Gene Summary

Gene:FGF8; fibroblast growth factor 8
Aliases: HH6, AIGF, KAL6, FGF-8, HBGF-8
Summary:The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein is known to be a factor that supports androgen and anchorage independent growth of mammary tumor cells. Overexpression of this gene has been shown to increase tumor growth and angiogensis. The adult expression of this gene is restricted to testes and ovaries. Temporal and spatial pattern of this gene expression suggests its function as an embryonic epithelial factor. Studies of the mouse and chick homologs revealed roles in midbrain and limb development, organogenesis, embryo gastrulation and left-right axis determination. The alternative splicing of this gene results in four transcript variants. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:fibroblast growth factor 8
Source:NCBIAccessed: 14 March, 2017


What does this gene/protein do?
Show (55)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 14 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Survival Rate
  • Xenograft Models
  • Recombinant Proteins
  • Stromal Cells
  • Breast Cancer
  • Gene Expression
  • Neoplasm Proteins
  • Chromosome 1
  • Growth Substances
  • Gene Expression Profiling
  • Cell Proliferation
  • Base Sequence
  • Disease Models, Animal
  • Cell Survival
  • Translocation
  • Cancer Gene Expression Regulation
  • Androgen Receptors
  • Immunohistochemistry
  • Mutation
  • Cancer RNA
  • Molecular Sequence Data
  • Western Blotting
  • Chromosome 10
  • Androgens
  • Fibroblast Growth Factors
  • Up-Regulation
  • Mammary Tumor Virus, Mouse
  • Signal Transduction
  • Sensitivity and Specificity
  • Staging
  • Fibroblast Growth Factor 8
  • Transfection
  • Protein Isoforms
  • Prostate Cancer
  • In Situ Hybridization
  • Messenger RNA
  • Cell Division
  • Transduction
  • Mitogen-Activated Protein Kinases
Tag cloud generated 14 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (2)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FGF8 (cancer-related)

Jee YH, Sadowski SM, Celi FS, et al.
Increased Pleiotrophin Concentrations in Papillary Thyroid Cancer.
PLoS One. 2016; 11(2):e0149383 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Thyroid nodules are common, and approximately 5% of these nodules are malignant. Pleiotrophin (PTN) is a heparin-binding growth factor which is overexpressed in many cancers. The expression of PTN in papillary thyroid cancer (PTC) is unknown.
METHOD AND FINDINGS: 74 subjects (age 47 ± 12 y, 15 males) who had thyroidectomy with a histological diagnosis: 79 benign nodules and 23 PTCs (10 classic, 6 tall cell, 6 follicular variant and 1 undetermined). Fine-needle aspiration (FNA) samples were obtained ex vivo from surgically excised tissue and assayed for PTN and thyroglobulin (Tg). Immunohistochemistry (IHC) was performed on tissue sections. In FNA samples, PTN concentration normalized to Tg was significantly higher in PTC than in benign nodules (16 ± 6 vs 0.3 ± 0.1 ng/mg, p < 0.001). In follicular variant of PTC (n = 6), the PTN/Tg ratio was also higher than in benign nodules (1.3 ± 0.6 vs 0.3 ± 0.1 ng/mg, P < 0.001, respectively). IHC showed cytoplasmic localization of PTN in PTC cells.
CONCLUSION: In ex vivo FNA samples, the PTN to thyroglobulin ratio was higher in PTCs, including follicular variant PTC, than in benign thyroid nodules. The findings raise the possibility that measurement of the PTN to Tg ratio may provide useful diagnostic and/or prognostic information in the evaluation of thyroid nodules.

Liu R, Huang S, Lei Y, et al.
FGF8 promotes colorectal cancer growth and metastasis by activating YAP1.
Oncotarget. 2015; 6(2):935-52 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is a major cause of cancer-related death worldwide. The poor prognosis of CRC is mainly due to uncontrolled tumor growth and distant metastases. In this study, we found that the level of FGF8 was elevated in the great majority of CRC cases and high FGF8 expression was significantly correlated with lymph nodes metastasis and worse overall survival. Functional studies showed that FGF8 can induce a more aggressive phenotype displaying epithelial-to-mesenchymal transition (EMT) and enhanced invasion and growth in CRC cells. Consistent with this, FGF8 can also promote tumor growth and metastasis in mouse models. Bioinformatics and pathological analysis suggested that YAP1 is a potential downstream target of FGF8 in CRC cells. Molecular validation demonstrated that FGF8 fully induced nuclear localization of YAP1 and enhanced transcriptional outcomes such as the expression of CTGF and CYR61, while decreasing YAP1 expression impeded FGF-8-induced cell growth, EMT, migration and invasion, revealing that YAP1 is required for FGF8-mediated CRC growth and metastasis. Taken together, these results demonstrate that FGF8 contributes to the proliferative and metastatic capacity of CRC cells and may represent a novel candidate for intervention in tumor growth and metastasis formation.

Aguirre Palma LM, Gehrke I, Kreuzer KA
Angiogenic factors in chronic lymphocytic leukaemia (CLL): Where do we stand?
Crit Rev Oncol Hematol. 2015; 93(3):225-36 [PubMed] Related Publications
The role of angiogenesis in haematological malignancies such as chronic lymphocytic leukaemia (CLL) is difficult to envision, because leukaemia cells are not dependent on a network of blood vessels to support basic physiological requirements. Regardless, CLL cells secrete high levels of major angiogenic factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and platelet derived growth factor (PDGF). Nonetheless, it remains unclear how most angiogenic factors regulate accumulation and delayed apoptosis of CLL cells. Angiogenic factors such as leptin, granulocyte colony-stimulating factor (G-CSF), follistatin, angiopoietin-1 (Ang1), angiogenin (ANG), midkine (MK), pleiotrophin (PTN), progranulin (PGRN), proliferin (PLF), placental growth factor (PIGF), and endothelial locus-1 (Del-1), represent novel therapeutic targets of future CLL research but have remained widely overlooked. This review aims to outline our current understanding of angiogenic growth factors and their relationship with CLL, a still uncured haematopoietic malignancy.

Sethi G, Kwon Y, Burkhalter RJ, et al.
PTN signaling: Components and mechanistic insights in human ovarian cancer.
Mol Carcinog. 2015; 54(12):1772-85 [PubMed] Free Access to Full Article Related Publications
Molecular vulnerabilities represent promising candidates for the development of targeted therapies that hold the promise to overcome the challenges encountered with non-targeted chemotherapy for the treatment of ovarian cancer. Through a synthetic lethality screen, we previously identified pleiotrophin (PTN) as a molecular vulnerability in ovarian cancer and showed that siRNA-mediated PTN knockdown induced apoptotic cell death in epithelial ovarian cancer (EOC) cells. Although, it is well known that PTN elicits its pro-tumorigenic effects through its receptor, protein tyrosine phosphatase receptor Z1 (PTPRZ1), little is known about the potential importance of this pathway in the pathogenesis of ovarian cancer. In this study, we show that PTN is expressed, produced, and secreted in a panel of EOC cell lines. PTN levels in serous ovarian tumor tissues are on average 3.5-fold higher relative to normal tissue and PTN is detectable in serum samples of patients with EOC. PTPRZ1 is also expressed and produced by EOC cells and is found to be up-regulated in serous ovarian tumor tissue relative to normal ovarian surface epithelial tissue (P < 0.05). Gene silencing of PTPRZ1 in EOC cell lines using siRNA-mediated knockdown shows that PTPRZ1 is essential for viability and results in significant apoptosis with no effect on the cell cycle phase distribution. In order to determine how PTN mediates survival, we silenced the gene using siRNA mediated knockdown and performed expression profiling of 36 survival-related genes. Through computational mapping of the differentially expressed genes, members of the MAPK (mitogen-activated protein kinase) family were found to be likely effectors of PTN signaling in EOC cells. Our results provide the first experimental evidence that PTN and its signaling components may be of significance in the pathogenesis of epithelial ovarian cancer and provide a rationale for clinical evaluation of MAPK inhibitors in PTN and/or PTPRZ1 expressing ovarian tumors.

Van Raemdonck K, Berghmans N, Vanheule V, et al.
Angiostatic, tumor inflammatory and anti-tumor effects of CXCL4(47-70) and CXCL4L1(47-70) in an EGF-dependent breast cancer model.
Oncotarget. 2014; 5(21):10916-33 [PubMed] Free Access to Full Article Related Publications
CXCL4 and CXCL4L1, platelet-derived CXC chemokines, and their carboxy-terminal peptides CXCL4(47-70) and CXCL4L1(47-70) previously displayed angiostatic and anti-tumoral activity in a melanoma model. Here, we found CXCL4(47-70) and CXCL4L1(47-70) to inhibit lymphatic endothelial cell proliferation in vitro. Furthermore, the angiostatic potential of CXCL4(47-70) and CXCL4L1(47-70) was tested against different angiogenic stimuli (FGF1, FGF2, FGF8, EGF and VEGF). Besides reducing FGF2-induced vascular endothelial cell growth, CXCL4(47-70) and CXCL4L1(47-70) efficiently counteracted EGF. Consequently, we considered their anti-tumoral potential in EGF-dependent MDA-MB-231 breast tumors. In tumor-bearing mice, CXCL4(47-70) reduced tumor growth better than CXCL4L1(47-70). In CXCL4(47-70)-treated tumors significantly more intratumoral monocytes/macrophages and dendritic cells were present and higher expression levels of CCL5 and IFN- γ were detected by qPCR on tumor lysates. Because neither peptide was able to specifically bind CXCR3A or CXCR3B, differential glycosaminoglycan binding and direct interaction with cytokines (EGF and CCL5) might explain any differences in anti-tumoral effects. Notably, CCL5-induced monocyte chemotaxis in vitro was increased by addition of CXCL4(47-70) or CXCL4L1(47-70). Finally, CXCL4(47-70) and CXCL4L1(47-70) inhibited proliferation of MDA-MB-231 cells. Our results suggest a tumor type-dependent responsiveness to either CXCL4(47-70) or CXCL4L1(47-70) treatment, defined by anti-proliferative, angiostatic and inflammatory actions, and substantiate their therapeutic potential.

Ieremia E, Thway K
Myxoinflammatory fibroblastic sarcoma: morphologic and genetic updates.
Arch Pathol Lab Med. 2014; 138(10):1406-11 [PubMed] Related Publications
Myxoinflammatory fibroblastic sarcoma (MIFS) is a malignant mesenchymal neoplasm most frequently arising in the distal extremities of adults, which usually behaves in a low-grade manner but is capable of metastasizing to local and distant sites, rarely leading to death. It is a rare tumor whose unusual morphology can lead to erroneous histologic diagnosis, either as a nonneoplastic (infectious or inflammatory) process or as a variety of neoplastic diseases. While its exact origin is uncertain, ultrastructural studies have shown at least some of the constituent cells to be modified fibroblasts. Distinct and reproducible genetic abnormalities identified in MIFS are translocation t(1;10)(p22:q24), with rearrangements of the TGFBR3 and MGEA5 genes associated with increased levels of FGF8, and formation of marker/ring chromosome 3, with amplification of the VGLL3 locus. Because these genetic abnormalities are shared by both MIFS and hemosiderotic fibrohistiocytic lipomatous tumor, it is thought that these 2 morphologically distinct neoplasms may comprise a spectrum of disease defined by these genetics. We review the literature on MIFS and discuss morphology (including that of MIFS/hemosiderotic fibrohistiocytic lipomatous tumor hybrid lesions), immunohistochemistry, the differential diagnosis, and recent molecular genetic developments.

Ma J, Lang B, Wang X, et al.
Co-expression of midkine and pleiotrophin predicts poor survival in human glioma.
J Clin Neurosci. 2014; 21(11):1885-90 [PubMed] Related Publications
The aim of this study was to investigate whether co-expression of midkine (MK) and pleiotrophin (PTN) has prognostic relevance in human gliomas. Immunohistochemistry was used to investigate the expression of MK and PTN proteins in 168 patients with gliomas. The levels of MK and PTN mRNA in glioma tissues and paratumor tissues were evaluated in 45 paired cases by quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan-Meier survival analysis was performed to assess prognostic significance. The expression levels of MK and PTN proteins in glioma tissue were both significantly higher (both p<0.001) than those in paratumor tissues on immunohistochemistry analysis, which was confirmed by qRT-PCR analysis. Additionally, the overexpression of either MK or PTN was significantly associated with the World Health Organization Grade (p=0.001 and 0.034, respectively), low Karnofsky Performance Status (KPS) score (p=0.022 and 0.001, respectively), time to recurrence (p=0.043 and 0.011, respectively) and poor overall survival (p=0.018 and 0.001, respectively). Multivariate Cox proportional-hazards regression analysis revealed that increased expressions of MK and PTN were both independent prognostic factors for poor overall survival (p=0.030 and 0.022, respectively). Furthermore, the co-expression of MK and PTN was more significantly (p=0.003) associated with adverse prognosis in patients with gliomas than the respective expression of MK or PTN alone. To our knowledge, these findings are the first to indicate that the co-expression of MK and PTN is significantly correlated with prognosis in glioma patients, suggesting that the co-expression of these proteins may be used as both an early diagnostic and independent prognostic marker.

Yao J, Li WY, Li SG, et al.
Recombinant lentivirus targeting the pleotrophin gene reduces pleotrophin protein expression in pancreatic cancer cells and inhibits neurite outgrowth of dorsal root ganglion neurons.
Mol Med Rep. 2014; 9(3):999-1004 [PubMed] Related Publications
The objectives of the present study were to construct the recombinant primate lentivirus‑short hairpin RNA-pleiotrophin (pLV-shRNA-PTN) vector, to investigate the silencing effect of pLV-shRNA-PTN on PTN expression in MIA PaCa-2 cells and to observe the inhibition efficiency of pLV-shRNA‑PTN on neurite outgrowth from dorsal root ganglion (DRG) neurons in vitro. The construction procedure for recombinant lentivirus pLV-shRNA-PTN has been described previously. In the present study, pLV-shRNA‑PTN was used to infect MIA PaCa-2 pancreatic cancer cells and the efficiency of the knockdown of the PTN gene on day 7 following infection was analyzed using western blotting. The morphological changes in the cultured DRG neurons were observed by monoculture of DRG neurons and co-culture with MIA PaCa-2 cells in vitro. The recombinant lentivirus pLV-shRNA‑PTN was successfully constructed. The western blot analysis showed that the inhibition rates of PTN expression were 46, 80, 20 and 21%, respectively, following pLV-shRNA‑PTN-A, B, C and D infection. pLV-shRNA-PTN‑B showed the highest knockdown efficiency. DRG neurons co-cultured with infected MIA PaCa-2 cells were decreased in size when compared with the control, and there was a significant decrease in the number and length of neurites. The results suggest that efficient and specific knockdown of PTN in MIA PaCa-2 pancreatic cancer cells and the subsequent reduction in PTN expression results in the inhibition of neurite outgrowth from DRG neurons.

Liu F, You X, Wang Y, et al.
The oncoprotein HBXIP enhances angiogenesis and growth of breast cancer through modulating FGF8 and VEGF.
Carcinogenesis. 2014; 35(5):1144-53 [PubMed] Related Publications
Tumor angiogenesis plays an important role in the development of cancer. Previously, we reported that hepatitis B X-interacting protein (HBXIP) functioned as an oncoprotein in breast cancer. However, the role of HBXIP in angiogenesis in breast cancer remains poorly understood. In the present study, we show that the oncoprotein HBXIP plays crucial roles in the event. We observed that the expression levels of HBXIP were positively correlated with those of fibroblast growth factor 8 (FGF8) or vascular endothelial growth factor (VEGF) in clinical breast cancer tissues. Then, we demonstrated that HBXIP was able to upregulate FGF8 through activation of its promoter involving direct binding to cAMP response element-binding protein (CREB) in breast cancer cells and thereby increased its secretion. Strikingly, we identified another pathway that HBXIP upregulated FGF8 and VEGF through inhibiting miRNA-503, which directly targeted 3' untranslated region of FGF8 or VEGF mRNA in the cells. Moreover, we revealed that HBXIP-induced FGF8 could upregulate VEGF expression through activating phosphoinositide 3-kinase (PI3K)/Akt/hypoxia-inducible factor 1-alpha (HIF1α) signaling and increase its secretion. In function, matrigel angiogenesis assay and hemoglobin content analysis uncovered that HBXIP-enhanced FGF8/VEGF boosted tumor angiogenesis and growth in breast cancer in vitro and in vivo in a paracrine/autocrine manner. Thus, we conclude that HBXIP enhances angiogenesis and growth of breast cancer through modulating FGF8 and VEGF. Our finding provides new insights into the mechanism of tumor angiogenesis in breast cancer. Therapeutically, HBXIP may serve as a novel target of tumor angiogenesis.

Ning H, Mitsui H, Wang CQ, et al.
Identification of anaplastic lymphoma kinase as a potential therapeutic target in Basal Cell Carcinoma.
Oncotarget. 2013; 4(12):2237-48 [PubMed] Free Access to Full Article Related Publications
The pathogenesis of BCC is associated with sonic hedgehog (SHH) signaling. Vismodegib, a smoothened inhibitor that targets this pathway, is now in clinical use for advanced BCC patients, but its efficacy is limited. Therefore, new therapeutic options for this cancer are required. We studied gene expression profiling of BCC tumour tissues coupled with laser capture microdissection to identify tumour specific receptor tyrosine kinase expression that can be targeted by small molecule inhibitors. We found a >250 fold increase (FDR<10-4) of the oncogene, anaplastic lymphoma kinase (ALK) as well as its ligands, pleiotrophin and midkine in BCC compared to microdissected normal epidermis. qRT-PCR confirmed increased expression of ALK (p<0.05). Stronger expression of phosphorylated ALK in BCC tumour nests than normal skin was observed by immunohistochemistry. Crizotinib, an FDA-approved ALK inhibitor, reduced keratinocyte proliferation in culture, whereas a c-Met inhibitor did not. Crizotinib significantly reduced the expression of GLI1 and CCND2 (members of SHH-pathway) mRNA by approximately 60% and 20%, respectively (p<0.01). Our data suggest that ALK may increase GLI1 expression in parallel with the conventional SHH-pathway and promote keratinocyte proliferation. Hence, an ALK inhibitor alone or in combination with targeting SHH-pathway molecules may be a potential treatment for BCC patients.

Hao H, Maeda Y, Fukazawa T, et al.
Inhibition of the growth factor MDK/midkine by a novel small molecule compound to treat non-small cell lung cancer.
PLoS One. 2013; 8(8):e71093 [PubMed] Free Access to Full Article Related Publications
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.

Li T, Luo W, He D, et al.
A short peptide derived from the gN helix domain of FGF8b suppresses the growth of human prostate cancer cells.
Cancer Lett. 2013; 339(2):226-36 [PubMed] Related Publications
Previous studies have demonstrated that fibroblast growth factor 8b (FGF8b) is up-regulated in a large proportion of prostate cancer patients and that it plays a key role in prostate carcinogenesis. In this study, we designed and synthesized a gN helix domain derived short peptide (termed 8b-13) based on the analysis of the FGF8b-FGFR structure. The synthetic peptides inhibited the proliferation of prostate cancer cell lines, including PC-3 and DU-145 cells. Further investigations indicated that 8b-13 arrested the cell cycle at the G0/G1 phase, reduced the activation of the Erk1/2, P38, and Akt cascades, and down-regulated the expression of G1/S-specific cyclinD1. The suppression of DNA synthesis and the G1 to S phase transition due to the expression of proteins related to proliferation and cell cycle progression may contribute to the inhibitory effect of 8b-13 peptides on cellular proliferation. Our results not only suggest that 8b-13 exerts an antitumor effect in prostate cancer but also confirm the essential role of the gN helix domain in mediating the activity of FGF8b.

Koyama-Nasu R, Haruta R, Nasu-Nishimura Y, et al.
The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells.
Oncogene. 2014; 33(17):2236-44 [PubMed] Related Publications
Increasing evidence suggests that brain tumors arise from the transformation of neural stem/precursor/progenitor cells. Much current research on human brain tumors is focused on the stem-like properties of glioblastoma. Here we show that anaplastic lymphoma kinase (ALK) and its ligand pleiotrophin are required for the self-renewal and tumorigenicity of glioblastoma stem cells (GSCs). Furthermore, we demonstrate that pleiotrophin is transactivated directly by SOX2, a transcription factor essential for the maintenance of both neural stem cells and GSCs. We speculate that the pleiotrophin-ALK axis may be a promising target for the therapy of glioblastoma.

Fang Q, Mok PY, Thomas AE, et al.
Pleiotrophin gene therapy for peripheral ischemia: evaluation of full-length and truncated gene variants.
PLoS One. 2013; 8(4):e61413 [PubMed] Free Access to Full Article Related Publications
Pleiotrophin (PTN) is a growth factor with both pro-angiogenic and limited pro-tumorigenic activity. We evaluated the potential for PTN to be used for safe angiogenic gene therapy using the full length gene and a truncated gene variant lacking the domain implicated in tumorigenesis. Mouse myoblasts were transduced to express full length or truncated PTN (PTN or T-PTN), along with a LacZ reporter gene, and injected into mouse limb muscle and myocardium. In cultured myoblasts, PTN was expressed and secreted via the Golgi apparatus, but T-PTN was not properly secreted. Nonetheless, no evidence of uncontrolled growth was observed in cells expressing either form of PTN. PTN gene delivery to myocardium, and non-ischemic skeletal muscle, did not result in a detectable change in vascularity or function. In ischemic hindlimb at 14 days post-implantation, intramuscular injection with PTN-expressing myoblasts led to a significant increase in skin perfusion and muscle arteriole density. We conclude that (1) delivery of the full length PTN gene to muscle can be accomplished without tumorigenesis, (2) the truncated PTN gene may be difficult to use in a gene therapy context due to inefficient secretion, (3) PTN gene delivery leads to functional benefit in the mouse acute ischemic hindlimb model.

Wang XY, Hao JW, Zhou RJ, et al.
Meta-analysis of gene expression data identifies causal genes for prostate cancer.
Asian Pac J Cancer Prev. 2013; 14(1):457-61 [PubMed] Related Publications
Prostate cancer is a leading cause of death in male populations across the globe. With the advent of gene expression arrays, many microarray studies have been conducted in prostate cancer, but the results have varied across different studies. To better understand the genetic and biologic mechanisms of prostate cancer, we conducted a meta-analysis of two studies on prostate cancer. Eight key genes were identified to be differentially expressed with progression. After gene co-expression analysis based on data from the GEO database, we obtained a co- expressed gene list which included 725 genes. Gene Ontology analysis revealed that these genes are involved in actin filament-based processes, locomotion and cell morphogenesis. Further analysis of the gene list should provide important clues for developing new prognostic markers and therapeutic targets.

Kobayashi T, Yan H, Kurahashi Y, et al.
Role of GalNAc4S-6ST in astrocytic tumor progression.
PLoS One. 2013; 8(1):e54278 [PubMed] Free Access to Full Article Related Publications
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) is the sulfotransferase responsible for biosynthesis of highly sulfated chondroitin sulfate CS-E. Although involvements of CS-E in neuronal cell functions have been extensively analyzed, the role of GalNAc4S-6ST in astrocytic tumor progression remains unknown. Here, we reveal that GalNAc4S-6ST transcripts were detected in astrocytic tumors derived from all 30 patients examined using quantitative reverse transcription-PCR analysis. Patients with high GalNAc4S-6ST mRNA expression had significantly worse outcome compared with patients with low expression, and multivariate survival analysis disclosed that GalNAc4S-6ST is an independent poor prognostic factor for astrocytic tumors. We then tested whether CS-E enhanced haptotaxic migration of glioblastoma U251-MG cells that endogenously express both the CS-E's scaffold tyrosine phosphatase ζ (PTPζ) and GalNAc4S-6ST, in the presence of CS-E's preferred ligands, pleiotrophin (PTN) or midkine (MK), using a modified Boyden chamber method. Haptotaxic stimulation of cell migration by PTN was most robust on control siRNA-transfected U251-MG cells, while that enhancing effect was cancelled following transduction of GalNAc4S-6ST siRNA. Similar results were obtained using MK, suggesting that both PTN and MK enhance migration of U251-MG cells by binding to CS-E. We also found that PTPζ as well as PTN and MK were frequently expressed in astrocytic tumor cells. Thus, our findings indicate that GalNAc4S-6ST mRNA expressed by astrocytic tumor cells is associated with poor patient prognosis likely by enhancing CS-E-mediated tumor cell motility in the presence of PTN and/or MK.

Tarkkonen KM, Nilsson EM, Kähkönen TE, et al.
Differential roles of fibroblast growth factor receptors (FGFR) 1, 2 and 3 in the regulation of S115 breast cancer cell growth.
PLoS One. 2012; 7(11):e49970 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.

Koutsioumpa M, Polytarchou C, Courty J, et al.
Interplay between αvβ3 integrin and nucleolin regulates human endothelial and glioma cell migration.
J Biol Chem. 2013; 288(1):343-54 [PubMed] Free Access to Full Article Related Publications
The multifunctional protein nucleolin (NCL) is overexpressed on the surface of activated endothelial and tumor cells and mediates the stimulatory actions of several angiogenic growth factors, such as pleiotrophin (PTN). Because α(v)β(3) integrin is also required for PTN-induced cell migration, the aim of the present work was to study the interplay between NCL and α(v)β(3) by using biochemical, immunofluorescence, and proximity ligation assays in cells with genetically altered expression of the studied molecules. Interestingly, cell surface NCL localization was detected only in cells expressing α(v)β(3) and depended on the phosphorylation of β(3) at Tyr(773) through receptor protein-tyrosine phosphatase β/ζ (RPTPβ/ζ) and c-Src activation. Downstream of α(v)β(3,) PI3K activity mediated this phenomenon and cell surface NCL was found to interact with both α(v)β(3) and RPTPβ/ζ. Positive correlation of cell surface NCL and α(v)β(3) expression was also observed in human glioblastoma tissue arrays, and inhibition of cell migration by cell surface NCL antagonists was observed only in cells expressing α(v)β(3). Collectively, these data suggest that both expression and β(3) integrin phosphorylation at Tyr(773) determine the cell surface localization of NCL downstream of the RPTPβ/ζ/c-Src signaling cascade and can be used as a biomarker for the use of cell surface NCL antagonists as anticancer agents.

Ferreira LB, Palumbo A, de Mello KD, et al.
PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling.
BMC Cancer. 2012; 12:507 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling.
METHODS: LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR.
RESULTS: LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions.
CONCLUSIONS: Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control.

Sethi G, Pathak HB, Zhang H, et al.
An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer.
PLoS One. 2012; 7(10):e47086 [PubMed] Free Access to Full Article Related Publications
Targeted therapies have been used to combat many tumor types; however, few have effectively improved the overall survival in women with epithelial ovarian cancer, begging for a better understanding of this deadly disease and identification of essential drivers of tumorigenesis that can be targeted effectively. Therefore, we used a loss-of-function screening approach to help identify molecular vulnerabilities that may represent key points of therapeutic intervention. We employed an unbiased high-throughput lethality screen using a 24,088 siRNA library targeting over 6,000 druggable genes and studied their effects on growth and/or survival of epithelial ovarian cancer (EOC) cell lines. The top 300 "hits" affecting the viability of A1847 cells were rescreened across additional EOC cell lines and non-tumorigenic, human immortalized ovarian epithelial cell lines. Fifty-three gene candidates were found to exhibit effects in all tumorigenic cell lines tested. Extensive validation of these hits refined the list to four high quality candidates (HSPA5, NDC80, NUF2, and PTN). Mechanistic studies show that silencing of three genes leads to increased apoptosis, while HSPA5 silencing appears to alter cell growth through G1 cell cycle arrest. Furthermore, two independent gene expression studies show that NDC80, NUF2 and PTN were significantly aberrantly overexpressed in serous adenocarcinomas. Overall, our functional genomics results integrated with the genomics data provide an important unbiased avenue towards the identification of prospective therapeutic targets for drug discovery, which is an urgent and unmet clinical need for ovarian cancer.

Nilsson EM, Brokken LJ, Narvi E, et al.
Identification of fibroblast growth factor-8b target genes associated with early and late cell cycle events in breast cancer cells.
Mol Cell Endocrinol. 2012; 358(1):104-15 [PubMed] Related Publications
Fibroblast growth factor-8 (FGF-8) is implicated in the development and progression of breast cancer and its levels are frequently elevated in breast tumors. The mechanisms driving FGF-8-mediated tumorigenesis are not well understood. Herein we aimed to identify target genes associated with FGF-8b-mediated breast cancer cell proliferation by carrying out a cDNA microarray analysis of genes expressed in estrogen receptor negative S115 breast cancer cells treated with FGF-8b for various time periods in comparison with those expressed in non-treated cells. Gene and protein expression was validated for selected genes by qPCR and western blotting respectively. Furthermore, using TRANSBIG data, the expression of human orthologs of FGF-8-regulated genes was correlated to the Nottingham prognostic index and estrogen receptor status. The analysis revealed a number of significantly up- and down-regulated genes in response to FGF-8b at all treatment times. The most differentially expressed genes were genes related to cell cycle regulation, mitosis, cancer, and cell death. Several key regulators of early cell cycle progression such as Btg2 and cyclin D1, as well as regulators of mitosis, including cyclin B, Plk1, survivin, and aurora kinase A, were identified as novel targets for FGF-8b, some of which were additionally shown to correlate with prognosis and ER status in human breast cancer. The results suggest that in stimulation of proliferation FGF-8b not only promotes cell cycle progression through the G1 restriction point but also regulates key proteins involved in chromosomal segregation during mitosis and cytokinesis of breast cancer cells.

Wiweger MI, Zhao Z, van Merkesteyn RJ, et al.
HSPG-deficient zebrafish uncovers dental aspect of multiple osteochondromas.
PLoS One. 2012; 7(1):e29734 [PubMed] Free Access to Full Article Related Publications
Multiple Osteochondromas (MO; previously known as multiple hereditary exostosis) is an autosomal dominant genetic condition that is characterized by the formation of cartilaginous bone tumours (osteochondromas) at multiple sites in the skeleton, secondary bursa formation and impingement of nerves, tendons and vessels, bone curving, and short stature. MO is also known to be associated with arthritis, general pain, scarring and occasional malignant transformation of osteochondroma into secondary peripheral chondrosarcoma. MO patients present additional complains but the relevance of those in relation to the syndromal background needs validation. Mutations in two enzymes that are required during heparan sulphate synthesis (EXT1 or EXT2) are known to cause MO. Previously, we have used zebrafish which harbour mutations in ext2 as a model for MO and shown that ext2⁻/⁻ fish have skeletal defects that resemble those seen in osteochondromas. Here we analyse dental defects present in ext2⁻/⁻ fish. Histological analysis reveals that ext2⁻/⁻ fish have very severe defects associated with the formation and the morphology of teeth. At 5 days post fertilization 100% of ext2⁻/⁻ fish have a single tooth at the end of the 5(th) pharyngeal arch, whereas wild-type fish develop three teeth, located in the middle of the pharyngeal arch. ext2⁻/⁻ teeth have abnormal morphology (they were shorter and thicker than in the WT) and patchy ossification at the tooth base. Deformities such as split crowns and enamel lesions were found in 20% of ext2⁺/⁻ adults. The tooth morphology in ext2⁻/⁻ was partially rescued by FGF8 administered locally (bead implants). Our findings from zebrafish model were validated in a dental survey that was conducted with assistance of the MHE Research Foundation. The presence of the malformed and/or displaced teeth with abnormal enamel was declared by half of the respondents indicating that MO might indeed be also associated with dental problems.

Ostroff RM, Bigbee WL, Franklin W, et al.
Unlocking biomarker discovery: large scale application of aptamer proteomic technology for early detection of lung cancer.
PLoS One. 2010; 5(12):e15003 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung cancer is the leading cause of cancer deaths worldwide. New diagnostics are needed to detect early stage lung cancer because it may be cured with surgery. However, most cases are diagnosed too late for curative surgery. Here we present a comprehensive clinical biomarker study of lung cancer and the first large-scale clinical application of a new aptamer-based proteomic technology to discover blood protein biomarkers in disease.
METHODOLOGY/PRINCIPAL FINDINGS: We conducted a multi-center case-control study in archived serum samples from 1,326 subjects from four independent studies of non-small cell lung cancer (NSCLC) in long-term tobacco-exposed populations. Sera were collected and processed under uniform protocols. Case sera were collected from 291 patients within 8 weeks of the first biopsy-proven lung cancer and prior to tumor removal by surgery. Control sera were collected from 1,035 asymptomatic study participants with ≥ 10 pack-years of cigarette smoking. We measured 813 proteins in each sample with a new aptamer-based proteomic technology, identified 44 candidate biomarkers, and developed a 12-protein panel (cadherin-1, CD30 ligand, endostatin, HSP90α, LRIG3, MIP-4, pleiotrophin, PRKCI, RGM-C, SCF-sR, sL-selectin, and YES) that discriminates NSCLC from controls with 91% sensitivity and 84% specificity in cross-validated training and 89% sensitivity and 83% specificity in a separate verification set, with similar performance for early and late stage NSCLC.
CONCLUSIONS/SIGNIFICANCE: This study is a significant advance in clinical proteomics in an area of high unmet clinical need. Our analysis exceeds the breadth and dynamic range of proteome interrogated of previously published clinical studies of broad serum proteome profiling platforms including mass spectrometry, antibody arrays, and autoantibody arrays. The sensitivity and specificity of our 12-biomarker panel improves upon published protein and gene expression panels. Separate verification of classifier performance provides evidence against over-fitting and is encouraging for the next development phase, independent validation. This careful study provides a solid foundation to develop tests sorely needed to identify early stage lung cancer.

Gao SB, Feng ZJ, Xu B, et al.
Menin represses malignant phenotypes of melanoma through regulating multiple pathways.
J Cell Mol Med. 2011; 15(11):2353-63 [PubMed] Free Access to Full Article Related Publications
Substantial genetic evidence suggests that chromosome 11q is involved in regulating initiation and progression of malignant melanomas. Mutations of the MEN1 gene, located in chromosome 11q13, predispose individuals to the multiple endocrine neoplasia type 1 (MEN1) familial syndrome. MEN1 patients develop primary malignant melanoma, suggesting a potential link between MEN1 syndrome and development of melanomas, but the precise molecular mechanism is poorly understood. Here we show that the MEN1 gene suppresses malignant phenotypes of melanoma cells through multiple signalling pathways. Ectopic expression of menin, the product of MEN1 gene, significantly inhibited melanoma cell proliferation and migration in vitro and in vivo. The inhibition was partly achieved through suppressing expression of growth factor pleiotrophin (PTN) and receptor protein tyrosine phosphatase (RPTP) β/ζ, accompanied with the reduced expression of phosphatidylinositol 3-kinase (pI3K) and decreased phosphorylation of focal adhesion kinase (FAK) and extracellular signal regulated kinase (ERK1/2). Interestingly, reduced expression of menin was associated with hypermethylation of the CpG islands of the MEN1 promoter in melanoma cells. Taken together, these findings suggest a previously unappreciated function for menin in suppressing malignant phenotypes of melanomas and unravel a novel mechanism involving in regulating PTN signalling by menin in development and progression of melanomas.

Lui VW, Yau DM, Cheung CS, et al.
FGF8b oncogene mediates proliferation and invasion of Epstein-Barr virus-associated nasopharyngeal carcinoma cells: implication for viral-mediated FGF8b upregulation.
Oncogene. 2011; 30(13):1518-30 [PubMed] Related Publications
The fibroblast growth factor 8b (FGF8b) oncogene is known to be primarily involved in the tumorigenesis and progression of hormone-related cancers. Its role in other epithelial cancers has not been investigated, except for esophageal cancer, in which FGF8b overexpression was mainly found in tumor biopsies of male patients. These observations were consistent with previous findings in these cancer types that the male sex-hormone androgen is responsible for FGF8b expression. Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer of head and neck commonly found in Asia. It is etiologically associated with Epstein-Barr Virus (EBV) infection, inflammatory tumor microenvironment and relatively higher male predominance. Here, we reported for the first time that FGF8b is overexpressed in this EBV-associated non-hormone-related cancer of the head and neck, NPC. More importantly, overexpression of FGF8b mRNA and protein was detected in a large majority of NPC tumors from both male and female genders, in addition to multiple NPC cell lines. We hypothesized that FGF8b overexpression may contribute to NPC tumorigenesis. Using EBV-associated NPC cell lines, we demonstrated that specific knockdown of FGF8b by small interfering RNA inhibited cell proliferation, migration and invasion, whereas exogenous FGF8b stimulated these multiple phenotypes. Further mechanistic investigation revealed that in addition to NF-κB signaling (a major inflammatory signaling pathway known to be activated in NPC), an important EBV oncoprotein, the latent membrane protein 1 (LMP1), was found to be a direct inducer of FGF8b overexpression in NPC cells, whereas androgen (testosterone) has minimal effect on FGF8b expression in EBV-associated NPC cells. In summary, our study has identified LMP1 as the first viral oncogene capable of directly inducing FGF8b (an important cellular oncogene) expression in human cancer cells. This novel mechanism of viral-mediated FGF8 upregulation may implicate a new role of oncoviruses in human carcinogenesis.

Elo TD, Valve EM, Seppänen JA, et al.
Stromal activation associated with development of prostate cancer in prostate-targeted fibroblast growth factor 8b transgenic mice.
Neoplasia. 2010; 12(11):915-27 [PubMed] Free Access to Full Article Related Publications
Expression of fibroblast growth factor 8 (FGF-8) is commonly increased in prostate cancer. Experimental studies have provided evidence that it plays a role in prostate tumorigenesis and tumor progression. To study how increased FGF-8 affects the prostate, we generated and analyzed transgenic (TG) mice expressing FGF-8b under the probasin promoter that targets expression to prostate epithelium. Prostates of the TG mice showed an increased size and changes in stromal and epithelial morphology progressing from atypia and prostatic intraepithelial neoplasia (mouse PIN, mPIN) lesions to tumors with highly variable phenotype bearing features of adenocarcinoma, carcinosarcoma, and sarcoma. The development of mPIN lesions was preceded by formation of activated stroma containing increased proportion of fibroblastic cells, rich vasculature, and inflammation. The association between advancing stromal and epithelial alterations was statistically significant. Microarray analysis and validation with quantitative polymerase chain reaction revealed that expression of osteopontin and connective tissue growth factor was markedly upregulated in TG mouse prostates compared with wild type prostates. Androgen receptor staining was decreased in transformed epithelium and in hypercellular stroma but strongly increased in the sarcoma-like lesions. In conclusion, our data demonstrate that disruption of FGF signaling pathways by increased epithelial production of FGF-8b leads to strongly activated and atypical stroma, which precedes development of mPIN lesions and prostate cancer with mixed features of adenocarcinoma and sarcoma in the prostates of TG mice. The results suggest that increased FGF-8 in human prostate may also contribute to prostate tumorigenesis by stromal activation.

Tuomela J, Grönroos TJ, Valta MP, et al.
Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts.
BMC Cancer. 2010; 10:596 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model.
METHODS: Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([18F]FDG) and hypoxia ([18F]EF5), and intratumoral polarographic measurements of pO2.
RESULTS: Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO2 measurements, [18F]EF5 and [18F]FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls.
CONCLUSION: FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts.

Zhang G, Hoersch S, Amsterdam A, et al.
Highly aneuploid zebrafish malignant peripheral nerve sheath tumors have genetic alterations similar to human cancers.
Proc Natl Acad Sci U S A. 2010; 107(39):16940-5 [PubMed] Free Access to Full Article Related Publications
Aneuploidy is a hallmark of human cancers, but most mouse cancer models lack the extensive aneuploidy seen in many human tumors. The zebrafish is becoming an increasingly popular model for studying cancer. Here we report that malignant peripheral nerve sheath tumors (MPNSTs) that arise in zebrafish as a result of mutations in either ribosomal protein (rp) genes or in p53 are highly aneuploid. Karyotyping reveals that these tumors frequently harbor near-triploid numbers of chromosomes, and they vary in chromosome number from cell to cell within a single tumor. Using array comparative genomic hybridization, we found that, as in human cancers, certain fish chromosomes are preferentially overrepresented, whereas others are underrepresented in many MPNSTs. In addition, we obtained evidence for recurrent subchromosomal amplifications and deletions that may contain genes involved in cancer initiation or progression. These focal amplifications encompassed several genes whose amplification is observed in human tumors, including met, cyclinD2, slc45a3, and cdk6. One focal amplification included fgf6a. Increasing fgf signaling via a mutation that overexpresses fgf8 accelerated the onset of MPNSTs in fish bearing a mutation in p53, suggesting that fgf6a itself may be a driver of MPNSTs. Our results suggest that the zebrafish is a useful model in which to study aneuploidy in human cancer and in which to identify candidate genes that may act as drivers in fish and potentially also in human tumors.

Orr B, Vanpoucke G, Grace OC, et al.
Expression of pleiotrophin in the prostate is androgen regulated and it functions as an autocrine regulator of mesenchyme and cancer associated fibroblasts and as a paracrine regulator of epithelia.
Prostate. 2011; 71(3):305-17 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Androgens and paracrine signaling from mesenchyme/stroma regulate development and disease of the prostate, and gene profiling studies of inductive prostate mesenchyme have identified candidate molecules such as pleiotrophin (Ptn).
METHODS: Ptn transcripts and protein were localized by in situ and immunohistochemistry and Ptn mRNA was quantitated by Northern blot and qRT-PCR. Ptn function was examined by addition of hPTN protein to rat ventral prostate organ cultures, primary human fetal prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia.
RESULTS: During development, Ptn transcripts and protein were expressed in ventral mesenchymal pad (VMP) and prostatic mesenchyme. Ptn was localized to mesenchyme surrounding ductal epithelial tips undergoing branching morphogenesis, and was located on the surface of epithelia. hPTN protein stimulated branching morphogenesis and stromal and epithelial proliferation, when added to rat VP cultures, and also stimulated growth of fetal human prostate fibroblasts, prostate cancer associated fibroblasts, and BPH1 epithelia. PTN mRNA was enriched in patient-matched normal prostate fibroblasts versus prostate cancer associated fibroblasts. PTN also showed male enriched expression in fetal human male urethra versus female, and between wt male and ARKO male mice. Transcripts for PTN were upregulated by testosterone in fetal human prostate fibroblasts and organ cultures of female rat VMP. Ptn protein was increased by testosterone in organ cultures of female rat VMP and in rat male urethra compared to female.
CONCLUSIONS: Our data suggest that in the prostate Ptn functions as a regulator of both mesenchymal and epithelial proliferation, and that androgens regulate Ptn levels.

Feng ZJ, Gao SB, Wu Y, et al.
Lung cancer cell migration is regulated via repressing growth factor PTN/RPTP β/ζ signaling by menin.
Oncogene. 2010; 29(39):5416-26 [PubMed] Free Access to Full Article Related Publications
Menin encoded by the multiple endocrine neoplasia type 1 (MEN1) gene is associated with chromatin and the nuclear matrix and exerts multiple biological functions including regulation of cell proliferation and adhesion. Men1 mutations increase the likelihood of lung cancer development in mice. Menin expression is reduced in certain human non-small cell lung cancer cells, and reduction of menin is closely correlated with increased lung cancer metastasis to lymph nodes. However, it is poorly understood whether menin affects migration of lung cancer cells. In this study, we show that menin-regulated A549 lung cancer cell migration, which was mediated by growth factor pleiotrophin (PTN) and its cell surface receptor, protein tyrosine phosphatase beta/zeta (RPTP β/ζ). Ectopic menin expression significantly repressed PTN transcription, but indirectly inhibited RPTP β/ζ expression through repressing PTN expression. Further studies revealed that menin-regulated cell migration through PTN/RPTP β/ζ, in conjunction with integrin α(v)β(3), focal adhesion kinase, phosphatidylinositol 3-kinase and phosphorylated extracellular signal regulated kinase 1/2. These findings provide mechanistic insights into the molecular basis for menin/PTN-mediated regulation of A549 lung cancer cell migration.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FGF8, Cancer Genetics Web: http://www.cancer-genetics.org/FGF8.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 14 March, 2017     Cancer Genetics Web, Established 1999