Gene Summary

Gene:FCGR3A; Fc fragment of IgG, low affinity IIIa, receptor (CD16a)
Summary:This gene encodes a receptor for the Fc portion of immunoglobulin G, and it is involved in the removal of antigen-antibody complexes from the circulation, as well as other other antibody-dependent responses. This gene (FCGR3A) is highly similar to another nearby gene (FCGR3B) located on chromosome 1. The receptor encoded by this gene is expressed on natural killer (NK) cells as an integral membrane glycoprotein anchored through a transmembrane peptide, whereas FCGR3B is expressed on polymorphonuclear neutrophils (PMN) where the receptor is anchored through a phosphatidylinositol (PI) linkage. Mutations in this gene have been linked to susceptibility to recurrent viral infections, susceptibility to systemic lupus erythematosus, and alloimmune neonatal neutropenia. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:low affinity immunoglobulin gamma Fc region receptor III-A
Source:NCBIAccessed: 17 August, 2015


What does this gene/protein do?
Show (7)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 17 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 17 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FCGR3A (cancer-related)

Romano E, Kusio-Kobialka M, Foukas PG, et al.
Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients.
Proc Natl Acad Sci U S A. 2015; 112(19):6140-5 [PubMed] Article available free on PMC after 12/11/2015 Related Publications
Enhancing immune responses with immune-modulatory monoclonal antibodies directed to inhibitory immune receptors is a promising modality in cancer therapy. Clinical efficacy has been demonstrated with antibodies blocking inhibitory immune checkpoints such as cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) or PD-1/PD-L1. Treatment with ipilimumab, a fully human CTLA-4-specific mAb, showed durable clinical efficacy in metastatic melanoma; its mechanism of action is, however, only partially understood. This is a study of 29 patients with advanced cutaneous melanoma treated with ipilimumab. We analyzed peripheral blood mononuclear cells (PBMCs) and matched melanoma metastases from 15 patients responding and 14 not responding to ipilimumab by multicolor flow cytometry, antibody-dependent cell-mediated cytotoxicity (ADCC) assay, and immunohistochemistry. PBMCs and matched tumor biopsies were collected 24 h before (i.e., baseline) and up to 4 wk after ipilimumab. Our findings show, to our knowledge for the first time, that ipilimumab can engage ex vivo FcγRIIIA (CD16)-expressing, nonclassical monocytes resulting in ADCC-mediated lysis of regulatory T cells (Tregs). In contrast, classical CD14(++)CD16(-) monocytes are unable to do so. Moreover, we show that patients responding to ipilimumab display significantly higher baseline peripheral frequencies of nonclassical monocytes compared with nonresponder patients. In the tumor microenvironment, responders have higher CD68(+)/CD163(+) macrophage ratios at baseline and show decreased Treg infiltration after treatment. Together, our results suggest that anti-CTLA-4 therapy may target Tregs in vivo. Larger translational studies are, however, warranted to substantiate this mechanism of action of ipilimumab in patients.

Selimoglu-Buet D, Wagner-Ballon O, Saada V, et al.
Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia.
Blood. 2015; 125(23):3618-26 [PubMed] Article available free on PMC after 12/11/2015 Related Publications
Chronic myelomonocytic leukemia (CMML) is a myelodysplastic syndrome/ myeloproliferative neoplasm whose diagnosis is currently based on the elevation of peripheral blood monocytes to >1 × 10(9)/L, measured for ≥3 months. Diagnosis can be ambiguous; for example, with prefibrotic myelofibrosis or reactive monocytosis. We set up a multiparameter flow cytometry assay to distinguish CD14(+)/CD16(-) classical from CD14(+)/CD16(+) intermediate and CD14(low)/CD16(+) nonclassical monocyte subsets in peripheral blood mononucleated cells and in total blood samples. Compared with healthy donors and patients with reactive monocytosis or another hematologic malignancy, CMML patients demonstrate a characteristic increase in the fraction of CD14(+)/CD16(-) cells (cutoff value, 94.0%). The associated specificity and sensitivity values were 95.1% and 90.6% in the learning cohort (175 samples) and 94.1% and 91.9% in the validation cohort (307 samples), respectively. The accumulation of classical monocytes, which demonstrate a distinct gene expression pattern, is independent of the mutational background. Importantly, this increase disappears in patients who respond to hypomethylating agents. We conclude that an increase in the fraction of classical monocytes to >94.0% of total monocytes is a highly sensitive and specific diagnostic marker that rapidly and accurately distinguishes CMML from confounding diagnoses.

Katano I, Takahashi T, Ito R, et al.
Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOG mouse.
J Immunol. 2015; 194(7):3513-25 [PubMed] Related Publications
We generated a severe immunodeficient NOD/Shi-scid-IL-2Rγ(null) (NOG) mouse substrain expressing the transgenic human IL-2 gene (NOG-IL-2 Tg). Upon transfer of human cord blood-derived hematopoietic stem cells (HSCs), CD3(-)CD56(high)CD16(+/-) cells developed unexpectedly, predominantly in the NOG-IL-2 Tg (hu-HSC NOG-IL-2 Tg). These cells expressed various NK receptors, including NKp30, NKp44, NKp46, NKG2D, and CD94, as well as a diverse set of killer cell Ig-like receptor molecules at levels comparable to normal human NK cells from the peripheral blood, which is evidence of their maturity. They produced levels of granzyme A as high as in human peripheral blood-derived NK cells, and a considerable amount of perforin protein was detected in the plasma. Human NK cells in hu-HSC NOG-IL-2 Tg produced IFN-γ upon stimulation, and IL-2, IL-15, or IL-12 treatment augmented the in vitro cytotoxicity. Inoculation of K562 leukemia cells into hu-HSC NOG-IL-2 Tg caused complete rejection of the tumor cells, whereas inoculation into hu-HSC NOG fully reconstituted with human B, T, and some NK cells did not. Moreover, when a CCR4(+) Hodgkin's lymphoma cell line was inoculated s.c. into hu-HSC NOG-IL-2 Tg, the tumor growth was significantly suppressed by treatment with a therapeutic humanized anti-CCR4 Ab (mogamulizumab), suggesting that the human NK cells in the mice exerted active Ab-dependent cellular cytotoxicity in vivo. Taken together, these data suggest that the new NOG-IL-2 Tg strain is a unique model that can be used to investigate the biological and pathological functions of human NK cells in vivo.

Holmes TD, Wilson EB, Black EV, et al.
Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT.
Proc Natl Acad Sci U S A. 2014; 111(52):E5688-96 [PubMed] Article available free on PMC after 12/11/2015 Related Publications
Interactions between natural killer (NK) cells and dendritic cells (DCs) aid DC maturation and promote T-cell responses. Here, we have analyzed the response of human NK cells to tumor cells, and we identify a pathway by which NK-DC interactions occur. Gene expression profiling of tumor-responsive NK cells identified the very rapid induction of TNF superfamily member 14 [TNFSF14; also known as homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes (LIGHT)], a cytokine implicated in the enhancement of antitumor responses. TNFSF14 protein expression was induced by three primary mechanisms of NK cell activation, namely, via the engagement of CD16, by the synergistic activity of multiple target cell-sensing NK-cell activation receptors, and by the cytokines IL-2 and IL-15. For antitumor responses, TNFSF14 was preferentially produced by the licensed NK-cell population, defined by the expression of inhibitory receptors specific for self-MHC class I molecules. In contrast, IL-2 and IL-15 treatment induced TNFSF14 production by both licensed and unlicensed NK cells, reflecting the ability of proinflammatory conditions to override the licensing mechanism. Importantly, both tumor- and cytokine-activated NK cells induced DC maturation in a TNFSF14-dependent manner. The coupling of TNFSF14 production to tumor-sensing NK-cell activation receptors links the tumor immune surveillance function of NK cells to DC maturation and adaptive immunity. Furthermore, regulation by NK cell licensing helps to safeguard against TNFSF14 production in response to healthy tissues.

Gras Navarro A, Kmiecik J, Leiss L, et al.
NK cells with KIR2DS2 immunogenotype have a functional activation advantage to efficiently kill glioblastoma and prolong animal survival.
J Immunol. 2014; 193(12):6192-206 [PubMed] Article available free on PMC after 12/11/2015 Related Publications
Glioblastomas (GBMs) are lethal brain cancers that are resistant to current therapies. We investigated the cytotoxicity of human allogeneic NK cells against patient-derived GBM in vitro and in vivo, as well as mechanisms mediating their efficacy. We demonstrate that KIR2DS2 immunogenotype NK cells were more potent killers, notwithstanding the absence of inhibitory killer Ig-like receptor (KIR)-HLA ligand mismatch. FACS-sorted and enriched KIR2DS2(+) NK cell subpopulations retained significantly high levels of CD69 and CD16 when in contact with GBM cells at a 1:1 ratio and highly expressed CD107a and secreted more soluble CD137 and granzyme A. In contrast, KIR2DS2(-) immunogenotype donor NK cells were less cytotoxic against GBM and K562, and, similar to FACS-sorted or gated KIR2DS2(-) NK cells, significantly diminished CD16, CD107a, granzyme A, and CD69 when in contact with GBM cells. Furthermore, NK cell-mediated GBM killing in vitro depended upon the expression of ligands for the activating receptor NKG2D and was partially abrogated by Ab blockade. Treatment of GBM xenografts in NOD/SCID mice with NK cells from a KIR2DS2(+) donor lacking inhibitory KIR-HLA ligand mismatch significantly prolonged the median survival to 163 d compared with vehicle controls (log-rank test, p = 0.0001), in contrast to 117.5 d (log-rank test, p = 0.0005) for NK cells with several inhibitory KIR-HLA ligand mismatches but lacking KIR2DS2 genotype. Significantly more CD56(+)CD16(+) NK cells from a KIR2DS2(+) donor survived in nontumor-bearing brains 3 wk after infusion compared with KIR2DS2(-) NK cells, independent of their proliferative capacity. In conclusion, KIR2DS2 identifies potent alloreactive NK cells against GBM that are mediated by commensurate, but dominant, activating signals.

Domínguez-Soto A, de las Casas-Engel M, Bragado R, et al.
Intravenous immunoglobulin promotes antitumor responses by modulating macrophage polarization.
J Immunol. 2014; 193(10):5181-9 [PubMed] Related Publications
Intravenous Igs (IVIg) therapy is widely used as an immunomodulatory strategy in inflammatory pathologies and is suggested to promote cancer regression. Because progression of tumors depends on their ability to redirect the polarization state of tumor-associated macrophages (from M1/immunogenic/proinflammatory to M2/anti-inflammatory), we have evaluated whether IVIg limits tumor progression and dissemination through modulation of macrophage polarization. In vitro, IVIg inhibited proinflammatory cytokine production from M1 macrophages and induced a M2-to-M1 polarization switch on human and murine M2 macrophages. In vivo, IVIg modified the polarization of tumor-associated myeloid cells in a Fcεr1γ chain-dependent manner, modulated cytokine blood levels in tumor-bearing animals, and impaired tumor progression via FcγRIII (CD16), FcγRIV, and FcRγ engagement, the latter two effects being macrophage mediated. Therefore, IVIg immunomodulatory activity is dependent on the polarization state of the responding macrophages, and its ability to trigger a M2-to-M1 macrophage polarization switch might be therapeutically useful in cancer, in which proinflammatory or immunogenic functions should be promoted.

Angell TE, Lechner MG, Jang JK, et al.
MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro.
Clin Cancer Res. 2014; 20(23):6034-44 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
PURPOSE: To evaluate MHC class I expression on papillary thyroid cancer (PTC) and analyze changes in MHC expression and associated immune activation with current and experimental treatments for thyroid cancer using in vitro PTC cell lines.
EXPERIMENTAL DESIGN: MHC class I expression and assessment of tumor-infiltrating leukocyte populations were evaluated by immunohistochemistry. PTC cell lines were analyzed for HLA-ABC expression by flow cytometry following tyrosine kinase inhibitor, IFNα or IFNγ, or radiation treatment. Functional changes in antigenicity were assessed by coculture of allogeneic donor peripheral blood leukocytes (PBL) with pretreated or untreated PTC cell lines and measurement of T-cell activation and cytokine production.
RESULTS: Both MHC class I and β2-microglobulin expression was reduced or absent in 76% of PTC specimens and was associated with reduced tumor-infiltrating immune cells, including effector (CD3(+), CD8(+), CD16(+)) and suppressor (FoxP3(+)) populations. Treatment of PTC cell lines with the MEK1/2 inhibitor selumetinib or IFN increased HLA-ABC expression. This phenotypic change was associated with increased T-cell activation (%CD25(+) of CD3(+)) and IL2 production by PBL cocultured with treated PTC cell lines. Additive effects were seen with combination selumetinib and IFN treatment.
CONCLUSIONS: MHC class I expression loss is frequent in human PTC specimens and represents a significant mechanism of immune escape. Increased antigenicity following selumetinib and IFN treatment warrants further study for immunotherapy of progressive PTC.

Miller GE, Murphy ML, Cashman R, et al.
Greater inflammatory activity and blunted glucocorticoid signaling in monocytes of chronically stressed caregivers.
Brain Behav Immun. 2014; 41:191-9 [PubMed] Related Publications
Chronic stress is associated with morbidity and mortality from numerous conditions, many of whose pathogenesis involves persistent inflammation. Here, we examine how chronic stress influences signaling pathways that regulate inflammation in monocytes. The sample consisted of 33 adults caring for a family member with glioblastoma and 47 controls whose lives were free of major stressors. The subjects were assessed four times over eight months. Relative to controls, caregivers' monocytes showed increased expression of genes bearing response elements for nuclear-factor kappa B, a key pro-inflammatory transcription factor. Simultaneously, caregivers showed reduced expression of genes with response elements for the glucocorticoid receptor, a transcription factor that conveys cortisol's anti-inflammatory signals to monocytes. Transcript origin analyses revealed that CD14+/CD16- cells, a population of immature monocytes, were the predominate source of inflammatory gene expression among caregivers. We considered hormonal, molecular, and functional explanations for caregivers' decreased glucocorticoid-mediated transcription. Across twelve days, the groups displayed similar diurnal cortisol profiles, suggesting that differential adrenocortical activity was not involved. Moreover, the groups' monocytes expressed similar amounts of glucocorticoid receptor protein, suggesting that differential receptor availability was not involved. In ex vivo studies, subjects' monocytes were stimulated with lipopolysaccharide, and caregivers showed greater production of the inflammatory cytokine interleukin-6 relative to controls. However, no group differences in functional glucocorticoid sensitivity were apparent; hydrocortisone was equally effective at inhibiting cytokine production in caregivers and controls. These findings may help shed light on the mechanisms through which caregiving increases vulnerability to inflammation-related diseases.

Takata K, Hong ME, Sitthinamsuwan P, et al.
Primary cutaneous NK/T-cell lymphoma, nasal type and CD56-positive peripheral T-cell lymphoma: a cellular lineage and clinicopathologic study of 60 patients from Asia.
Am J Surg Pathol. 2015; 39(1):1-12 [PubMed] Related Publications
Primary cutaneous, extranodal natural killer/T-cell lymphoma, nasal type (PC-ENKTL), is a rare Epstein-Barr virus (EBV)-associated neoplasm with poorly defined clinicopathologic features. We performed a multinational retrospective study of PC-ENKTL and CD56-positive EBV-negative peripheral T-cell lymphoma (PC-CD56+PTCL) in Asia in an attempt to elucidate their clinicopathologic features. Using immunohistochemistry for T-cell receptors (TCRs), in situ hybridization for EBV, and TCR gene rearrangement, we classified 60 tumors into 51 with PC-ENKTL (20 of NK-cell, 17 T-cell, and 14 indeterminate lineages) and 9 with PC-CD56+PTCL. Tumors of T-cell origin accounted for 46% of PC-ENKTLs with half of these cases being TCR-silent. As compared with T-lineage tumors, PC-ENKTLs of NK-cell lineage had more frequent involvement of regional lymph nodes and more frequently CD8-negative and CD56-positive. Cases of PC-ENKTL showed more frequent tumor necrosis, younger age, and a higher frequency of CD16 and CD30 expression than cases of PC-CD56+PTCL. CD56-positive T-lineage PC-ENKTL tumors (n=8) had more localized disease in the TNM (tumor-node-metastasis) staging and were more often of γδ T-cell origin compared with cases of PC-CD56+PTCL (n=9). PC-ENKTLs and PC-CD56+PTCLs were equally aggressive, with a 5-year overall survival rate of 25%. Tumor necrosis and CD16 expression may serve as useful surrogates for differentiating PC-ENKTL from PC-CD56+PTCL. A single lesion, an elevated lactate dehydrogenase level, and the presence of B symptoms were independent poor prognostic factors for PC-ENKTL in multivariate analysis. Further studies with more cases are warranted to delineate the clinicopathologic features and significance of EBV in these rare lymphomas.

Norton N, Olson RM, Pegram M, et al.
Association studies of Fcγ receptor polymorphisms with outcome in HER2+ breast cancer patients treated with trastuzumab in NCCTG (Alliance) Trial N9831.
Cancer Immunol Res. 2014; 2(10):962-9 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Patients with HER2+ breast cancer treated with trastuzumab and chemotherapy have superior survival compared with patients treated with chemotherapy alone. Polymorphisms within FCGR2A and FCGR3A are associated with binding affinity of natural killer cells to the IgG1 portion of trastuzumab, and a polymorphism in FCGR2B (I232T) is associated with impaired regulatory activity. The association of these polymorphisms with clinical response among trastuzumab-treated patients is equivocal, with both positive and negative associations. We performed genotyping analysis on the FCGR3A V158F, FCGR2A R131H, and FCGR2B I232T polymorphisms in 1,325 patients from the N9831 clinical trial. Patients in arm A (N = 419) received chemotherapy only. Patients in arms B (N = 469) and C (N = 437) were treated with chemotherapy and trastuzumab (sequentially in arm B and concurrently in arm C). Using log-rank test and Cox proportional hazard models, we compared disease-free survival (DFS) among genotypic groups within pooled arms B/C. We found no differences in DFS between trastuzumab-treated patients who had the FCGR3A 158 V/V and/or FCGR2A 131 H/H high-affinity genotypes and patients without those genotypes. Furthermore, there was no significant interaction between FCGR3A and FCGR2A and treatment. However, there was a difference in DFS for FCGR2B I232T, with I/I patients deriving benefit from trastuzumab (P < 0.001), compared with the T carriers who did not (P = 0.81). The interaction between FCGR2B genotype and treatment was statistically significant (P = 0.03). Our analysis did not reveal an association between FcγR high-affinity genotypes and outcomes. However, it seems that the FCGR2B inhibitory gene may be predictive of adjuvant trastuzumab benefit.

Wang J, Ni Z, Duan Z, et al.
Altered expression of hypoxia-inducible factor-1α (HIF-1α) and its regulatory genes in gastric cancer tissues.
PLoS One. 2014; 9(6):e99835 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Tissue hypoxia induces reprogramming of cell metabolism and may result in normal cell transformation and cancer progression. Hypoxia-inducible factor 1-alpha (HIF-1α), the key transcription factor, plays an important role in gastric cancer development and progression. This study aimed to investigate the underlying regulatory signaling pathway in gastric cancer using gastric cancer tissue specimens. The integration of gene expression profile and transcriptional regulatory element database (TRED) was pursued to identify HIF-1α ↔ NFκB1 → BRCA1 → STAT3 ← STAT1 gene pathways and their regulated genes. The data showed that there were 82 differentially expressed genes that could be regulated by these five transcription factors in gastric cancer tissues and these genes formed 95 regulation modes, among which seven genes (MMP1, TIMP1, TLR2, FCGR3A, IRF1, FAS, and TFF3) were hub molecules that are regulated at least by two of these five transcription factors simultaneously and were associated with hypoxia, inflammation, and immune disorder. Real-Time PCR and western blot showed increasing of HIF-1α in mRNA and protein levels as well as TIMP1, TFF3 in mRNA levels in gastric cancer tissues. The data are the first study to demonstrate HIF-1α-regulated transcription factors and their corresponding network genes in gastric cancer. Further study with a larger sample size and more functional experiments is needed to confirm these data and then translate into clinical biomarker discovery and treatment strategy for gastric cancer.

Kjersem JB, Skovlund E, Ikdahl T, et al.
FCGR2A and FCGR3A polymorphisms and clinical outcome in metastatic colorectal cancer patients treated with first-line 5-fluorouracil/folinic acid and oxaliplatin +/- cetuximab.
BMC Cancer. 2014; 14:340 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Polymorphisms of genes encoding the Fcy receptors (Fc fragment of IgG receptor 2A (FCGR2A) and 3A (FCGR3A)), which influence their affinity for the Fc fragment, have been linked to the pharmacodynamics of monoclonal antibodies. Most studies have been limited by small samples sizes and have reported inconsistent associations between the FCGR2A and the FCGR3A polymorphisms and clinical outcome in metastatic colorectal cancer (mCRC) patients treated with cetuximab. We investigated the association of these polymorphisms and clinical outcome in a large cohort of mCRC patients treated with first-line 5-fluorouracil/folinic acid and oxaliplatin (Nordic FLOX) +/- cetuximab in the NORDIC-VII study (NCT00145314).
METHODS: 504 and 497 mCRC patients were evaluable for the FCGR2A and FCGR3A genotyping, respectively. Genotyping was performed on TaqMan ABI HT 7900 (Applied Biosystems, Foster City, CA, USA) with pre-designed SNP genotyping assays for FCGR2A (rs1801274) and FCGR3A (rs396991).
RESULTS: The response rate for patients with the FCGR2A R/R genotype was significantly increased when cetuximab was added to Nordic FLOX (31% versus 53%, interaction P = 0.03), but was not significantly different compared to the response rate of patients with the FCGR2A H/H or H/R genotypes given the same treatment. A larger increase in response rate with the addition of cetuximab to Nordic FLOX in patients with KRAS mutated tumors and the FCGR2A R/R genotype was observed (19% versus 50%, interaction P = 0.04). None of the FCGR3A polymorphisms were associated with altered response when cetuximab was added to Nordic FLOX (interaction P = 0.63). Neither of the FCGR polymorphisms showed any significant associations with progression-free survival or overall survival.
CONCLUSION: Patients with KRAS mutated tumors and the FCGR2A R/R polymorphism responded poorly when treated with chemotherapy only, and experienced the most benefit of the addition of cetuximab in terms of response rate.

Jewett A, Man YG, Cacalano N, et al.
Natural killer cells as effectors of selection and differentiation of stem cells: role in resolution of inflammation.
J Immunotoxicol. 2014; 11(4):297-307 [PubMed] Related Publications
Evidence has previously been demonstrated for the role of NK cells in specific elimination of healthy stem cells (e.g. hMSC, hDPSC, hESC, hiPSC) as well as cancer stem cells, but not their differentiated counterparts. There is also a stage-wise susceptibility to NK cell-mediated cyto-toxicity in tumors, in which case the poorly-differentiated tumors are lysed much more than moderately-differentiated tumors. Well-differentiated tumors were lysed the least compared to either moderately- or poorly-differentiated tumors. It has also been reported that inhibition of differentiation or reversion of cells to a less-differentiated stage by blocking NF-κB or by gene deletion of COX2 significantly augmented NK cell cytotoxicity against both transformed and healthy cells. Additionally, the cytotoxic function of NK cells was severely inhibited against stem cells when they were cultured in the presence of monocytes. Therefore, it is proposed that CD16(+)CD56(dim)CD69(-) NK cells were important for the selection of stem cells, whereas the CD16(dim/-)CD56(dim/+)CD69(+) anergized NK cells were important for differentiation and eventual regeneration of the tissues and the resolution of inflammation, thus potentially serving as regulatory NK (NK(reg)) cells. The concept of 'split anergy' in NK cells and the generation of NK(reg) cells with regard to contributions to cell differentiation, tissue repair and regeneration and in tumor resistance are discussed in this review.

Tsukerman P, Stern-Ginossar N, Yamin R, et al.
Expansion of CD16 positive and negative human NK cells in response to tumor stimulation.
Eur J Immunol. 2014; 44(5):1517-25 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
NK cells are innate immune lymphocytes that express a vast repertoire of germ-line encoded receptors for target recognition. These receptors include inhibitory and activating proteins, among the latter of which is CD16, a low affinity binding Fc receptor. Here, we show that human NK cells expand in response to stimulation with various tumor cell lines. We further demonstrate that the tumor-derived expansion of NK cells is accompanied by rapid, cell-dependent, changes in CD16 expression levels. We show that in NK cells expanded in response to the EBV-transformed cell line 721.221, CD16 is shed and therefore approximately half of the expanded 721.221-derived NK-cell population does not express CD16. We also show, in contrast, that in response to 1106mel cells, CD16 expression is maintained on the cell surface of the expanded NK cells due to an antibody-dependent mechanism. Our results may provide a basis for the selective expansion of NK cells that may be used for tumor immunotherapy.

Petricevic B, Laengle J, Singer J, et al.
Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients.
J Transl Med. 2013; 11:307 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Monoclonal antibodies (mAb), such as trastuzumab are a valuable addition to breast cancer therapy. Data obtained from neoadjuvant settings revealed that antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanism of action for the mAb trastuzumab. Conflicting results still call into question whether disease progression, prolonged treatment or concomitant chemotherapy influences ADCC and related immunological phenomena.
METHODS: We analyzed the activity of ADCC and antibody-dependent cell-mediated phagocytosis (ADCP) of peripheral blood mononuclear cells (PBMCs) from human epidermal growth factor receptor 2 (HER2/neu) positive breast cancer patients receiving trastuzumab therapy either in an adjuvant (n = 13) or metastatic (n = 15) setting as well as from trastuzumab treatment-naive (t-naive) HER2/neu negative patients (n = 15). PBMCs from healthy volunteers (n = 24) were used as controls. ADCC and ADCP activity was correlated with the expression of antibody binding Fc-gamma receptor (FcγR)I (CD64), FcγRII (CD32) and FcγRIII (CD16) on CD14+ (monocytes) and CD56+ (NK) cells, as well as the expression of CD107a+ (LAMP-1) on CD56+ cells and the total amount of CD4+CD25+FOXP3+ (Treg) cells. In metastatic patients, markers were correlated with progression-free survival (PFS).
RESULTS: ADCC activity was significantly down regulated in metastatic, adjuvant and t-naive patient cohorts as compared to healthy controls. Reduced ADCC activity was inversely correlated with the expression of CD107a on CD56+ cells in adjuvant patients. ADCC and ADCP activity of the patient cohorts were similar, regardless of treatment duration or additional chemotherapy. PFS in metastatic patients inversely correlated with the number of peripheral Treg cells.
CONCLUSION: The reduction of ADCC in patients as compared to healthy controls calls for adjuvant strategies, such as immune-enhancing agents, to improve the activity of trastuzumab. However, efficacy of trastuzumab-specific ADCC and ADCP appears not to be affected by treatment duration, disease progression or concomitant chemotherapy. This finding supports the application of trastuzumab at any stage of the disease.

Lorenzi L, Tabellini G, Vermi W, et al.
Occurrence of nodular lymphocyte-predominant hodgkin lymphoma in hermansky-pudlak type 2 syndrome is associated to natural killer and natural killer T cell defects.
PLoS One. 2013; 8(11):e80131 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Hermansky Pudlak type 2 syndrome (HPS2) is a rare autosomal recessive primary immune deficiency caused by mutations on β3A gene (AP3B1 gene). The defect results in the impairment of the adaptor protein 3 (AP-3) complex, responsible for protein sorting to secretory lysosomes leading to oculo-cutaneous albinism, bleeding disorders and immunodeficiency. We have studied peripheral blood and lymph node biopsies from two siblings affected by HPS2. Lymph node histology showed a nodular lymphocyte predominance type Hodgkin lymphoma (NLPHL) in both HPS2 siblings. By immunohistochemistry, CD8 T-cells from HPS2 NLPHL contained an increased amount of perforin (Prf) + suggesting a defect in the release of this granules-associated protein. By analyzing peripheral blood immune cells we found a significant reduction of circulating NKT cells and of CD56(bright)CD16(-) Natural Killer (NK) cells subset. Functionally, NK cells were defective in their cytotoxic activity against tumor cell lines including Hodgkin Lymphoma as well as in IFN-γ production. This defect was associated with increased baseline level of CD107a and CD63 at the surface level of unstimulated and IL-2-activated NK cells. In summary, these results suggest that a combined and profound defect of innate and adaptive effector cells might explain the susceptibility to infections and lymphoma in these HPS2 patients.

Saito R, Suzuki H, Yamada T, et al.
Predicting skin toxicity according to EGFR polymorphisms in patients with colorectal cancer receiving antibody against EGFR.
Anticancer Res. 2013; 33(11):4995-8 [PubMed] Related Publications
BACKGROUND/AIM: Monoclonal antibodies against epidermal growth factor receptor (EGFR) can extend progression-free survival (PFS) and overall survival (OS) in patients with unresectable colorectal cancer; however, skin toxicity often interferes with therapy continuation.
PATIENTS AND METHODS: We analyzed the polymorphisms in EGFR and IgG fragment C receptor (FCGR) genes and determined their associations with clinical outcomes including PFS, OS, and skin toxicity. Five polymorphisms in EGFR and FCGR genes in 32 patients with unresectable colorectal cancer who were treated with antibodies against EGFR were examined.
RESULTS: Patients carrying the C/C genotype of the EGFR D994D polymorphism displayed significantly less skin toxicity than those with other genotypes, although no significant differences in PFS and OS were noted and no significant interactions were detected for other gene polymorphisms.
CONCLUSION: These results suggest that the EGFR D994D polymorphism is a useful biomarker for predicting the severity of skin toxicity in patients receiving antibody against EGFR.

Domingues PH, Teodósio C, Otero Á, et al.
Association between inflammatory infiltrates and isolated monosomy 22/del(22q) in meningiomas.
PLoS One. 2013; 8(10):e74798 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Meningiomas contain highly variable levels of infiltrating tissue macrophages (TiMa) and other immune cells. In this study we investigated the potential association between the number and immunophenotype of inflammatory and other immune cells infiltrating the tumor as evaluated by multiparameter flow cytometry, and the clinico-biological, cytogenetic and gene expression profile (GEP) of 75 meningioma patients. Overall, our results showed a close association between the amount and cellular composition of the inflammatory and other immune cell infiltrates and the cytogenetic profile of the tumors. Notably, tumors with isolated monosomy 22/del(22q) showed greater numbers of TiMa, NK cells and (recently)-activated CD69(+) lymphocytes versus meningiomas with diploid and complex karyotypes. In addition, in the former cytogenetic subgroup of meningiomas, tumor-infiltrating TiMa also showed a more activated and functionally mature phenotype, as reflected by a greater fraction of CD69(+), CD63(+), CD16(+) and CD33(+) cells. GEP at the mRNA level showed a unique GEP among meningiomas with an isolated monosomy 22/del(22q) versus all other cases, which consisted of increased expression of genes involved in inflammatory/immune response, associated with an M1 TiMa phenotype. Altogether, these results suggest that loss of expression of specific genes coded in chromosome 22 (e.g. MIF) is closely associated with an increased homing and potentially also anti-tumoral effect of TiMa, which could contribute to explain the better outcome of this specific good-prognosis cytogenetic subgroup of meningiomas.

Kim HK, Hwang HL, Park SY, et al.
Simple and versatile molecular method of copy-number measurement using cloned competitors.
PLoS One. 2013; 8(7):e69414 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Variations and alterations of copy numbers (CNVs and CNAs) carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR). First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT), but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes.

Lima M
Aggressive mature natural killer cell neoplasms: from epidemiology to diagnosis.
Orphanet J Rare Dis. 2013; 8:95 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Mature natural killer (NK) cell neoplasms are classified by the World Health Organization into NK/T cell lymphoma, nasal type (NKTCL), aggressive NK-cell leukemia (ANKCL) and chronic lymphoproliferative disorders of NK-cells, the latter being considered provisionally. NKTCL and ANKCL are rare diseases, with higher prevalence in Asia, Central and South America. Most NKTCL present extranodal, as a destructive tumor affecting the nose and upper aerodigestive tract (nasal NKTCL) or any organ or tissue (extranasal NKTCL) whereas ANKCL manifests as a systemic disease with multiorgan involvement and naturally evolutes to death in a few weeks. The histopathological hallmark of these aggressive NK-cell tumors is a polymorphic neoplastic infiltrate with angiocentricity, angiodestruction and tissue necrosis. The tumor cells have cytoplasmatic azurophilic granules and usually show a CD45(+bright), CD2(+), sCD3(-), cytCD3epsilon(+), CD56(+bright), CD16(−/+), cytotoxic granules molecules(+) phenotype. T-cell receptor genes are in germ-line configuration. Epstein-Barr virus (EBV) -encoded membrane proteins and early region EBV RNA are usually detected on lymphoma cells, with a pattern suggestive of a latent viral infection type II. Complex chromosomal abnormalities are frequent and loss of chromosomes 6q, 11q, 13q, and 17p are recurrent aberrations. The rarity of the NK-cell tumors limits our ability to standardize the procedures for the diagnosis and clinical management and efforts should be made to encourage multi-institutional registries.

Roca L, Diéras V, Roché H, et al.
Correlation of HER2, FCGR2A, and FCGR3A gene polymorphisms with trastuzumab related cardiac toxicity and efficacy in a subgroup of patients from UNICANCER-PACS 04 trial.
Breast Cancer Res Treat. 2013; 139(3):789-800 [PubMed] Related Publications
The purpose of this study was to investigate, in the context of a prospective node-positive-breast cancer trial HER2 containing-regimen (UNICANCER-PACS 04 trial), the predictive value of HER2, FCGRIIA, and FCGRIIIA gene polymorphisms for cardiac toxicity and efficacy of trastuzumab. We analyzed HER2-I655V, FCGR2A-H131R, and FCGR3A-V158F single nucleotide polymorphisms in patients in adjuvant setting treated by six courses of either fluorouracil 500 mg/m(2), epirubicin 100 mg/m(2) and cyclophosphamide 500 mg/m(2), or epirubicin 75 mg/m(2) and docetaxel 75 mg/m(2) every 3 weeks then randomly assigned, in case of HER2 overexpressing tumor, to either trastuzumab for 1 year or nothing. Left ventricular ejection fraction and clinical examination were monitored in each patient, seven times throughout the study to detect congestive heart failure or asymptomatic subclinical cardiac toxicity. All genotypes were analyzed in relation to cardiac toxicity, EFS, and OS. One hundred and thirty-two HER2-positive breast cancer patients were analyzed. The HER2-I655V genotype was significantly associated with cardiac toxicity (p = 0.025). The FCGR2A-131 H/H genotype was significantly correlated with a shorter EFS (p = 0.027). The FCGR3A-158 V/V genotype was not correlated with EFS nor OS. These results might be useful in making a treatment choice of HER2 blockers in adjuvant setting by with an increase in efficacy and decrease in toxicity.

Clémenceau B, Vivien R, Pellat C, et al.
The human natural killer cytotoxic cell line NK-92, once armed with a murine CD16 receptor, represents a convenient cellular tool for the screening of mouse mAbs according to their ADCC potential.
MAbs. 2013 Jul-Aug; 5(4):587-94 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
To take advantage of the large number of well-characterized mouse immunoglobulins (IgGs) for the study of antibody-dependent cell-mediated cytotoxicity (ADCC) in human cells, we armed human cytotoxic lymphocytes with a mouse receptor for the Fc portion of IgG antibodies. The human ΝΚ-92 natural killer cell line was transduced with a mouse receptor gene (mCD16), which was stably expressed on the cell surface (referred to as NK-92 (mCD16) ). When tested against a B-lymphoblastoid cell line (BLCL) coated with mouse anti-CD20 IgG1, IgG2a or IgG2b monoclonal antibodies (mAbs), the newly expressed mouse Fc receptor enabled the NK-92 (mCD16) cells to kill the BLCL by ADCC. Next, using the NK-92 (mCD16) we compared mouse mAbs directed at B lineage specific CD antigens for their ability to induce ADCC against human Epstein-Barr virus- infected B lymphoblastoid (for anti-CD19, -CD20 and -CD21) or against myeloma (for anti-CD38 and -CD138) target cells. Our results demonstrated that the "NK-92 (mCD16) assay" allows convenient and sensitive discrimination of mouse mAbs for their ability to mediate ADCC in a human cellular system. In addition, our results provide examples of dissociation between opsonization and target cell killing through ADCC. These "murinized" human effector cells thus represent a convenient cellular tool for the study of ADCC.

Laurent S, Queirolo P, Boero S, et al.
The engagement of CTLA-4 on primary melanoma cell lines induces antibody-dependent cellular cytotoxicity and TNF-α production.
J Transl Med. 2013; 11:108 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: CTLA-4 (Cytotoxic T lymphocyte antigen-4) is traditionally known as a negative regulator of T cell activation. The blocking of CTLA-4 using human monoclonal antibodies, such as Ipilimumab, is currently used to relieve CTLA-4-mediated inhibition of anti-tumor immune response in metastatic melanoma. Herein, we have analyzed CTLA-4 expression and Ipilimumab reactivity on melanoma cell lines and tumor tissues from cutaneous melanoma patients. Then, we investigated whether Ipilimumab can trigger innate immunity in terms of antibody dependent cellular cytotoxicity (ADCC) or Tumor Necrosis Factor (TNF)-α release. Finally, a xenograft murine model was set up to determine in vivo the effects of Ipilimumab and NK cells on melanoma.
METHODS: CTLA-4 expression and Ipilimumab reactivity were analyzed on 17 melanoma cell lines (14 primary and 3 long-term cell lines) by cytofluorimetry and on 33 melanoma tissues by immunohistochemistry. CTLA-4 transcripts were analyzed by quantitative RT-PCR. Soluble CTLA-4 and TNF-α were tested by ELISA. Peripheral blood mononuclear cells (PBMC), NK and γδT cells were tested in ADCC assay with Ipilimumab and melanoma cell lines. TNF-α release was analyzed in NK-melanoma cell co-cultures in the presence of ipilimumab. In vivo experiments of xenotransplantation were carried out in NOD/SCID mice. Results were analyzed using unpaired Student's t-test.
RESULTS: All melanoma cell lines expressed mRNA and cytoplasmic CTLA-4 but surface reactivity with Ipilimumab was quite heterogeneous. Accordingly, about 2/3 of melanoma specimens expressed CTLA-4 at different level of intensity.Ipilimumab triggered, via FcγReceptorIIIA (CD16), ex vivo NK cells as well as PBMC, IL-2 activated NK and γδT cells to ADCC of CTLA-4+ melanoma cells. No ADCC was detected upon interaction with CTLA-4- FO-1 melanoma cell line. TNF-α was released upon interaction of NK cells with CTLA-4+ melanoma cell lines. Remarkably, Ipilimumab neither affected proliferation and viability nor triggered ADCC of CTLA-4+ T lymphocytes. In a chimeric murine xenograft model, the co-engraftment of Ipilimumab-treated melanoma cells with human allogeneic NK cells delayed and significantly reduced tumor growth, as compared to mice receiving control xenografts.
CONCLUSIONS: Our studies demonstrate that Ipilimumab triggers effector lymphocytes to cytotoxicity and TNF-α release. These findings suggest that Ipilimumab, besides blocking CTLA-4, can directly activate the elimination of CTLA-4+ melanomas.

Lagrange B, Martin RZ, Droin N, et al.
A role for miR-142-3p in colony-stimulating factor 1-induced monocyte differentiation into macrophages.
Biochim Biophys Acta. 2013; 1833(8):1936-46 [PubMed] Related Publications
The differentiation of human peripheral blood monocytes into macrophages can be reproduced ex vivo by culturing the cells in the presence of colony-stimulating factor 1 (CSF1). Using microarray profiling to explore the role of microRNAs (miRNAs), we identified a dramatic decrease in the expression of the hematopoietic specific miR-142-3p. Up- and down-regulation of this miRNA in primary human monocytes altered CSF1-induced differentiation of monocytes, as demonstrated by changes in the expression of the cell surface markers CD16 and CD163. One of the genes whose expression is repressed by miR-142-3p encodes the transcription factor Early Growth Response 2 (Egr2). In turn, Egr2 associated with its co-repressor NGFI-A (Nerve Growth Factor-Induced gene-A) binding protein 2 (NAB2) binds to the pre-miR-142-3p promoter to negatively regulate its expression. Interestingly, the expression of miR-142-3p is abnormally low in monocytes from patients with the most proliferative forms of chronic myelomonocytic leukemia (CMML), and miR-142-3p re-expression in CMML dysplastic monocytes can improve their differentiation potential. Altogether, miR-142-3p which functions in a molecular circuitry with Egr2 is an actor of CSF1-induced differentiation of human monocytes whose expression could be altered in CMML.

Lim SA, Kim TJ, Lee JE, et al.
Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy.
Cancer Res. 2013; 73(8):2598-607 [PubMed] Related Publications
Adoptive natural killer (NK) cell therapy may offer an effective treatment regimen for cancer patients whose disease is refractory to conventional therapy. NK cells can kill a wide range of tumor cells by patterned recognition of target ligands. We hypothesized that tumor targets sensitive to NK lysis would drive vigorous expansion of NK cells from human peripheral blood mononuclear cells (PBMC). Here, we provide the basis for developing a novel ex vivo expansion process. By screening class I-negative or -mismatched tumor cell lines we identified a Jurkat T-lymphoblast subline termed KL-1, which was highly effective in specifically expanding NK cells. KL-1 addition to PBMC cultures achieved approximately 100-fold expansion of NK cells with nearly 90% purity, accompanied by reciprocal inhibition of T-cell growth. Marked elevations in expression of activation receptors, natural cytotoxicity receptors (NKp30, NKp44), and adhesion molecules (CD11a, ICAM-1) were associated with high tumor-lytic capacity, in both in vitro and in vivo models. KL-1-mediated expansion of NK cells was contact dependent and required interactions with CD16, the Fcγ receptor on NK cells, with ligands that are expressed on B cells. Indeed, B-cell depletion during culture abrogated selective NK cell expansion, while addition of EBV-transformed B cells further augmented NK expansion to approximately 740-fold. Together, our studies define a novel method for efficient activation of human NK cells that employs KL-1-lysed tumor cells and cocultured B cells, which drive a robust expansion of potent antitumor effector cells that will be useful for clinical evaluation.

Gao LM, Liu WP, Yang QP, et al.
Aggressive natural killer-cell leukemia with jaundice and spontaneous splenic rupture: a case report and review of the literature.
Diagn Pathol. 2013; 8:43 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
UNLABELLED: Aggressive natural killer cell leukemia/lymphoma (ANKL) is a rare aggressive form of NK-cell neoplasm. We report an uncommon case of 36-year-old male who showed jaundice and spontaneous splenic rupture. The diagnosis was established by the biopsy of liver and spleen. The monomorphous medium-size neoplastic cells infiltrated into portal areas and sinus of liver as well as the cords and sinus of the spleen. Necrosis, mitotic figures and significant apoptosis could be seen easily. These neoplastic cells demonstrated a typical immunophenotype of CD3ε+, CD56+, CD16+, Granzyme B+, TIA-1+. T-cell receptor γ (TCR-γ) gene rearrangement analysis showed germline configuration and the result of in situ hybridization for Epstein-Barr virus-encoded RNA (EBER-ISH) was positive. The patient has undergone an aggressive clinical course and died of multi-organ function failure 14 days later after admission. To the best of our knowledge, this is the first case of ANKL with spontaneous splenic rupture, and we should pay more attention to recognize it.
VIRTUAL SLIDES: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/2048154883890867.

Reiners KS, Topolar D, Henke A, et al.
Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity.
Blood. 2013; 121(18):3658-65 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Natural killer (NK) cells are a major component of the anti-tumor immune response. NK cell dysfunctions have been reported in various hematologic malignancies, including chronic lymphocytic leukemia (CLL). Here we investigated the role of tumor cell-released soluble and exosomal ligands for NK cell receptors that modulate NK cell activity. Soluble CLL plasma factors suppressed NK cell cytotoxicity and down-regulated the surface receptors CD16 and CD56 on NK cells of healthy donors. The inhibition of NK cell cytotoxicity was attributed to the soluble ligand BAG6/BAT3 that engages the activating receptor NKp30 expressed on NK cells. Soluble BAG6 was detectable in the plasma of CLL patients, with the highest levels at the advanced disease stages. In contrast, NK cells were activated when BAG6 was presented on the surface of exosomes. The latter form was induced in non-CLL cells by cellular stress via an nSmase2-dependent pathway. Such cells were eliminated by lymphocytes in a xenograft tumor model in vivo. Here, exosomal BAG6 was essential for tumor cell killing because BAG6-deficient cells evaded immune detection. Taken together, the findings show that the dysregulated balance of exosomal vs soluble BAG6 expression may cause immune evasion of CLL cells.

Danielou-Lazareth A, Henry G, Geromin D, et al.
At diagnosis, diffuse large B-cell lymphoma patients show impaired rituximab-mediated NK-cell cytotoxicity.
Eur J Immunol. 2013; 43(5):1383-8 [PubMed] Related Publications
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma in adults. It is generally treated by a combination of chemotherapy and CD20-specific mAbs, such as rituximab, which act, at least partially, by activating antibody-dependent cell-mediated cytotoxicity (ADCC). ADCC involves NK cells, particularly the CD56(dim) NK-cell subset expressing CD16, the low affinity Fcγ receptor. Here, we show that CD16 expression levels are decreased in a cohort of 36 newly diagnosed DLBCL patients compared with those in 20 healthy controls (HCs). CD137, a co-stimulatory molecule expressed on activated NK cells, was also expressed at lower levels in patients compared with controls. Cells sampled from our cohort also showed severely reduced degranulation activity when challenged with rituximab-coated tumor cells, which could not be corrected by stimulation with high doses of IL-2. These results suggest that rituximab-induced NK-cell ADCC could be defective in some DLBCL patients at diagnosis. These patients should be closely monitored and attempts made to improve their NK-cell function.

Mamessier E, Pradel LC, Thibult ML, et al.
Peripheral blood NK cells from breast cancer patients are tumor-induced composite subsets.
J Immunol. 2013; 190(5):2424-36 [PubMed] Related Publications
Human NK lymphocytes are involved in antitumor immunity. The therapeutic potential of this population against cancers has stimulated their study and led to the discovery of several NK cell subsets, each of which is endowed with different immunoregulatory functions. We have previously reported that NK cell functions are profoundly altered in advanced breast cancer patients. In this study, we show that these tumor-mediated alterations also variably affect NK cell subsets. We found that in addition to the known human CD56(dim)CD16(+), CD56(bright)CD16(-), and CD56(-)CD16(+) NK cell subsets, two additional subsets, namely the CD56(bright)CD16(+) and CD56(dim)CD16(-) subsets, were increased in the peripheral blood of patients with advanced invasive breast cancers. These subsets corresponded to the main two subsets found at the tumor site. The extensive phenotype of these subsets revealed an "à la carte" pattern of expression for the various NK receptors, functional molecules, adhesion molecules, and chemokine receptors, depending on the subset. We next compared these subsets to known NK cell populations endowed with specific phenotypic characteristics, but also with functional properties. Our data show that advanced breast cancer patients have an increased proportion of more immature and noncytotoxic NK cell subsets in their peripheral blood, which might account for at least part of the low cytotoxic functions observed in these patients. They reveal a major heterogeneity and plasticity of the NK cell compartment, which are both tightly linked to the microenvironment. The identification of NK cell subsets endowed with particular functional capabilities might help monitor residual antitumor NK cell-mediated responses in breast cancer patients.

Maffei R, Bulgarelli J, Fiorcari S, et al.
The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation.
Haematologica. 2013; 98(7):1115-23 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Macrophages reside in tissues infiltrated by chronic lymphocytic leukemia B cells and the extent of infiltration is associated with adverse prognostic factors. We studied blood monocyte population by flow cytometry and whole-genome microarrays. A mixed lymphocyte reaction was performed to evaluate proliferation of T cells in contact with monocytes from patients and normal donors. Migration and gene modulation in normal monocytes cultured with CLL cells were also evaluated. The absolute number of monocytes increased in chronic lymphocytic leukemia patients compared to the number in normal controls (792 ± 86 cells/μL versus 485 ± 46 cells/μL, P=0.003). Higher numbers of non-classical CD14(+)CD16(++) and Tie-2-expressing monocytes were also detected in patients. Furthermore, we performed a gene expression analysis of monocytes in chronic lymphocytic leukemia patients, showing up-regulation of RAP1GAP and down-regulation of tubulins and CDC42EP3, which would be expected to result in impairment of phagocytosis. We also detected gene alterations such as down-regulation of PTGR2, a reductase able to inactivate prostaglandin E2, indicating immunosuppressive activity. Accordingly, the proliferation of T cells in contact with monocytes from patients was inhibited compared to that of cells in contact with monocytes from normal controls. Finally, normal monocytes in vitro increased migration and up-regulated CD16, RAP1GAP, IL-10, IL-8, MMP9 and down-regulated PTGR2 in response to leukemic cells or conditioned media. In conclusion, altered composition and deregulation of genes involved in phagocytosis and inflammation were found in blood monocytes obtained from chronic lymphocytic leukemia patients, suggesting that leukemia-mediated "education" of immune elements may also include the establishment of a skewed phenotype in the monocyte/macrophage population.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FCGR3A, Cancer Genetics Web: http://www.cancer-genetics.org/FCGR3A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 17 August, 2015     Cancer Genetics Web, Established 1999