. The data suggest that DNMT knockdown may be a novel treatment strategy for PDAC.

Nettersheim D, Heukamp LC, Fronhoffs F, et al.
Analysis of TET expression/activity and 5mC oxidation during normal and malignant germ cell development.
PLoS One. 2013; 8(12):e82881 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
During mammalian development the fertilized zygote and primordial germ cells lose their DNA methylation within one cell cycle leading to the concept of active DNA demethylation. Recent studies identified the TET hydroxylases as key enzymes responsible for active DNA demethylation, catalyzing the oxidation of 5-methylcytosine to 5-hydroxymethylcytosine. Further oxidation and activation of the base excision repair mechanism leads to replacement of a modified cytosine by an unmodified one. In this study, we analyzed the expression/activity of TET1-3 and screened for the presence of 5 mC oxidation products in adult human testis and in germ cell cancers. By analyzing human testis sections, we show that levels of 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine are decreasing as spermatogenesis proceeds, while 5-methylcytosine levels remain constant. These data indicate that during spermatogenesis active DNA demethylation becomes downregulated leading to a conservation of the methylation marks in mature sperm. We demonstrate that all carcinoma in situ and the majority of seminomas are hypomethylated and hypohydroxymethylated compared to non-seminomas. Interestingly, 5-formylcytosine and 5-carboxylcytosine were detectable in all germ cell cancer entities analyzed, but levels did not correlate to the 5-methylcytosine or 5-hydroxymethylcytosine status. A meta-analysis of gene expression data of germ cell cancer tissues and corresponding cell lines demonstrates high expression of TET1 and the DNA glycosylase TDG, suggesting that germ cell cancers utilize the oxidation pathway for active DNA demethylation. During xenograft experiments, where seminoma-like TCam-2 cells transit to an embryonal carcinoma-like state DNMT3B and DNMT3L where strongly upregulated, which correlated to increasing 5-methylcytosine levels. Additionally, 5-hydroxymethylcytosine levels were elevated, demonstrating that de novo methylation and active demethylation accompanies this transition process. Finally, mutations of IDH1 (IDH1 (R132)) and IDH2 (IDH2 (R172)) leading to production of the TET inhibiting oncometabolite 2-hydroxyglutarate in germ cell cancer cell lines were not detected.

Ben Gacem R, Ben Abdelkrim O, Ziadi S, et al.
Methylation of miR-124a-1, miR-124a-2, and miR-124a-3 genes correlates with aggressive and advanced breast cancer disease.
Tumour Biol. 2014; 35(5):4047-56 [PubMed] Related Publications
Aberrant DNA methylation on CpG islands is one of the most consistent epigenetic changes in human cancers, and the process of methylation is catalyzed by the DNA methyltransferases DNMT1, DNMT3a, and DNMT3b. Recent reports demonstrate that deregulation of miR-124a, one of the frequently methylated microRNAs in human cancers, is related to carcinogenesis. The aim of this study was to evaluate the frequencies of methylation of the three genomic loci encoding the miR-124a in primary breast cancers and to investigate their relationships with the clinicopathological characteristics of the tumors and with the expression levels of DNMT1, DNMT3a, and DNMT3b. The methylation status of the three genomic loci encoding the miR-124a (miR-124a-1, miR-124a-2, and miR-124a-3) was analyzed in fresh-frozen tumor samples using methylation-specific PCR in a large series of invasive breast ductal carcinomas (n = 60). Results were correlated to several clinicopathological characteristics of the tumors and to the expression levels of DNMT1, DNMT3a, and DNMT3b, determined by immunohistochemistry. Promoter hypermethylation of miR-124a-1, miR-124a-2, and miR-124a-3 was detected in 53.3, 70, and 36.7% of cases, respectively. Methylation of miR-124a-2 correlated to patients with age higher than 45 years (P = 0.008) and to postmenopausal patients (P = 0.03), whereas methylation of miR-124a-3 correlated significantly to tumor size >20 mm (P = 0.03). Interestingly, simultaneous methylation of the three genes encoding miR-124a correlated significantly with the presence of lymph node metastasis (P = 0.01) and high mitotic score (P = 0.03). No significant correlation was found between promoter hypermethylation of miR-124a and expression of hormone receptors or HER2/neu. With regard to DNMT expression, no correlation was found between DNMT1 or DNMT3a expression and promoter methylation of any tested microRNA. However, DNMT3b overexpression correlates significantly with the hypermethylation of miR-124a-3 (P = 0.03). Our data indicates that miR-124a-1, miR-124a-2, and miR-124a-3 genes are frequently methylated in breast cancer and play a role in tumor growth and aggressivity.

Succi M, de Castro TB, Galbiatti AL, et al.
DNMT3B C46359T and SHMT1 C1420T polymorphisms in the folate pathway in carcinogenesis of head and neck.
Mol Biol Rep. 2014; 41(2):581-9 [PubMed] Related Publications
Folate is an essential nutrient with important roles in the synthesis, repair, and DNA methylation. Polymorphisms in genes encoding enzymes involved in folate metabolism can change these processes and modulate cancer development. We investigated DNMT3B C46359T (rs2424913) and SHMT1 C1420T (rs1979277) polymorphisms related to folate pathway in head and neck cancer (HNC) risk and the association of the disease with gender, risk factors and clinical histopathological parameters. A case-control study was conducted in 725 individuals (237 patients with HNC and 488 control individuals). Real-time PCR technique was performed for genotyping. Chi square and multiple logistic regression tests were used for statistical analysis. Male gender (OR 1.80; 95 % CI 1.11-2.94; P < 0.02) and tobacco consumption (OR 6.14; 95 % CI 4.13-9.13; P < 0.001) were associated with increased risk for this neoplasia. There were no significant associations between the polymorphisms and risk of disease, however, the tobacco and alcohol habits together showed association with SHMT1 C1420T polymorphism (OR 1.48; 95 % CI 1.08-2.03; P = 0.014). SHMT1 C1420T polymorphism was associated with larynx tumor (OR 0.48; 95 % CI 0.27-0.86; P < 0.05). In conclusion, tobacco habit and male gender can be predictors for HNC risk. SHMT1 C1420T and DNMT3B C46359T polymorphisms are not associated with HNC development in Brazilian population, however, SHMT1 C1420T polymorphism is less frequent in patients with primary site of tumor in larynx and more frequent in individuals who consume tobacco and alcohol together. Further studies involving gene-gene interactions in folate pathway in different populations can contribute to the understanding of the polymorphisms effect on HNC risk.

Jia LF, Wei SB, Gan YH, et al.
Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma.
Int J Cancer. 2014; 135(10):2282-93 [PubMed] Related Publications
MicroRNA miR-26a and long noncoding RNA (lncRNA) MEG3 gene have been independently reported to be tumor suppressor genes in various cancers, but neither has been previously associated with tongue squamous cell carcinoma (TSCC). We report here that miR-26a and lncRNA MEG3 gene expression were both strongly reduced in TSCC compared with levels in matched nonmalignant tissues, and combined low expression levels of both miR-26a and MEG3 emerged as an independent prognostic factor for poor clinical outcome in TSCC patients. Assays in the human TSCC cell lines SCC-15 and CAL27 showed that miR-26a targets the DNA methyltransferase 3B transcript and that its inhibition may result in the upregulation of MEG3, providing a plausible link between the observed reduction of miR-26a and MEG3 in TSCC tissue. Furthermore, the overexpression of miR-26a or MEG3 in SCC-15 and CAL27 cells inhibited cell proliferation and cell cycle progression, and promoted cell apoptosis. Considering the poor prognostic outcomes associated with reduced miR-26a and MEG3, our findings imply that these factors likely play important antitumor effects in TSCC pathogenesis. Furthermore, they represent potential prognostic biomarkers for stratification of TSCC patients.

Kleinman CL, Gerges N, Papillon-Cavanagh S, et al.
Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.
Nat Genet. 2014; 46(1):39-44 [PubMed] Related Publications
Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. DNMT3B, Cancer Genetics Web: http://www.cancer-genetics.org/DNMT3B.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 20 August, 2015     Cancer Genetics Web, Established 1999