FOSB

Gene Summary

Gene:FOSB; FosB proto-oncogene, AP-1 transcription factor subunit
Aliases: AP-1, G0S3, GOS3, GOSB
Location:19q13.32
Summary:The Fos gene family consists of 4 members: FOS, FOSB, FOSL1, and FOSL2. These genes encode leucine zipper proteins that can dimerize with proteins of the JUN family, thereby forming the transcription factor complex AP-1. As such, the FOS proteins have been implicated as regulators of cell proliferation, differentiation, and transformation. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein fosB
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (10)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FOSB (cancer-related)

Sun X, Deng Q, Liang Z, et al.
Cigarette smoke extract induces epithelial-mesenchymal transition of human bladder cancer T24 cells through activation of ERK1/2 pathway.
Biomed Pharmacother. 2017; 86:457-465 [PubMed] Related Publications
Bladder cancer is a common genitourinary malignant disease worldwide. Abundant evidence has shown that cigarette smoke (CS) is a crucial risk factor for bladder cancer. Nevertheless, the mechanism underlying the relationship between cigarette smoking and bladder cancer remains unclear. In the present study, we investigated the effects of cigarette smoke extract (CSE) on mitogen-activated protein kinase (MAPK) pathway activation and EMT alterations in human bladder cancer T24 cells, and the preventive effect of extracellular regulated protein kinases 1 and 2 (ERK1/2) inhibitor U0126 was further examined. Our results illustrated that CSE exposure induced morphological change of human bladder cancer T24 cells, enhanced migratory and invasive capacities, reduced epithelial marker expression and elevated mesenchymal marker expression. Meanwhile, exposure of T24 cells to CSE resulted in activation of ERK1/2 pathway as well as activator protein 1 (AP-1) proteins. Interestingly, treatment with ERK1/2 inhibitor U0126 effectively abrogated CSE-triggered EMT and ERK1/2/AP-1 activation. These findings provide novel insight into the molecular mechanisms of CS-associated bladder cancer and may open up new avenues in the search for potential target of bladder cancer intervention.

Zhu L, Shen Y, Sun W
Paraoxonase 3 promotes cell proliferation and metastasis by PI3K/Akt in oral squamous cell carcinoma.
Biomed Pharmacother. 2017; 85:712-717 [PubMed] Related Publications
Paraoxonase 3 (PON3) is an oncogene in cancer, however, little is known about the mechanisms and roles of PON3 in oral squamous cell carcinoma (OSCC), which is the aim of our study. We found that the expression of PON3 was up-regulated in OSCC samples and cell lines. PON3 was associated with accelerating cell proliferation, cell cycle, migration and invasion in OSCC cells. Further research showed that PON3 was regulated by PI3K/Akt pathway. We also found that AP-1 was an important transcriptional factor regulating PON3 expression in OSCC. The study elucidates that PI3K/Akt pathway up-regulated the expression of PON3 in OSCC by AP-1.

Ahmad HM, Muiwo P, Muthuswami R, Bhattacharya A
FosB regulates expression of miR-22 during PMA induced differentiation of K562 cells to megakaryocytes.
Biochimie. 2017; 133:1-6 [PubMed] Related Publications
Expression of many miRNAs is altered in different cancers and these changes are thought to play a key role in formation and progression of cancer. In chronic myelogenous leukemia (CML) a number of miRNAs are known to be down regulated as compared to normal cells. In this report we have investigated the mechanism of this down regulation by using PMA induced differentiation of CML cell line K562 to megakaryocytes as an experimental system. On treatment with PMA, expression of many down regulated miRNAs including miR-22 is induced. PMA also induces expression of several transcription factors, including FosB, EGR1 and EGR2. Our results using a number of approaches, such as promoter reporter assay, FosB knock down and Chip assay, suggest that the expression of miR-22 is regulated transcriptionally by FosB.

Chang CD, Lin PY, Hsu JL, Shih WL
Ursolic Acid Suppresses Hepatitis B Virus X Protein-mediated Autophagy and Chemotherapeutic Drug Resistance.
Anticancer Res. 2016; 36(10):5097-5107 [PubMed] Related Publications
Hepatitis B virus X (HBx) protein is a multifunctional oncoprotein that affects diverse cell activities via regulation of various host cell signaling pathways. The current investigation demonstrated that ursolic acid (UA), a pentacyclic triterpenoid, protected hepatoma cells and reduced HBx-mediated autophagy through modulation of Ras homolog gene family member A (RhoA). Low-level ectopic HBx expression in Huh7 cells induced more significant autophagosome formation than high-level HBx expression. HBx activated beclin-1 promoter and enhanced the beclin-1 protein expression under low HBx expression. Transcription factor AP-1 played an essential function in HBx-mediated beclin-1 promoter activation. Inhibition of RhoA and its downstream effector Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) alleviated HBx-mediated autophagy significantly. Transiently-expressed HBx elicited an increased RhoA-GTP level, as well as phospho-ROCK1 transient accumulation. Utilization of transactivation-deficient HBx demonstrated that the transactivation activity of HBx is required for autophagy induction. Furthermore, UA suppressed HBx-mediated RhoA activation, beclin-1 promoter activation and subsequent autophagy induction, while, most importantly, reversed HBx-induced anti-cancer drug resistance.

Song L, Du A, Xiong Y, et al.
γ-Aminobutyric acid inhibits the proliferation and increases oxaliplatin sensitivity in human colon cancer cells.
Tumour Biol. 2016; 37(11):14885-14894 [PubMed] Related Publications
γ-Aminobutyric acid (GABA) is a natural non-protein amino acid, which broadly exists in many plant parts and is widely used as an ingredient in the food industry. In mammals, it is widely distributed in central nervous system and non-neural tissues. In addition to a primary inhibitory neurotransmitter in the central nervous system, endogenous GABA content has been found to be elevated in neoplastic tissues in colon cancer. However, the effect of extraneous GABA on colon cancer has rarely been reported. In this study, we found the inhibitory effects of GABA on the proliferation of colon cancer cells (CCCs). The amino acid also suppressed metastasis of SW480 and SW620 cells. To further study the correlated mechanism, we analyzed the changes in cell cycle distribution and found that GABA suppressed cell cycle progression through G2/M or G1/S phase. Furthermore, RNA sequencing analysis revealed GABA-induced changes in the mRNA expression of 30 genes, including EGR1, MAPK4, NR4A1, Fos, and FosB, in all the three types of CCC. Importantly, GABA enhanced the anti-tumor efficacy of oxaliplatin (OXA) in subcutaneous xenograft tumor model in nude mice. The data suggest that GABA inhibits colon cancer cell proliferation perhaps by attenuating EGR1-NR4A1 axis, EGR1-Fos axis, and by disrupting MEK-EGR1 signaling pathway. This work reveals the pharmacological value of GABA derived from food and suggests that exogenous GABA might play an auxiliary role in polychemotherapy of colon cancer.

Hegde SM, Kumar MN, Kavya K, et al.
Interplay of nuclear receptors (ER, PR, and GR) and their steroid hormones in MCF-7 cells.
Mol Cell Biochem. 2016; 422(1-2):109-120 [PubMed] Related Publications
Steroid hormones and their nuclear receptors play a major role in the development and progression of breast cancer. MCF-7 cells are triple-positive breast cancer cells expressing estrogen receptor (ER), progesterone receptor (PR), and glucocorticoid receptor (GR). However, interaction and their role in expression pattern of activator protein (AP-1) transcription factors (TFs) are not completely understood. Hence, in our study, MCF-7 cells were used as an in vitro model system to study the interplay between the receptors and hormones. MCF-7 cells were treated with estradiol-17β (E2), progesterone (P4), and dexamethasone (Dex), alone or in combination, to study the proliferation of cells and expression of AP-1 genes. MTT assay results show that E2 or P4 induced the cell proliferation by more than 35 %, and Dex decreased the proliferation by 26 %. E2 and P4 are found to increase ERα by more than twofold and c-Jun, c-Fos, and Fra-1 AP-1 TFs by more than 1.7-fold, while Dex shows opposite effect of E2- or P4-induced effect as well as effect on the expression of nuclear receptors and AP-1 factors. E2 antagonist Fulvestrant (ICI 182,780) found to reduce proliferation and E2-induced expression of AP1-TFs, while P4 or Dex antagonist Mifepristone (RU486) is found to block GR-mediated expression of NRs and AP-1 mRNAs. Results suggest that E2 and P4 act synergistically, and Dex acts as an antagonist of E2 and P4.

Deng Y, Wang Z, Zhang F, et al.
A Blockade of IGF Signaling Sensitizes Human Ovarian Cancer Cells to the Anthelmintic Niclosamide-Induced Anti-Proliferative and Anticancer Activities.
Cell Physiol Biochem. 2016; 39(3):871-88 [PubMed] Related Publications
BACKGROUND/AIMS: Ovarian cancer is the most lethal gynecologic malignancy, and there is an unmet clinical need to develop new therapies. Although showing promising anticancer activity, Niclosamide may not be used as a monotherapy. We seek to investigate whether inhibiting IGF signaling potentiates Niclosamide's anticancer efficacy in human ovarian cancer cells.
METHODS: Cell proliferation and migration are assessed. Cell cycle progression and apoptosis are analyzed by flow cytometry. Inhibition of IGF signaling is accomplished by adenovirus-mediated expression of siRNAs targeting IGF-1R. Cancer-associated pathways are assessed using pathway-specific reporters. Subcutaneous xenograft model is used to determine anticancer activity.
RESULTS: We find that Niclosamide is highly effective on inhibiting cell proliferation, cell migration, and cell cycle progression, and inducing apoptosis in human ovarian cancer cells, possibly by targeting multiple signaling pathways involved in ELK1/SRF, AP-1, MYC/MAX and NFkB. Silencing IGF-1R exert a similar but weaker effect than that of Niclosamide's. However, silencing IGF-1R significantly sensitizes ovarian cancer cells to Niclosamide-induced anti-proliferative and anticancer activities both in vitro and in vivo.
CONCLUSION: Niclosamide as a repurposed anticancer agent may be more efficacious when combined with agents that target other signaling pathways such as IGF signaling in the treatment of human cancers including ovarian cancer.

Sheikh A, Takatori A, Hossain MS, et al.
Unfavorable neuroblastoma prognostic factor NLRR2 inhibits cell differentiation by transcriptional induction through JNK pathway.
Cancer Sci. 2016; 107(9):1223-32 [PubMed] Free Access to Full Article Related Publications
The novel human gene family encoding neuronal leucine rich repeat (NLRR) proteins were identified as prognostic markers from our previous screening of primary neuroblastoma (NB) cDNA libraries. Of the NLRR gene family members, NLRR1 and NLRR3 are associated with the regulation of cellular proliferation and differentiation, respectively. However, the functional regulation and clinical significance of NLRR2 in NB remain unclear. Here, we evaluated the differential expression of NLRR2, where high expressions of NLRR2 were significantly associated with a poor prognosis of NB (P = 0.0009), in 78 NBs. Enforced expression of NLRR2 in NB cells enhanced cellular proliferation and induced resistance to retinoic acid (RA)-mediated cell growth inhibition. In contrast, knockdown of NLRR2 exhibited growth inhibition effects and enhanced RA-induced cell differentiation in NB cells. After RA treatment, NLRR2 expression was increased and correlated with the upregulation of c-Jun, a member of the activator protein-1 (AP-1) family in NB cells. Moreover, the expressions of NLRR2 and c-Jun were suppressed by treatment with a JNK inhibitor, which ameliorated the promoter activity of the NLRR2 gene while knockdown of c-Jun reduced NLRR2 expression. We then searched AP-1 binding consensus in the NLRR2 promoter region and confirmed c-Jun recruitment at a consensus. Conclusively, NLRR2 must be an inducible gene regulated by the JNK pathway to enhance cell survival and inhibit NB cell differentiation. Therefore, NLRR2 should have an important role in NB aggressiveness and be a potential therapeutic target for the treatment of RA resistant and aggressive NB.

Elkady AI, Hussein RA, El-Assouli SM
Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes.
Asian Pac J Cancer Prev. 2016; 17(4):1947-59 [PubMed] Related Publications
BACKGROUND: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses.
RESULTS: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-κB and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase.
CONCLUSIONS: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Chen YJ, Lin KN, Jhang LM, et al.
Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells.
Chem Biol Interact. 2016; 252:131-40 [PubMed] Related Publications
Several studies have revealed that natural compounds are valuable resources to develop novel agents against dysregulation of the EGF/EGFR-mediated matrix metalloproteinase-9 (MMP-9) expression in cancer cells. In view of the findings that EGF/EGFR-mediated MMP-9 expression is closely related to invasion and metastasis of breast cancer. To determine the beneficial effects of gallic acid on the suppression of breast cancer metastasis, we explored the effect of gallic acid on MMP-9 expression in EGF-treated MCF-7 breast cancer cells. Treatment with EGF up-regulated MMP-9 mRNA and protein levels in MCF-7 cells. EGF treatment induced phosphorylation of EGFR and elicited Src activation, subsequently promoting Akt/NFκB (p65) and ERK/c-Jun phosphorylation in MCF-7 cells. Activation of Akt/p65 and ERK/c-Jun was responsible for the MMP-9 up-regulation in EGF-treated cells. Gallic acid repressed the EGF-induced activation of EGFR and Src; furthermore, inactivation of Akt/p65 and ERK/c-Jun was a result of the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. Over-expression of constitutively active Akt and MEK1 or over-expression of constitutively active Src eradicated the inhibitory effect of gallic acid on the EGF-induced MMP-9 up-regulation. A chromosome conformation capture assay showed that EGF induced a chromosomal loop formation in the MMP-9 promoter via NFκB/p65 and AP-1/c-Jun activation. Treatment with gallic acid, EGFR inhibitor, or Src inhibitor reduced DNA looping. Taken together, our data suggest that gallic acid inhibits the activation of EGFR/Src-mediated Akt and ERK, leading to reduced levels of p65/c-Jun-mediated DNA looping and thus inhibiting MMP-9 expression in EGF-treated MCF-7 cells.

Ahn SH, Park H, Ahn YH, et al.
Necrotic cells influence migration and invasion of glioblastoma via NF-κB/AP-1-mediated IL-8 regulation.
Sci Rep. 2016; 6:24552 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most common primary intracranial tumor in adults and has poor prognosis. Diffuse infiltration into normal brain parenchyma, rapid growth, and the presence of necrosis are remarkable hallmarks of GBM. However, the effect of necrotic cells on GBM growth and metastasis is poorly understood at present. In this study, we examined the biological significance of necrotic tissues by exploring the molecular mechanisms underlying the signaling network between necrotic tissues and GBM cells. The migration and invasion of the GBM cell line CRT-MG was significantly enhanced by treatment with necrotic cells, as shown by assays for scratch wound healing and spheroid invasion. Incubation with necrotic cells induced IL-8 secretion in CRT-MG cells in a dose-dependent manner. In human GBM tissues, IL-8 positive cells were mainly distributed in the perinecrotic region, as seen in immunohistochemistry and immunofluorescence analysis. Necrotic cells induced NF-κB and AP-1 activation and their binding to the IL-8 promoter, leading to enhanced IL-8 production and secretion in GBM cells. Our data demonstrate that when GBM cells are exposed to and stimulated by necrotic cells, the migration and invasion of GBM cells are enhanced and facilitated via NF-κB/AP-1 mediated IL-8 upregulation.

Maximov VV, Aqeilan RI
Genetic factors conferring metastasis in osteosarcoma.
Future Oncol. 2016; 12(13):1623-44 [PubMed] Related Publications
Osteosarcoma (OS) is a deadly bone malignancy affecting mostly children and adolescents. OS has outstandingly complex genetic alterations likely due to p53-independent genomic instability. Based on analysis of recent published research we claim existence of various genetic mechanisms of osteosarcomagenesis conferring great variability to different OS properties including metastatic potential. We also propose a model explaining how diverse genetic mechanisms occur and providing a framework for future research. P53-independent preexisting genomic instability, which precedes and frequently causes TP53 genetic alterations, is central in our model. In addition, our analyses reveal a possible cooperation between aberrantly activated HIF-1α and AP-1 genetic pathways in OS metastasis. We also review the involvement of noncoding RNA genes in OS metastasis.

Abdel-Latif MM, Inoue H, Kelleher D, Reynolds JV
Factors regulating nuclear factor-kappa B activation in esophageal cancer cells: Role of bile acids and acid.
J Cancer Res Ther. 2016 Jan-Mar; 12(1):364-73 [PubMed] Related Publications
AIMS: Gastroesophageal reflux disease is considered to be a major risk in the development of esophageal adenocarcinoma. Nuclear factor-kappa B (NF-κB) plays important roles in the regulation of several genes coding for cytokines, cell proliferation, and apoptosis. To understand the role of bile and acid in the causation of esophageal cancer, we have examined the effects of bile acids and acid on NF-κB activation in the esophageal epithelial cells OE33 and SKGT-4 qualitatively and quantitatively.
MATERIALS AND METHODS: Analysis of NF-κB activation in esophageal epithelial cells in response to bile acids and acid was performed by electrophoretic mobility shift assay, Western blotting and the translocation NF-κB was assessed by high content analysis (HCA). Cyclooxygenase-2 (COX-2) promoter activity was assessed by transient transfection assays.
RESULTS: This study demonstrated that bile acids and acid activated NF-κB in a dose- and time-dependent manner. HCA analysis was an invaluable method in quantifying NF-κB translocation at the single cell population level following bile or acid treatment. Furthermore, deoxycholic acid (DCA) and acid-induced COX-2 promoter activity, and a mutation in the NF-κB and activator protein-1 (AP-1) binding sites remarkably reduced the reporter gene activity induced by DCA or acid.
CONCLUSIONS: Our data demonstrate that bile and acid induce NF-κB activation in esophageal cells qualitatively and quantitatively. The induction of COX-2 promoter activity by DCA and acid was mediated via NF-κB and AP-1 transcription. The activation of NF-κB signaling pathway in esophageal cells may contribute to the development of esophageal cancer, and, therefore, modulating of NF-κB pathway may uncover new therapeutic strategies.

Blonska M
ATF3, a new player in DLBCL cell survival.
Blood. 2016; 127(14):1736-7 [PubMed] Related Publications
In this issue of Blood, Juilland and colleagues reveal the expression pattern and the role of different members of the activating transcription factor (ATF) family in survival of diffuse large B-cell lymphoma (DLBCL) cells.

Jung JS, Ahn YH, Moon BI, Kim HS
Exogenous C2 Ceramide Suppresses Matrix Metalloproteinase Gene Expression by Inhibiting ROS Production and MAPK Signaling Pathways in PMA-Stimulated Human Astroglioma Cells.
Int J Mol Sci. 2016; 17(4):477 [PubMed] Free Access to Full Article Related Publications
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases, which play a pivotal role in invasion, migration, and angiogenesis of glioma. Therefore, controlling MMPs is potentially an important therapeutic strategy for glioma. In the present study, we found that exogenous cell-permeable short-chain C2 ceramide inhibits phorbol myristate acetate (PMA)-induced MMP-1, -3, and -9 gene expressions in U87MG and U373MG human astroglioma cells. In addition, C2 ceramide inhibited the protein secretion and enzymatic activities of MMP-1, -3, and -9. The Matrigel invasion assay and wound healing assay showed that C2 ceramide suppresses the in vitro invasion and migration of glioma cells, which appears to be involved in strong inhibition of MMPs by C2 ceramide. Subsequent mechanistic studies revealed that C2 ceramide inhibits PMA-induced mitogen-activated protein kinase (MAPK) phosphorylation and nuclear factor (NF)-κB/activator protein (AP)-1 DNA binding activities. Furthermore, C2 ceramide significantly inhibited PMA-induced reactive oxygen species (ROS) production and NADPH oxidase 4 (NOX4) expression, and inhibition of ROS by diphenylene iodonium (DPI, NADPH oxidase inhibitor) mimicked the effects of C2 ceramide on MMP expression and NF-κB/AP-1 via inhibition of p38 MAPK. The results suggest C2 ceramide inhibits MMP expression and glioma invasion, at least partly, by modulating ROS-p38 MAPK signaling axis and other MAPK signaling pathways.

López-Knowles E, Gao Q, Cheang MC, et al.
Heterogeneity in global gene expression profiles between biopsy specimens taken peri-surgically from primary ER-positive breast carcinomas.
Breast Cancer Res. 2016; 18(1):39 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gene expression is widely used for the characterisation of breast cancers. Variability due to tissue heterogeneity or measurement error or systematic change due to peri-surgical procedures can affect measurements but is poorly documented. We studied the variability of global gene expression between core-cuts of primary ER+ breast cancers and the impact of delays to tissue stabilisation due to sample X-ray and of diagnostic core cutting.
METHODS: Twenty-six paired core-cuts were taken immediately after tumour excision and up to 90 minutes delay due to sample X-ray; 57 paired core-cuts were taken at diagnosis and 2 weeks later at surgical excision. Whole genome expression analysis was conducted on extracted RNA. Correlations and differences were assessed between the expression of individual genes, gene sets/signatures and intrinsic subtypes.
RESULTS: Twenty-three and 56 sample pairs, respectively, were suitable for analysis. The range of correlations for both sample sets were similar with the majority being >0.97 in both. Correlations between pairs for 18 commonly studied genes were also similar between the studies and mainly with Pearson correlation coefficients >0.6 except for a small number of genes, which had a narrow-dynamic range (e.g. MKI67, SNAI2). There was no systematic difference in intrinsic subtyping between the first and second sample of either set but there was c.15 % discordance between the subtype assignments between the pairs, mainly where the subtyping of individual samples was less certain. Increases in the expression of several stress/early-response genes (e.g. FOS, FOSB, JUN) were found in both studies and confirmed findings in earlier smaller studies. Increased expression of IL6, IGFBP2 and MYC (by 17 %, 14 % and 44 %, respectively) occurred between the samples taken 2 weeks apart and again confirmed findings from an earlier study.
CONCLUSIONS: There is generally good correlation in gene expression between pairs of core-cuts except where genes have a narrow dynamic range. Similar correlation coefficients to the average gene expression profiles of intrinsic subtype, particularly LumA and LumB, can lead to discordances between assigned subtypes. Substantial changes in expression of early-response genes occur within an hour after surgery and in IL6, IGFB2 and MYC as a result of diagnostic core-cut biopsy.
TRIAL REGISTRATION: Trial number CRUK/07/015 . Study start date September 2008.

Hong H, He C, Zhu S, et al.
CCR7 mediates the TNF-α-induced lymphatic metastasis of gallbladder cancer through the "ERK1/2 - AP-1" and "JNK - AP-1" pathways.
J Exp Clin Cancer Res. 2016; 35:51 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: CC-chemokine receptor 7 (CCR7), which plays an important role in cell directional movement, is highly expressed in various cancers and positively related to lymph node metastasis. The inflammatory cytokine tumour necrosis factor (TNF)-α promotes tumour progression and lymph node metastasis in gallbladder cancer (GBC). However, the expression of CCR7 in GBC is unclear, and its role in the TNF-α-induced lymphatic metastasis of GBC requires further research.
METHODS: The expression of CCR7 in clinical samples was detected by immunohistochemistry, and the relationship between CCR7 and clinicopathological factors or the TNF-α level of the bile was analyzed. After treatment with various concentrations of TNF-α, CCR7 expression in GBC cell lines was measured by Western blotting. The relative luciferase reporter assay, site-directed mutagenesis and chromatin immunoprecipitation were used to analyze the promoter activity and transcriptional regulation of CCR7. MAPKs inhibitors were used to explore the upstream signalling molecules of AP-1. We established a NOZ cell line stably expressing lentiviral CCR7 shRNA that effectively silenced the expression of CCR7, and to determine the role of TNF-α - CCR7 axis in the migration of GBC cells to the lymphatic system by transwell assays and animal experiments.
RESULTS: CCR7 was highly expressed in GBC samples. Higher expression of CCR7 was associated with American Joint Committee on Cancer (AJCC) staging and lymph node metastasis. Moreover, we found that CCR7 expression in GBC tissue was positively correlated with the levels of TNF-α in the bile, and that TNF-α enhanced the promoter activity and protein expression of CCR7 through the "ERK1/2-AP-1" and "JNK-AP-1" pathways. Finally, we revealed that TNF-α could promote GBC cell migration to lymphatic endothelial cells or lymph nodes through upregulation of CCR7 in vitro and in vivo.
CONCLUSIONS: Our study suggests that CCR7 is highly expressed in GBC, and mediates the TNF-α-induced lymphatic metastasis of GBC through the "TNF-α - ERK1/2 - AP-1 - CCR7" and "TNF-α - JNK - AP-1 - CCR7" pathways.

Hong H, Jiang L, Lin Y, et al.
TNF-alpha promotes lymphangiogenesis and lymphatic metastasis of gallbladder cancer through the ERK1/2/AP-1/VEGF-D pathway.
BMC Cancer. 2016; 16:240 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Tumor necrosis factor-alpha (TNF-α), a key player in cancer-related inflammation, was recently demonstrated to be involved in the lymphatic metastasis of gallbladder cancer (GBC). Vascular endothelial growth factor D (VEGF-D) is a key lymphangiogenic factor that is associated with lymphangiogenesis and lymph node metastasis in GBC. However, whether VEGF-D is involved in TNF-α-induced lymphatic metastasis of GBC remains undetermined.
METHODS: The expression of VEGF-D in patient specimens was detected by immunohistochemistry and the relationship between VEGF-D in the tissue and TNF-α in the bile of the matching patients was analyzed. The VEGF-D mRNA and protein levels after treatment with exogenous TNF-α in NOZ, GBC-SD and SGC-996 cell lines were measured by real-time PCR and ELISA. The promoter activity and transcriptional regulation of VEGF-D were analyzed with the relative luciferase reporter assay, mutant constructs, electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP) assay, RNA interference and Western blotting. Inhibitors of JNK, p38 MAPK and ERK1/2 were used to explore the upstream signaling effector of AP-1. We used lentiviral vector expressing a VEGF-D shRNA construct to knockdown VEGF-D gene in NOZ and GBC-SD cells. The role of the TNF-α-VEGF-D axis in the tube formation of human dermal lymphatic endothelial cells (HDLECs) was determined using a three-dimensional coculture system. The role of the TNF-α - VEGF-D axis in lymphangiogenesis and lymph node metastasis was studied via animal experiment.
RESULTS: TNF-α levels in the bile of GBC patients were positively correlated with VEGF-D expression in the clinical specimens. TNF-α can upregulate the protein expression and promoter activity of VEGF-D through the ERK1/2 - AP-1 pathway. Moreover, TNF-α can promote tube formation of HDLECs, lymphangiogenesis and lymph node metastasis of GBC by upregulation of VEGF-D in vitro and in vivo.
CONCLUSION: Taken together, our data suggest that TNF-α can promote lymphangiogenesis and lymphatic metastasis of GBC through the ERK1/2/AP-1/VEGF-D pathway.

Lu JC, Zhang YP
E2F, HSF2, and miR-26 in thyroid carcinoma: bioinformatic analysis of RNA-sequencing data.
Genet Mol Res. 2016; 15(1):15017576 [PubMed] Related Publications
In this study, we examined the molecular mechanism of thyroid carcinoma (THCA) using bioinformatics. RNA-sequencing data of THCA (N = 498) and normal thyroid tissue (N = 59) were downloaded from The Cancer Genome Atlas. Next, gene expression levels were calculated using the TCC package and differentially expressed genes (DEGs) were identified using the edgeR package. A co-expression network was constructed using the EBcoexpress package and visualized by Cytoscape, and functional and pathway enrichment of DEGs in the co-expression network was analyzed with DAVID and KOBAS 2.0. Moreover, modules in the co-expression network were identified and annotated using MCODE and BiNGO plugins. Small-molecule drugs were analyzed using the cMAP database, and miRNAs and transcription factors regulating DEGs were identified by WebGestalt. A total of 254 up-regulated and 59 down-regulated DEGs were identified between THCA samples and controls. DEGs enriched in biological process terms were related to cell adhesion, death, and growth and negatively correlated with various small-molecule drugs. The co-expression network of the DEGs consisted of hub genes (ITGA3, TIMP1, KRT19, and SERPINA1) and one module (JUN, FOSB, and EGR1). Furthermore, 5 miRNAs and 5 transcription factors were identified, including E2F, HSF2, and miR-26. miR-26 may participate in THCA by targeting CITED1 and PLA2R1; E2F may participate in THCA by regulating ITGA3, TIMP1, KRT19, EGR1, and JUN; HSF2 may be involved in THCA development by regulating SERPINA1 and FOSB; and small-molecule drugs may have anti-THCA effects. Our results provide novel directions for mechanistic studies and drug design of THCA.

Hardy K, Wu F, Tu W, et al.
Identification of chromatin accessibility domains in human breast cancer stem cells.
Nucleus. 2016; 7(1):50-67 [PubMed] Free Access to Full Article Related Publications
Epithelial-to-mesenchymal transition (EMT) is physiological in embryogenesis and wound healing but also associated with the formation of cancer stem cells (CSCs). Many EMT signaling pathways are implicated in CSC formation, but the precise underlying mechanisms of CSC formation remain elusive. We have previously demonstrated that PKC is critical for EMT induction and CSC formation in inducible breast EMT/CSC models. Here, we used formaldehyde-assisted isolation of regulatory elements-sequencing (FAIRE-seq) to investigate DNA accessibility changes after PKC activation and determine how they influence EMT and CSC formation. During EMT, DNA accessibility principally increased in regions distant from transcription start sites, low in CpG content, and enriched with chromatin enhancer marks. ChIP-sequencing revealed that a subset of these regions changed from poised to active enhancers upon stimulation, with some even more acteylated in CSCs. While regions with increased accessibility were enriched for FOX, AP-1, TEAD, and TFAP2 motifs, those containing FOX and AP-1 motif were associated with increased expression of CSC-associated genes, while those with TFAP2 were associated with genes with increased expression in non-CSCs. Silencing of 2 members of the FOX family, FOXN2 and FOXQ1, repressed CSCs and the mesenchymal phenotype and inhibited the CSC gene signature. These novel, PKC-induced DNA accessibility regions help explain how the epigenomic plasticity of cells undergoing EMT leads to CSC gene activation.

Caiazza F, Murray A, Madden SF, et al.
Preclinical evaluation of the AR inhibitor enzalutamide in triple-negative breast cancer cells.
Endocr Relat Cancer. 2016; 23(4):323-34 [PubMed] Related Publications
The androgen receptor (AR) is present in approximately 80% of invasive breast cancer patients and in up to 30% of patients with triple-negative breast cancer (TNBC). Therefore, our aim was to investigate the targeting of AR as a possible hormonal approach to the treatment of TNBC. Analysis of 2091 patients revealed an association between AR expression and poor overall survival, selectively in patients with the basal subtype of breast cancer, the vast majority of which are TNBC. IC50 values for the second-generation anti-androgen enzalutamide across 11 breast cancer cell lines varied from 4 µM to >50 µM. The activity of enzalutamide was similar in TN and non-TN cell lines but was dependent on the presence of AR. Enzalutamide reduced clonogenic potential and cell growth in a 3D matrix in AR-positive cells. In addition, enzalutamide also inhibited cell migration and invasion in an AR-dependent manner. Enzalutamide appeared to mediate these processes through down-regulation of the transcription factors AP-1 and SP-1. The first-generation anti-androgen flutamide similarly blocked cell growth, migration and invasion. AR-positive TNBC cells clustered separately from AR-negative cells based on an androgen-related gene expression signature, independently of TNBC subtype. We conclude that targeting of the AR with drugs such as enzalutamide may provide an alternative treatment strategy for patients with AR-positive TNBC.

Kamide D, Yamashita T, Araki K, et al.
Selective activator protein-1 inhibitor T-5224 prevents lymph node metastasis in an oral cancer model.
Cancer Sci. 2016; 107(5):666-73 [PubMed] Free Access to Full Article Related Publications
Activator protein-1 (AP-1) is a transcriptional factor that regulates the expression of various genes associated with tumor invasion and migration. The purpose of our study was to assess the therapeutic effects of a novel selective AP-1 inhibitor, T-5224, in preventing lymph node metastasis in head and neck squamous cell carcinoma (HNSCC) in an orthotopic mouse model. We assessed the effect of T-5224 on HNSCC cell invasion, migration, proliferation, and MMP activity by carrying out an in vitro study using an invasion assay, scratch assay, WST-8 assay, and gelatin zymography. We also observed morphological changes in HNSCC cells by time-lapse microscopy. Furthermore, cervical lymph node metastasis was assessed using an orthotopic tumor model of human oral squamous cell carcinoma cells (HSC-3-M3) injected in the tongue of a BALB/c nude mouse. T-5224 (150 mg/kg) or vehicle was given orally every day for 4 weeks. Animals were killed and assessed for lymph node metastasis by H&E staining of resected lymph nodes. T-5224 significantly inhibited the invasion, migration, and MMP activity of HNSCC cells in a dose-dependent manner; there was no significant influence on cell proliferation. The antimetastatic effect of T-5224 was also confirmed in our animal study. The rate of cervical lymph node metastasis in the model was 40.0% in the T-5224-treated group (n = 30) versus 74.1% in the vehicle-treated group (n = 27; P < 0.05). In conclusion, T-5224 inhibited the invasion and migration of HNSCC cells in vitro, and prevented lymph node metastasis in head and neck cancer in an animal model.

Zdanov S, Mandapathil M, Abu Eid R, et al.
Mutant KRAS Conversion of Conventional T Cells into Regulatory T Cells.
Cancer Immunol Res. 2016; 4(4):354-65 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Constitutive activation of the KRAS oncogene in human malignancies is associated with aggressive tumor growth and poor prognosis. Similar to other oncogenes, KRAS acts in a cell-intrinsic manner to affect tumor growth or survival. However, we describe here a different, cell-extrinsic mechanism through which mutant KRAS contributes to tumor development. Tumor cells carrying mutated KRAS induced highly suppressive T cells, and silencing KRAS reversed this effect. Overexpression of the mutant KRAS(G12V)gene in wild-type KRAS tumor cells led to regulatory T-cell (Treg) induction. We also demonstrate that mutant KRAS induces the secretion of IL10 and transforming growth factor-β1 (both required for Treg induction) by tumor cells through the activation of the MEK-ERK-AP1 pathway. Finally, we report that inhibition of KRAS reduces the infiltration of Tregs in KRAS-driven lung tumorigenesis even before tumor formation. This cell-extrinsic mechanism allows tumor cells harboring a mutant KRAS oncogene to escape immune recognition. Thus, an oncogene can promote tumor progression independent of its transforming activity by increasing the number and function of Tregs. This has a significant clinical potential, in which targeting KRAS and its downstream signaling pathways could be used as powerful immune modulators in cancer immunotherapy.

Zhao Y, Luo A, Li S, et al.
Inhibitor of Differentiation/DNA Binding 1 (ID1) Inhibits Etoposide-induced Apoptosis in a c-Jun/c-Fos-dependent Manner.
J Biol Chem. 2016; 291(13):6831-42 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
ID1 (inhibitor of differentiation/DNA binding 1) acts an important role in metastasis, tumorigenesis, and maintenance of cell viability. It has been shown that the up-regulation of ID1 is correlated with poor prognosis and the resistance to chemotherapy of human cancers. However, the underlying molecular mechanism remains elusive. Here, we determined for the first time that up-regulating ID1 upon etoposide activation was mediated through AP-1 binding sites within theID1promoter and confirmed that ID1 enhanced cell resistance to DNA damage-induced apoptosis in esophageal squamous cell carcinoma cells. Ablation of c-Jun/c-Fos or ID1 expression enhanced etoposide-mediated apoptosis through increasing activity of caspase 3 and PARP cleavage. Moreover, c-Jun/c-Fos and ID1 were positively correlated in human cancers. More importantly, simultaneous high expression of ID1 and c-Jun or c-Fos was correlated with poor survival in cancer patients. Collectively, we demonstrate the importance of c-Jun/c-Fos-ID1 signaling pathway in chemoresistance of esophageal cancer cells and provide considerable insight into understanding the underlying molecular mechanisms in esophageal squamous cell carcinoma cell biology.

Ye P, Xing H, Lou F, et al.
Histone deacetylase 2 regulates doxorubicin (Dox) sensitivity of colorectal cancer cells by targeting ABCB1 transcription.
Cancer Chemother Pharmacol. 2016; 77(3):613-21 [PubMed] Related Publications
PURPOSE: Histone deacetylases (HDACs) have been shown to regulate cell cycle, differentiation, and apoptosis of colorectal cancer (CRC) cells, while their roles in drug sensitivity remain unclear. The objectives of the present study were to investigate the effects of HDAC2 on drug resistance of CRC cells.
METHODS: We measured the expression of class I HDACs (HDAC1, 2, 3, 8) in CRC and human normal colonic epithelial cells. Additionally, we inhibited HDAC2 via siRNA or overexpressed it via pcDNA/HDAC2 transfection to evaluate its roles in doxorubicin (Dox) sensitivity.
RESULTS: Our present study showed HDAC2 was significantly increased in CRC cell lines as compared to human normal colonic epithelial cells. Silencing of HDAC2 can obviously enhance the sensitivity of HCT-116 and SW480 cells to dDox. Further, knockdown of HDAC2 can significantly (p < 0.05) downregulate the expression of ABCB1, while not ABCG2, ABCC1, ABCA1, or ABCC2. Inhibition of HDAC2 decreased ABCB1 promoter activities and the phosphorylation of c-fos and c-Jun, which can directly interact with the ABCB1 promoter and then promote its transcription. Overexpression of HDAC2 by pcDNA/HDAC2 transfection significantly increased the sensitivity of CRC cells to Dox and upregulated the levels of P-gp, p-c-fos, and p-c-Jun.
CONCLUSIONS: Our data revealed that HDAC2 can regulate Dox sensitivity of CRC cells by targeting ABCB1 transcription. It suggested that HDAC2 might be an important target for CRC therapy. Further, the combination of HDAC2-specific inhibitor and anticancer drugs including Dox might be an efficiency approach to elevate the treatment outcome of CRC.

Liu X, Li H, Rajurkar M, et al.
Tead and AP1 Coordinate Transcription and Motility.
Cell Rep. 2016; 14(5):1169-80 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
The Tead family transcription factors are the major intracellular mediators of the Hippo-Yap pathway. Despite the importance of Hippo signaling in tumorigenesis, Tead-dependent downstream oncogenic programs and target genes in cancer cells remain poorly understood. Here, we characterize Tead4-mediated transcriptional networks in a diverse range of cancer cells, including neuroblastoma, colorectal, lung, and endometrial carcinomas. By intersecting genome-wide chromatin occupancy analyses of Tead4, JunD, and Fra1/2, we find that Tead4 cooperates with AP1 transcription factors to coordinate target gene transcription. We find that Tead-AP1 interaction is JNK independent but engages the SRC1-3 co-activators to promote downstream transcription. Furthermore, we show that Tead-AP1 cooperation regulates the activity of the Dock-Rac/CDC42 module and drives the expression of a unique core set of target genes, thereby directing cell migration and invasion. Together, our data unveil a critical regulatory mechanism underlying Tead- and AP1-controlled transcriptional and functional outputs in cancer cells.

Huang Y, Zhou J, Huang Y, et al.
SARI, a novel target gene of glucocorticoid receptor, plays an important role in dexamethasone-mediated killing of B lymphoma cells.
Cancer Lett. 2016; 373(1):57-66 [PubMed] Related Publications
Dexamethasone (Dex) has been commonly used in lymphoma and leukemia treatment, but the detailed mechanisms are not fully understood. Suppressor of AP-1 regulated by interferon (SARI) has tumor-selective growth inhibitory effect. However, it's unclear whether SARI is involved in the Dex-mediated lymphoma growth suppression. In this study, we found that Dex-treated B lymphoma tissues had a higher level of SARI. Dex repressed the growth of B lymphoma cells and upregulated SARI expression by activating glucocorticoid receptor (GR) in vitro and in vivo. Silencing of SARI attenuated the Dex-mediated growth suppression of B lymphoma cells and inhibition of AP-1 activity. Reporter assays revealed that activation of GR enhanced the transcriptional activity of SARI promoter. EMSA and ChIP assays showed that GR directly bound to the ER9 element in SARI promoter region. These results for the first time demonstrated that SARI is a novel target gene of GR, and the upregulation of SARI plays an important role in Dex's killing effect on B lymphoma cells, suggesting that SARI may serve as a novel target and a potential indicator of Dex sensitivity in B lymphoma treatment.

Yu MH, Lee SO
Hydroquinone stimulates cell invasion through activator protein-1-dependent induction of MMP-9 in HepG2 human hepatoma cells.
Food Chem Toxicol. 2016; 89:120-5 [PubMed] Related Publications
Hydroquinone (HQ) is a well-known environmental carcinogen and exposure of humans to HQ can also occur through plant foods, cosmetics, and tobacco products. Although liver is a major organ metabolizing HQ and susceptible to its toxicity, role of HQ in metastatic progression of human hepatocellular carcinoma (HCC) remains unclear. In this study, we examined the effect of HQ on the invasion of HCC cells and its underlying molecular mechanisms. HQ strongly induced matrix metalloproteinase-9 (MMP-9) expression and secretion in HepG2 human hepatoma cells, which were well correlated with increased cell invasion. Mechanistic studies further demonstrated that HQ induced transcriptional activity of MMP-9 gene by activating activator protein-1 (AP-1), the well-known key element mediating MMP-9 gene expression, via MAP kinase (MAPK) signaling pathways. These results suggest that HQ may promote metastatic progression of HCC, although data on in vivo hydroquinone exposure and risk for HCC are contradictory.

Qiao Y, He H, Jonsson P, et al.
AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFα-mediated Triple-negative Breast Cancer Progression.
J Biol Chem. 2016; 291(10):5068-79 [PubMed] Article available free on PMC after 25/03/2017 Related Publications
Triple-negative breast cancer (TNBC) represents a highly aggressive form of breast cancer with limited treatment options. Proinflammatory cytokines such as TNFα can facilitate tumor progression and metastasis. However, the mechanistic aspects of inflammation mediated TNBC progression remain unclear. Using ChIP-seq, we demonstrate that the cistrome for the AP-1 transcription factor c-Jun is comprised of 13,800 binding regions in TNFα-stimulated TNBC cells. In addition, we show that c-Jun regulates nearly a third of the TNFα-regulated transcriptome. Interestingly, high expression level of the c-Jun-regulated pro-invasion gene program is associated with poor clinical outcome in TNBCs. We further demonstrate that c-Jun drives TNFα-mediated increase of malignant characteristics of TNBC cells by transcriptional regulation of Ninj1. As exemplified by the CXC chemokine genes clustered on chromosome 4, we demonstrate that NF-κB might be a pioneer factor required for the regulation of TNFα-inducible inflammatory genes, whereas c-Jun has little effect. Together, our results uncover AP-1 as an important determinant for inflammation-induced cancer progression, rather than inflammatory response.

Kim YR, Kang TW, To PK, et al.
HOXB13-mediated suppression of p21WAF1/CIP1 regulates JNK/c-Jun signaling in prostate cancer cells.
Oncol Rep. 2016; 35(4):2011-6 [PubMed] Related Publications
Many prostate cancer (PCa) patients die of recurrent disease due to the emergence of hormone-independent cancer cells of which the mechanism is not fully understood. Our previous studies demonstrated that most castration- resistant prostate cancers (CRPC) overexpress the HOXB13 transcription factor to confer positive growth signals. Since HOXB13 also suppresses p21WAF1/CIP1 (p21) expression, we studied the correlation between HOXB13 and p21 in selected samples of PCa. While there was no statistically significant correlation between expression of HOXB13 and p21, HOXB13-deficient tumors had three times higher odds for expressing p21 than HOXB13-positive tumors. Moreover, CRPC showed more negative correlation than hormone-dependent PCa (HDPC). Further in vitro proliferation assay demonstrated that androgen did not affect the growth-suppressive function of p21 in androgen-dependent PCa cells, suggesting that p21 seems to override the growth-promoting function of androgen and suppression of p21 expression by HOXB13 is an important step in PCa cell survival under no androgen influence. HOXB13 also inhibited AP-1 signals via suppressed expression of JNK/c-Jun. While HOXB13 suppressed p21 expression via regulation of JNK signals, alteration of p21 expression also affected c-Jun and AP-1 activity. Taken together, overexpression of HOXB13 in CRPC is an important step in avoiding the growth-suppressive effect of p21 in a harsh condition such as an androgen-deprived environment.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FOSB, Cancer Genetics Web: http://www.cancer-genetics.org/FOSB.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999