Gene Summary

Gene:IL2; interleukin 2
Aliases: IL-2, TCGF, lymphokine
Summary:The protein encoded by this gene is a secreted cytokine that is important for the proliferation of T and B lymphocytes. The receptor of this cytokine is a heterotrimeric protein complex whose gamma chain is also shared by interleukin 4 (IL4) and interleukin 7 (IL7). The expression of this gene in mature thymocytes is monoallelic, which represents an unusual regulatory mode for controlling the precise expression of a single gene. The targeted disruption of a similar gene in mice leads to ulcerative colitis-like disease, which suggests an essential role of this gene in the immune response to antigenic stimuli. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 01 September, 2019


What does this gene/protein do?
Show (36)
Pathways:What pathways are this gene/protein implicaed in?
Show (16)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IL2 (cancer-related)

Ishida E, Lee J, Campbell JS, et al.
Intratumoral delivery of an HPV vaccine elicits a broad anti-tumor immune response that translates into a potent anti-tumor effect in a preclinical murine HPV model.
Cancer Immunol Immunother. 2019; 68(8):1273-1286 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Therapeutic cancer vaccines have met limited clinical success. In the setting of cancer, the immune system is either tolerized and/or has a limited tumor-specific T cell repertoire. In this study, we explore whether intratumoral (IT) vaccination with an HPV vaccine can elicit quantitative and qualitative differences in immune response as compared to intramuscular (IM) vaccination to overcome immune resistance in established tumors. We report that IT administration of an HPV-16 E7 peptide vaccine formulated with polyinosinic-polycytidylic acid [poly(I:C)] generated an enhanced antitumor effect relative to IM delivery. The elicited anti-tumor effect with IT vaccination was consistent among the vaccinated groups and across various C57BL/6 substrains. IT vaccination resulted in an increased frequency of PD-1

Gong W, Hoffmann JM, Stock S, et al.
Comparison of IL-2 vs IL-7/IL-15 for the generation of NY-ESO-1-specific T cells.
Cancer Immunol Immunother. 2019; 68(7):1195-1209 [PubMed] Related Publications
The anti-tumor efficacy of TCR-engineered T cells in vivo depends largely on less-differentiated subsets such as T cells with naïve-like T cell (T

Yang Q, Li J, Hu Y, et al.
MiR-218-5p Suppresses the Killing Effect of Natural Killer Cell to Lung Adenocarcinoma by Targeting SHMT1.
Yonsei Med J. 2019; 60(6):500-508 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
PURPOSE: Lung adenocarcinoma (LA) is one of the major types of lung cancer. MicroRNAs (miRNAs) play an essential role in regulating responses of natural killer (NK) cells to cancer malignancy. However, the mechanism of miR-218-5p involved in the killing effect of NK cells to LA cells remains poorly understood.
MATERIALS AND METHODS: The expression of miR-218-5p was examined by quantitative real-time polymerase chain reaction (qRT-PCR). Serine hydroxymethyl transferase 1 (SHMT1) level was detected by qRT-PCR or western blots. Cytokines production of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were detected by ELISA. The killing effect of NK cells to LA cells was investigated using lactate dehydrogenase cytotoxicity assay kit. The interaction of miR-218-5p and SHMT1 was probed by luciferase activity assay. Xenograft model was established to investigate the killing effect of NK cells
RESULTS: miR-218-5p was enhanced and SHMT1 was inhibited in NK cells of LA patients, whereas stimulation of interleukin-2 (IL-2) reversed their abundances. Addition of miR-218-5p reduced IL-2-induced cytokines expression and cytotoxicity in NK-92 against LA cells. Moreover, SHMT1 was negatively regulated by miR-218-5p and attenuated miR-218-5p-mediated effect on cytotoxicity, IFN-γ and TNF-α secretion in IL-2-activated NK cells. In addition, miR-218-5p exhaustion inhibited tumor growth by promoting killing effect of NK cells.
CONCLUSION: miR-218-5p suppresses the killing effect of NK cells to LA cells by targeting SHMT1, providing a potential target for LA treatment by ameliorating NK cells function.

Rudnicka K, Backert S, Chmiela M
Genetic Polymorphisms in Inflammatory and Other Regulators in Gastric Cancer: Risks and Clinical Consequences.
Curr Top Microbiol Immunol. 2019; 421:53-76 [PubMed] Related Publications
Helicobacter pylori infection is associated with the development of a chronic inflammatory response, which may induce peptic ulcers, gastric cancer (GC), and mucosa-associated lymphoid tissue (MALT) lymphoma. Chronic H. pylori infection promotes the genetic instability of gastric epithelial cells and interferes with the DNA repair systems in host cells. Colonization of the stomach with H. pylori is an important cause of non-cardia GC and gastric MALT lymphoma. The reduction of GC development in patients who underwent anti-H. pylori eradication schemes has also been well described. Individual susceptibility to GC development depends on the host's genetic predisposition, H. pylori virulence factors, environmental conditions, and geographical determinants. Biological determinants are urgently sought to predict the clinical course of infection in individuals with confirmed H. pylori infection. Possible candidates for such biomarkers include genetic aberrations such as single-nucleotide polymorphisms (SNPs) found in various cytokines/growth factors (e.g., IL-1β, IL-2, IL-6, IL-8, IL-10, IL-13, IL-17A/B, IFN-γ, TNF, TGF-β) and their receptors (IL-RN, TGFR), innate immunity receptors (TLR2, TLR4, CD14, NOD1, NOD2), enzymes involved in signal transduction cascades (PLCE1, PKLR, PRKAA1) as well as glycoproteins (MUC1, PSCA), and DNA repair enzymes (ERCC2, XRCC1, XRCC3). Bacterial determinants related to GC development include infection with CagA-positive (particularly with a high number of EPIYA-C phosphorylation motifs) and VacA-positive isolates (in particular s1/m1 allele strains). The combined genotyping of bacterial and host determinants suggests that the accumulation of polymorphisms favoring host and bacterial features increases the risk for precancerous and cancerous lesions in patients.

Nakayama Y, Mimura K, Tamaki T, et al.
Phospho‑STAT1 expression as a potential biomarker for anti‑PD‑1/anti‑PD‑L1 immunotherapy for breast cancer.
Int J Oncol. 2019; 54(6):2030-2038 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
In the present study, we evaluated the mechanisms of programmed death ligand 1 (PD‑L1) expression in the breast cancer microenvironment, focusing on the role of interferon‑γ (IFN‑γ), and the clinical indications for anti‑programmed cell death 1 (PD‑1) /anti‑PD‑L1 immunotherapy. We evaluated PD‑L1 expression in 4 breast cancer cell lines in the presence of 3 types of inhibitors, as well as IFN‑γ. The expression of phosphorylated signal transducer and activator of transcription 1 (p‑STAT1), one of the IFN‑γ signaling pathway molecules, was analyzed using immunohistochemistry (IHC) in relation to PD‑L1 and human leukocyte antigen (HLA) class I expression on cancer cells and tumor‑infiltrating CD8‑positive T cells in 111 patients with stage II/III breast cancer. Using The Cancer Genome Atlas (TCGA) database, the correlation of the IFN‑γ signature with PD‑L1 expression was analyzed in breast invasive carcinoma tissues. As a result, the JAK/STAT pathway via IFN‑γ was mainly involved in PD‑L1 expression in the cell lines examined. IHC analysis revealed that the PD‑L1 and HLA class I expression levels were significantly upregulated in the p‑STAT1‑positive cases. TCGA analysis indicated that the PD‑L1 expression and IFN‑γ signature exhibited a positive correlation. On the whole, these findings suggest that PD‑L1 and HLA class I are co‑expressed in p‑STAT1‑positive breast cancer cells induced by IFN‑γ secreted from tumor infiltrating immune cells, and that p‑STAT1 expression may be a potential biomarker for patient selection for immunotherapy with anti‑PD‑1/anti‑PD‑L1 monoclonal antibodies.

Imaoka M, Tanese K, Masugi Y, et al.
Macrophage migration inhibitory factor-CD74 interaction regulates the expression of programmed cell death ligand 1 in melanoma cells.
Cancer Sci. 2019; 110(7):2273-2283 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
Expression of programmed cell death ligand 1 (PD-L1) on tumor cells contributes to cancer immune evasion by interacting with programmed cell death 1 on immune cells. γ-Interferon (IFN-γ) has been reported as a key extrinsic stimulator of PD-L1 expression, yet its mechanism of expression is poorly understood. This study analyzed the role of CD74 and its ligand macrophage migration inhibitory factor (MIF) on PD-L1 expression, by immunohistochemical analysis of melanoma tissue samples and in vitro analyses of melanoma cell lines treated with IFN-γ and inhibitors of the MIF-CD74 interaction. Immunohistochemical analyses of 97 melanoma tissue samples showed significant correlations between CD74 and the expression status of PD-L1 (P < .01). In vitro analysis of 2 melanoma cell lines, which are known to secrete MIF constitutively and express cell surface CD74 following IFN-γ stimulation, showed upregulation of PD-L1 levels by IFN-γ stimulation. This was suppressed by further treatment with the MIF-CD74 interaction inhibitor, 4-iodo-6-phenylpyrimidine. In the analysis of melanoma cell line WM1361A, which constitutively expresses PD-L1, CD74, and MIF in its non-treated state, treatment with 4-iodo-6-phenylpyrimidine and transfection of siRNAs targeting MIF and CD74 significantly suppressed the expression of PD-L1. Together, the results indicated that MIF-CD74 interaction directly regulated the expression of PD-L1 and helps tumor cells escape from antitumorigenic immune responses. In conclusion, the MIF-CD74 interaction could be a therapeutic target in the treatment of melanoma patients.

Wang Y, Yu W, Zhu J, et al.
Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma.
J Exp Clin Cancer Res. 2019; 38(1):168 [PubMed] Article available free on PMC after 01/08/2020 Related Publications
BACKGROUND: Chimeric antigen receptor (CAR)-engineered T cells have displayed outstanding performance in the treatment of patients with hematological malignancies. However, their efficacy against solid tumors has been largely limited.
METHODS: In this study, human osteosarcoma cell lines were prepared, flow cytometry using antibodies against CD166 was performed on different cell samples. CD166-specific T cells were obtained by viral gene transfer of corresponding DNA plasmids and selectively expanded using IL-2 and IL-15. The ability of CD166.BBζ CAR-T cells to kill CD166
RESULTS: CD166 was selectively expressed on four different human osteosarcoma cell lines, indicating its role as the novel target for CAR-T cell therapy. CD166.BBζ CAR-T cells killed osteosarcoma cell lines in vitro; the cytotoxicity correlated with the level of CD166 expression on the tumor cells. Intravenous injection of CD166.BBζ CAR-T cells into mice resulted in the regression of the tumor with no obvious toxicity.
CONCLUSIONS: Together, the data suggest that CD166.BBζ CAR-T cells may serve as a new therapeutic strategy in the future clinical practice for the treatment of osteosarcoma.

Hyun KH, Gil KC, Kim SG, et al.
Delphinidin Chloride and Its Hydrolytic Metabolite Gallic Acid Promote Differentiation of Regulatory T cells and Have an Anti-inflammatory Effect on the Allograft Model.
J Food Sci. 2019; 84(4):920-930 [PubMed] Related Publications
Regulatory T cells (Tregs) control the reactivity of other T cells to prevent excessive inflammatory responses. They also plays a role in preventing autoimmune diseases; but when they are overproduced, they decreased vital immunity, which can lead to invasion of external pathogens. Therefore, it is most important in preventing the development of immune diseases to maintain the homeostasis of these cells. Delphinidin chloride is an anthocyanidin and known to have anti-oxidant activities. However, its structure is very unstable and easily decomposed. One of these degradation products is gallic acid, which also has anti-oxidant effects. In this study, we examined the effect of these materials on Tregs in controlling immune response. It was found that these materials further promote differentiation into Tregs, and TGF-β and IL-2 related signals are involved in this process. Furthermore, it was verified that a variety of immunosuppressive proteins were secreted more, and the function of induced Tregs was also increased. Finally, in the allograft model, we could find a decrease in activated T cells when these materials were treated because they increased differentiation into Tregs. Therefore, these two materials are expected to become new candidates for the treatment of diseases caused by excessive activation of immune cells, such as autoimmune diseases. PRACTICAL APPLICATION: Delphinidin, a kind of anthocyanin rich in pigmented fruits, and its hydrolytic metabolite, gallic acid, are known to have antimicrobial and anti-oxidant properties. In this experiment, it was shown that delphinidin and gallic acid had an effect of increasing the differentiation of regulatory T cells, and the effect of suppressing the function of memory T cells was also observed. Due to these functions, delphinidin and gallic acid might have the potential to be used as immune suppressive agents in organ transplant and autoimmune disease patients or be a model for food development associated with the immune system.

Germini DE, Franco MIF, Fonseca FLA, et al.
Association of expression of inflammatory response genes and DNA repair genes in colorectal carcinoma.
Tumour Biol. 2019; 42(4):1010428319843042 [PubMed] Related Publications
Inflammation is an important etiological factor of colorectal carcinoma and may be related to colorectal carcinoma growth and proliferation. This study aimed to verify whether the presence of chronic inflammation represented by tumor necrosis factor-α, interleukin-2, interleukin-6, and interleukin-10 gene expression is related to hMLH1, hMSH2, hMSH6, and PMS2 gene expression and the corresponding protein levels of these genes from the DNA repair system. A total of 83 patients were operated on for curative or palliative colorectal carcinoma. Expression of the inflammatory response genes tumor necrosis factor-α, interleukin-2, interleukin-6, and interleukin-10 as well as expression of the hMLH1, hMSH2, hMSH6, and PMS2 genes of the DNA repair system (mismatch repair) and the expression levels of the corresponding mismatch repair proteins were measured in neoplastic tissue by reverse transcription polymerase chain reaction and immunohistochemistry, respectively. Associations were observed between hMSH6 mRNA expression and interleukin-2 mRNA expression (p = 0.026) as well as between hMLH1 and hMSH2 gene expression and tumor necrosis factor-α gene expression (p = 0.042). Higher tissue levels of interleukin-2 and tumor necrosis factor-α gene expression were associated with lower hMSH6, hMLH1, and hMSH2 gene expression.

Klein S, Mauch C, Wagener-Ryczek S, et al.
Immune-phenotyping of pleomorphic dermal sarcomas suggests this entity as a potential candidate for immunotherapy.
Cancer Immunol Immunother. 2019; 68(6):973-982 [PubMed] Related Publications
BACKGROUND: Pleomorphic dermal sarcomas (PDS) are sarcomas of the skin with local recurrences in up to 28% of cases, and distant metastases in up to 20%. Although recent evidence provides a strong rational to explore immunotherapeutics in solid tumors, nothing is known about the immune environment of PDS.
METHODS: In the current study, a comprehensive immune-phenotyping of 14 PDS using RNA and protein expression analyses, as well as quantitative assessment of immune cells using an image-analysis tool was performed.
RESULTS: Three out of 14 PDS revealed high levels of CD8-positive tumor-infiltrating T-lymphocytes (TILs), also showing elevated levels of immune-related cytokines such as IL1A, IL2, as well as markers that were very recently linked to enhanced response of immunotherapy in malignant melanoma, including CD27, and CD40L. Using a multivariate analysis, we found a number of differentially expressed genes in the CD8-high group including: CD74, LYZ and HLA-B, while the remaining cases revealed enhanced levels of immune-suppressive cytokines including CXCL14. The "CD8-high" PDS showed strong MHC-I expression and revealed infiltration by PD-L1-, PD-1- and LAG-3-expressing immune cells. Tumor-associated macrophages (TAMs) predominantly consisted of CD68 + , CD163 + , and CD204 + M2 macrophages showing an accentuation at the tumor invasion front.
CONCLUSIONS: Together, we provide first explorative evidence about the immune-environment of PDS tumors that may guide future decisions whether individuals presenting with advanced PDS could qualify for immunotherapeutic options.

Zhou KY, Wang YX, Zhang S, et al.
GOF/LOF knowledge inference with tensor decomposition in support of high order link discovery for gene, mutation and disease.
Math Biosci Eng. 2019; 16(3):1376-1391 [PubMed] Related Publications
For discovery of new usage of drugs, the function type of their target genes plays an important role, and the hypothesis of "Antagonist-GOF" and "Agonist-LOF" has laid a solid foundation for supporting drug repurposing. In this research, an active gene annotation corpus was used as training data to predict the gain-of-function or loss-of-function or unknown character of each human gene after variation events. Unlike the design of(entity, predicate, entity) triples in a traditional three way tensor, a four way and a five way tensor, GMFD-/GMAFD-tensor, were designed to represent higher order links among or among part of these entities: genes(G), mutations(M), functions(F), diseases( D) and annotation labels(A). A tensor decomposition algorithm, CP decomposition, was applied to the higher order tensor and to unveil the correlation among entities. Meanwhile, a state-of-the-art baseline tensor decomposition algorithm, RESCAL, was carried on the three way tensor as a comparing method. The result showed that CP decomposition on higher order tensor performed better than RESCAL on traditional three way tensor in recovering masked data and making predictions. In addition, The four way tensor was proved to be the best format for our issue. At the end, a case study reproducing two disease-gene-drug links(Myelodysplatic Syndromes-IL2RA-Aldesleukin, Lymphoma- IL2RA-Aldesleukin) presented the feasibility of our prediction model for drug repurposing.

Buhrmann C, Yazdi M, Popper B, et al.
Induction of the Epithelial-to-Mesenchymal Transition of Human Colorectal Cancer by Human TNF-β (Lymphotoxin) and its Reversal by Resveratrol.
Nutrients. 2019; 11(3) [PubMed] Article available free on PMC after 01/08/2020 Related Publications
OBJECTIVE: Tumor necrosis factor-beta (TNF-β), as an inflammatory mediator that has been shown to promote tumorigenesis, induces NF-κB. Natural multi-targeted agent resveratrol in turn shows anti-inflammatory and anti-cancer properties. Epithelial-to-mesenchymal transition (EMT) allows cancer cells to turn into a motile state with invasive capacities and is associated with metastasis and development of cancer stem cells (CSC). However, TNF-β-induced EMT and the anti-invasion mechanism of resveratrol on CRC are not yet completely understood.
METHODS: We investigated the underlying molecular mechanisms of resveratrol on TNF-β/TNF-βR-induced EMT and migration of CRC cells (HCT116, RKO, SW480) in monolayer or 3D alginate cultures.
RESULTS: TNF-β, similar to TNF-α, induced significant cell proliferation, morphological change, from an epithelial to a spindle-like mesenchymal shape with the formation of filopodia and lamellipodia associated with the expression of EMT parameters (elevated vimentin and slug, reduced E-cadherin), increased migration/invasion, and formation of CSC in all CRC cells. Interestingly, these effects were dramatically decreased in the presence of resveratrol or anti-TNF-βR with TNF-β co-treatment, inducing biochemical changes to the mesenchymal-epithelial transition (MET), with a planar cell surface and suppressed formation of CSC cells. This was associated with a significant increase in apoptosis. Furthermore, we found that resveratrol suppressed TNF-β-induced NF-κB and NF-κB-regulated gene biomarkers associated with growth, proliferation, and invasion. Finally, TNF-βR interacts directly with focal adhesion kinase (FAK) and NF-κB.
CONCLUSION: These results suggest that resveratrol down-regulates TNF-β/TNF-βR-induced EMT, at least in part via specific suppression of NF-κΒ and FAK in CRC cells.

Chat V, Ferguson R, Simpson D, et al.
Autoimmune genetic risk variants as germline biomarkers of response to melanoma immune-checkpoint inhibition.
Cancer Immunol Immunother. 2019; 68(6):897-905 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
Immune-checkpoint inhibition (ICI) treatments improve outcomes for metastatic melanoma; however, > 60% of treated patients do not respond to ICI. Current biomarkers do not reliably explain ICI resistance. Given the link between ICI and autoimmunity, we investigated if genetic susceptibility to autoimmunity modulates ICI efficacy. In 436 patients with metastatic melanoma receiving single line ICI or combination treatment, we tested 25 SNPs, associated with > 2 autoimmune diseases in recent genome-wide association studies, for modulation of ICI efficacy. We found that rs17388568-a risk variant for allergy, colitis and type 1 diabetes-was associated with increased anti-PD-1 response, with significance surpassing multiple testing adjustments (OR 0.26; 95% CI 0.12-0.53; p = 0.0002). This variant maps to a locus of established immune-related genes: IL2 and IL21. Our study provides first evidence that autoimmune genetic susceptibility may modulate ICI efficacy, suggesting that systematic testing of autoimmune risk loci could reveal personalized biomarkers of ICI response.

Olsen RS, Dimberg J, Geffers R, Wågsäter D
Possible Role and Therapeutic Target of PDGF-D Signalling in Colorectal Cancer.
Cancer Invest. 2019; 37(2):99-112 [PubMed] Related Publications
Platelet-derived growth factor D (PDGF-D) has been shown to mediate cellular processes of importance in cancer progression. This study aimed to investigate the expression and putative involvement of PDGF-D signaling in colorectal carcinogenesis. PDGF-D was expressed in vascular endothelial cells in tumor and normal tissues. PDGF-D stimulation of cells altered genes of importance in carcinogenic processes. In addition, PDGF-D increased the proliferation rate while imatinib inhibited these effects. PDGF-D and its PDGF receptor beta (PDGFR-β) are expressed in colorectal cancer and blockage of PDGF-D/PDGFR-β signaling using tyrosine kinase inhibitors, such as imatinib, might be important in inhibiting tumor-promoting actions.

Jiang H, Yang Z, Song Z, et al.
γδ T cells in hepatocellular carcinoma patients present cytotoxic activity but are reduced in potency due to IL-2 and IL-21 pathways.
Int Immunopharmacol. 2019; 70:167-173 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is the most common primary liver carcinoma and has one of the highest mortality rates of all cancers. The γδ T cells could infiltrate HCC and have demonstrated potent tumor-killing capacity. Here, we found that in peripheral blood, the vast majority of γδ T cells were Vδ2 T cells. In HCC patients, the frequency of Vδ2 T cells was significantly lower than in controls. γδ T cells that were harvested directly ex vivo possessed very limited capacity to eliminate Zol-loaded HCC cell lines, even at a high effector to target ratio. In vitro expansion with Zol could significantly increase the capacity of γδ T cells to eliminate HCC cell lines. But even with in vitro expansion, the γδ T cells from HCC patients presented significantly lower cytotoxic capacity than the γδ T cells from healthy individuals. The expression of IL-2 and IL-21 by γδ T cells was significantly lower in HCC patients than in control volunteers. Supplementing recombinant human IL-2 and IL-21 in the in vitro expansion culture increased the cytotoxic capacity of γδ T cells. In addition, the frequency of PD-1

Mamoori A, Wahab R, Vider J, et al.
The tumour suppressor effects and regulation of cancer stem cells by macrophage migration inhibitory factor targeted miR-451 in colon cancer.
Gene. 2019; 697:165-174 [PubMed] Related Publications
BACKGROUND: This study aimed to investigate the impact of miR-451 on the biological behaviours of colon cancer cells along with its targets interactions.
METHOD: The levels of miR-451 were tested in colon cancer cell lines (SW480 and SW48). Multiple functional and immunological assays were performed to analyse miR-451 induced growth changes in-vitro and downstream effects on target proteins.
RESULTS: Overexpression of miR-451 in colon cancer cells led to reduced cell proliferation, increased apoptosis and decrease accumulation of the cells at the G0/G1 phase of the cell cycle. In addition, a significant increase in the number of the cells was noted in the G2-M phase of cell cycle. Moreover, miR-451 reduced the expression of Oct-4, Sox-2 and Snail indicating its role in stem cell and epithelial-mesenchymal transition (EMT) regulation. An inverse correlation between miR-451 and macrophage migration inhibitory protein (MIF) protein expression occurred in colon cancer cells. Furthermore, restoration the level of miR-451 in colon cancer cells inhibits tumour spheres formation.
CONCLUSION: miR-451 has tumour suppressor effects in vitro, which can inhibit the cancer-related signalling pathways in colon cancer.

Jiang Z, Li H, Qiao J, et al.
Potential Analysis and Preparation of Chitosan Oligosaccharides as Oral Nutritional Supplements of Cancer Adjuvant Therapy.
Int J Mol Sci. 2019; 20(4) [PubMed] Article available free on PMC after 01/06/2020 Related Publications
Cancer is considered to have an adverse influence on health around the world. Chitosan, a linear polysaccharide that contains copolymers of β -1-4 linked d-glucosamine and

Lee MW, Kim DS, Kim HR, et al.
Inhibition of N-myc expression sensitizes human neuroblastoma IMR-32 cells expressing caspase-8 to TRAIL.
Cell Prolif. 2019; 52(3):e12577 [PubMed] Related Publications
OBJECTIVES: This study aims to explore the roles of N-myc and caspase-8 in TRAIL-resistant IMR-32 cells which exhibit MYCN oncogene amplification and lack caspase-8 expression.
MATERIALS AND METHODS: We established N-myc-downregulated IMR-32 cells using shRNA lentiviral particles targeting N-myc and examined the effect the N-myc inhibition on TRAIL susceptibility in human neuroblastoma IMR-32 cells expressing caspase-8.
RESULTS: Cisplatin treatment in IMR-32 cells increased the expression of death receptor 5 (DR5; TRAIL-R2), but not other receptors, via downregulation of NF-κB activity. However, the cisplatin-mediated increase in DR5 failed to induce cell death following TRAIL treatment. Furthermore, interferon (IFN)-γ pretreatment increased caspase-8 expression in IMR-32 cells, but cisplatin failed to trigger TRAIL cytotoxicity. We downregulated N-myc expression in IMR-32 cells using N-myc-targeting shRNA. These cells showed decreased growth rate and Bcl-2 expression accompanied by a mild collapse in the mitochondrial membrane potential as compared with those treated with scrambled shRNA. TRAIL treatment in N-myc-negative cells expressing caspase-8 following IFN-γ treatment significantly triggered apoptotic cell death. Concurrent treatment with cisplatin enhanced TRAIL-mediated cytotoxicity, which was abrogated by an additional pretreatment with DR5:Fc chimera protein.
CONCLUSIONS: N-myc and caspase-8 expressions are involved in TRAIL susceptibility in IMR-32 cells, and the combination of treatment with cisplatin and TRAIL may serve as a promising strategy for the development of therapeutics against neuroblastoma that is controlled by N-myc and caspase-8 expression.

Selinger E, Reiniš M
Epigenetic View on Interferon γ Signalling in Tumour Cells.
Folia Biol (Praha). 2018; 64(4):125-136 [PubMed] Related Publications
IFN-γ is a pleiotropic cytokine crucial for both innate and adaptive immunity, which also plays a critical role in immunological surveillance of cancer. Genetic defects or gene silencing in the IFN-γ signal transduction pathways as well as in the expression of IFN-γ-regulated genes represent frequent mechanisms by which tumour cells can escape from immune responses. Epigenetic control of the IFN-γ signalling pathway activation associated with epigenetic changes in the corresponding regulatory gene regions, such as chromatin remodelling, histone acetylation and methylation, and DNA demethylation is frequently dysregulated in tumour cells. Epigenetic silencing of the IFN-γ regulatory pathway components, as well as of the IFN-γ-regulated genes crucial for tumour cell recognition or induction of anti-tumour immune responses, has been documented in various cancer models. Expression of both IFN-γ signalling pathway components and selected IFN-γ-regulated genes can be influenced by epigenetic modifiers, namely DNA methyltransferase and histone deacetylase inhibitors. These agents thus can mimic, restore, or boost the immunomodulatory effects of IFN-γ in tumour cells, which can contribute to their anti-tumour therapeutic efficacies and justifies their potential use in combined epigenetic therapy with immunotherapeutic approaches.

Sakamoto D, Takagi T, Fujita M, et al.
Basic Gene Expression Characteristics of Glioma Stem Cells and Human Glioblastoma.
Anticancer Res. 2019; 39(2):597-607 [PubMed] Related Publications
BACKGROUND: Glioma stem cells (GSCs) play important roles in the tumorigenesis of glioblastoma multiforme (GBM). Using a novel cellular bioinformatics pipeline, we aimed to characterize the differences in gene-expression profiles among GSCs, U251 (glioma cell line), and a human GBM tissue sample.
MATERIALS AND METHODS: Total RNA was extracted from GSCs, U251 and GBM and microarray analysis was performed; the data were then applied to the bioinformatics pipeline consisting of a principal component analysis (PCA) with factor loadings, an intracellular pathway analysis, and an immunopathway analysis.
RESULTS: The PCA clearly distinguished the three groups. The factor loadings of the PCA suggested that v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), dipeptidyl-peptidase 4 (DPP4), and macrophage migration-inhibitory factor (MIF) contribute to the stemness of GSCs. The intracellular pathway and immunopathway analyses provided relevant information about the functions of representative genes in GSCs.
CONCLUSION: The newly-developed cellular bioinformatics pipeline was a useful method to clarify the similarities and differences among samples.

Heynckes S, Daka K, Franco P, et al.
Crosslink between Temozolomide and PD-L1 immune-checkpoint inhibition in glioblastoma multiforme.
BMC Cancer. 2019; 19(1):117 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
BACKGROUND: In recent years, PD-1/PD-L1 immune checkpoint inhibitors have improved cancer therapy in many tumor types, but no benefit of immune checkpoint therapy has been found in glioblastoma multiforme (GBM). Based on the results of our earlier work, which showed a reduction of PD-L1 expression in patients treated with temozolomide (TMZ), we aimed to investigate the link between TMZ therapy and the immune control point target PD-L1.
METHODS: RNA-sequencing data from de-novo and recurrent glioblastoma were analyzed by AutoPipe algorithm. Results were confirmed either in a cell model by two primary and one established GBM cell line and specimens of de-novo and recurrent GBM. PD-L1 and pathway activation of the JAK/STAT pathway was analyzed by quantitative real-time PCR and western blot.
RESULTS: We found a significant downregulation of the JAK/STAT pathway and immune response in recurrent tumors. The cell model showed an upregulation of PD-L1 after IFNγ treatment, while additional TMZ treatment lead to a reduction of PD-L1 expression and JAK/STAT pathway activation. These findings were confirmed in specimens of de-novo and recurrent glioblastoma.
CONCLUSIONS: Our results suggest that TMZ therapy leads to a down-regulation of PD-L1 in primary GBM cells. These results support the clinical findings where PD-L1 is significantly reduced in recurrent GBMs. If the target is diminished, it may also lead to impaired efficacy of PD-1/PD-L1 inhibitors such as nivolumab.

Wu K, Zhao H, Xiu Y, et al.
IL-21-mediated expansion of Vγ9Vδ2 T cells is limited by the Tim-3 pathway.
Int Immunopharmacol. 2019; 69:136-142 [PubMed] Related Publications
Vγ9Vδ2 T cells are the main γδ T subset in the peripheral blood and lymphoid organs. Previous studies have shown that Vγ9Vδ2 T cells could expand in the presence of phosphoantigens and IL-2 and exert antitumor functions. However, their potency was limited because sustained proliferation could not be achieved, possibly due to exhaustion caused by prolonged antigenic stimulation. In this study, we examined the proliferative response of Vγ9Vδ2 T cells to IL-21, a cytokine previously shown to promote NK cell and CD8 T cell cytotoxicity. We found that IL-21 could significantly improve the proliferation of phosphoantigen-stimulated Vγ9Vδ2 T cells in a dose-dependent manner. However, in acute myeloid leukemia (AML) patients, the efficacy of IL-21 was significantly reduced. Vγ9Vδ2 T cells from AML patients exhibited lower expression of IL-21R, and required higher levels of IL-21 for expansion. IL-21-treated Vγ9Vδ2 T cells from AML patients presented lower increase in STAT1 phosphorylation than Vγ9Vδ2 T cells from healthy volunteers. Interestingly, AML Vγ9Vδ2 T cells presented significantly higher Tim-3 expression than healthy Vγ9Vδ2 T cells. IL-21 treatment further induced Tim-3 upregulation. Blocking Tim-3 increased the proliferation and the STAT phosphorylation in Vγ9Vδ2 T cells in response to IL-21. Together, these results demonstrated that IL-21 could significantly expand the Vγ9Vδ2 T cells, but its efficacy was limited since it also increased the expression of checkpoint molecule Tim-3.

Yahata T, Mizoguchi M, Kimura A, et al.
Programmed cell death ligand 1 disruption by clustered regularly interspaced short palindromic repeats/Cas9-genome editing promotes antitumor immunity and suppresses ovarian cancer progression.
Cancer Sci. 2019; 110(4):1279-1292 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
Programmed cell death ligand 1 (PD-L1) on tumor cells suppresses anti-tumor immunity and has an unfavorable prognostic impact in ovarian cancer patients. We herein report the pathophysiological and therapeutic impacts of PD-L1 disruption in ovarian cancer. PD-L1 was genetically disrupted in the murine ovarian cancer cell line ID8 using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. PD-L1 knockout (KO) and control ovarian cancer cells were intraperitoneally inoculated into syngeneic mice, and survival and tumor dissemination were evaluated. Survival times were significantly longer in the PD-L1-KO ID8-inoculated groups than in their control groups, and its therapeutic benefit was enhanced in combination with the cisplatin treatment. Tumor weights and ascites volumes were significantly lower in the PD-L1-KO ID8 groups than in their control groups. Immunohistochemical and immunofluorescence analyses showed that intratumoral CD4

Qian L, Yu S, Yin C, et al.
Plasma IFN-γ-inducible chemokines CXCL9 and CXCL10 correlate with survival and chemotherapeutic efficacy in advanced pancreatic ductal adenocarcinoma.
Pancreatology. 2019; 19(2):340-345 [PubMed] Related Publications
OBJECTIVES: Recent studies have suggested that the CXCL9, 10, 11/CXCR3 axis is significant in immune regulation and therapeutic efficacy in human cancers; however, its role in pancreatic ductal adenocarcinoma (PDAC) remains unknown. This study serves to evaluate the prognostic prediction value of plasma IFN-γ-inducible chemokines, CXCL9 and CXCL10, in advanced PDAC.
METHODS: Two hundred patients with advanced PDAC receiving palliative chemotherapy were retrospectively recruited. The association between Plasma CXCL9/CXCL10 levels and survival time was first analyzed in a test group of 110 patients and then confirmed in a validation group of 90 patients.
RESULTS: High levels of CXCL9 and CXCL10 were significantly correlated with longer overall survival (OS) in advanced PDAC patients (314 vs. 136 days for CXCL9, P < 0.0001, and 374 vs. 163 days for CXCL10, P < 0.0001, respectively) in the test group, which was consistent with the results derived from the validation group. In addition, high levels of CXCL9 and CXCL10 were associated with longer time to progression (TTP) in patients receiving chemotherapy (100 vs. 60 days for CXCL9, P = 0.0021, and 104 vs. 67 days for CXCL10, P = 0.0057, respectively). Multivariate analyses confirmed that CXCL9 and CXCL10 were independent prognostic predictors for OS (hazard ratio [HR]: 0.452, P < 0.001 for CXCL9; and HR: 0.586, P = 0.007 for CXCL10, respectively) and TTP (HR: 0.656, P = 0.015 for CXCL9; and HR: 0.687, P = 0.040 for CXCL10, respectively).
CONCLUSIONS: Plasma CXCL9 and CXCL10 can be used to predict survival of advanced PDAC patients receiving chemotherapy, allowing clinicians to potentially improve treatment outcomes by identifying candidates for aggressive therapy.

Bagheri V, Abbaszadegan MR, Memar B, et al.
Induction of T cell-mediated immune response by dendritic cells pulsed with mRNA of sphere-forming cells isolated from patients with gastric cancer.
Life Sci. 2019; 219:136-143 [PubMed] Related Publications
Gastric cancer (GC) as the third most common cause of cancer-associated mortality worldwide is one of the cancers with very high heterogeneity. Cancer stem cells (CSCs) as a small subset of cancer cells in solid tumors with the self-renewal, differentiation and tumorigenic ability are responsible for tumor initiation, progression, recurrence, metastasis, and resistance to current treatments. Therefore, eradication of CSCs is very vital to cure cancer. Here, we first isolated and identified sphere-forming cells in tumor tissue from four GC patients and then analyzed T cell responses induced by monocyte-derived dendritic cells (DCs) loaded with total mRNA of sphere-forming cells in terms of interferon-gamma (IFN-γ) gene expression and specific cytotoxicity. Spheroid colonies were formed in serum-free media. Sphere-forming cells dissociated from tumorspheres heterogeneously expressed CD44, CD54, and epithelial cell adhesion molecule (EpCAM) markers and generated one tumor in nude mice. These results demonstrated that gastric CSCs were enriched in tumorspheres. Cytokine-matured DCs loaded with mRNA of sphere-forming cells were able to induce IFN-γ gene expression in T-lymphocytes after a 12-day co-culture. mRNA level of IFN-γ gene in these lymphocytes was more highly expressed compared to stimulated T-lymphocytes by DCs transfected with normal tissue (6.4-9.39 folds). Cytotoxic activity of primed T-lymphocytes with antigens of sphere-forming cells was significantly higher than normal tissue antigens and mock DCs (P ≤ 0.0001). Taken together, DCs loaded with mRNA of sphere-forming cells that elicit effectively specific T cell-mediated immune responses in vitro, may be considered as a promising therapeutic vaccination in GC patients in future.

Guo Z, Tang Y, Fu Y, Wang J
Decreased expression of STAT5A predicts poor prognosis in osteosarcoma.
Pathol Res Pract. 2019; 215(3):519-524 [PubMed] Related Publications
BACKGROUND: Signal transducer and activator of transcription 5 (STAT5) plays a key role in the malignancy of many tumors and has been identified as a therapeutic target. However, the role of STAT5A in osteosarcoma is still unclear.
METHODS: 98 osteosarcoma patients were obtain from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET). The relationship between STAT5A and clinical features was analyzed using the Wilcoxon signed-rank test and logistic regression. Kaplan-Meier method, univariate and multivariate Cox regression analyses were performed to assess the prognostic value in event-free survival (EFS) and overall survival (OS). Gene Set Enrichment Analysis (GSEA) was performed.
RESULTS: STAT5A low expression was not linked to age, gender, tumor site, surgical approach, tumor region, histologic response, and metastasis, but was correlated with progression (OR = 5.2, P = 0.012). Kaplan-Meier survival curve showed that patients with STAT5A low expression had worse EFS and OS than those with STAT5A high expression (P < 0.01). Furthermore, the multivariate analysis revealed STAT5A was an independent prognostic factor for poor OS (HR = 3.29, P = 0.0408)) and EFS (HR = 7.29, P = 0.0025). GSEA showed that the complemen, metabolism, apoptosis, interferon-gamma response, inflammatory response, Notch, Kras, reactive oxygen species, VEGF, IL-6/JAK/STAT3, IL-2/Stat5, B-cell receptor, and p53 pathways were significantly associated with the STAT5A gene.
CONCLUSIONS: STAT5A may be a novel prognostic factor for osteosarcoma and may act as a molecular target in the treatment of osteosarcoma.

De Silva P, Garaud S, Solinas C, et al.
FOXP1 negatively regulates tumor infiltrating lymphocyte migration in human breast cancer.
EBioMedicine. 2019; 39:226-238 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
BACKGROUND: FOXP1, a transcriptional regulator of lymphocyte development, is abnormally expressed in some human tumors. This study investigated FOXP1-mediated regulation of tumor infiltrating lymphocytes (TIL) in untreated primary breast cancer (BC).
METHODS: FOXP1 expression was analyzed in tissues from primary untreated breast tumors, BC cell lines and the METABRIC gene expression BC dataset. Cytokine and chemokine expression and lymphocyte migration in response to primary tumor supernatants (SN) was compared between FOXP1
FINDING: FOXP1 expression was higher in estrogen receptor positive compared to negative BC. FOXP1
INTERPRETATION: These data identify FOXP1 as an important negative regulator of immune responses in BC via its regulation of cytokine and chemokine expression. FUND: Belgian Fund for Scientific Research (FNRS 3.4513.12F) and Opération Télévie (7.4636.13F and 7.4609.15F), Fonds J.C. Heuson and Fonds Lambeau-Marteaux.

Nomura H, Umekita K, Hashikura Y, et al.
Diversity of cell phenotypes among MT-2 cell lines affects the growth of U937 cells and cytokine production.
Hum Cell. 2019; 32(2):185-192 [PubMed] Related Publications
We previously reported the diversity of structure and integration sites of human T-cell leukemia virus type 1 (HTLV-1) provirus among different MT-2 cell lines. This raised the question as to whether cell phenotypes also differed among MT-2 cell lines. The influence of two different MT-2 cell lines (MT-2J and MT-2B) on the growth of the promonocytic leukemia cell line, U937, was investigated. Protein levels and mRNA expression of cytokines were also investigated. In addition, Western blot analysis of HTLV-1 regulatory proteins, Tax and HBZ, was also performed. Culture supernatant from MT-2B, but not MT-2J, cells showed marked suppressive effects on U937 cell growth. MT-2B showed high tumor necrosis factor (TNF)-α, TNF-β, and interferon (IFN)-γ both in protein levels of the culture supernatant and mRNA levels of the cells. Analysis using recombinant cytokines indicated that the suppressive effects of MT-2B were due, at least in part, to high levels of TNF-β and its synergic effects with IFN-γ in the culture supernatant. Protein levels of HTLV-1 Tax and HBZ were higher in MT-2B than those in MT-2J cells. These molecules have been reported to affect the cytokine production of HTLV-1 infected cells; therefore, the difference in these molecules may have accounted for the differences in cytokine production between MT-2J and MT-2B cells. Furthermore, because MT-2 cells showed a large variation of integrated HTLV-1 proviruses as well as cell phenotypes, it is important to exercise caution in the assessment and interpretation of experimental data from MT-2 cells.

Kageyama Y, Miwa H, Arakawa R, et al.
Expression of CD25 fluctuates in the leukemia-initiating cell population of CD25-positive AML.
PLoS One. 2018; 13(12):e0209295 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
CD25 is expressed on leukemic cells in 10-20% cases of acute myeloid leukemia (AML), and its expression is associated with poor prognosis. We reevaluated the relationship between CD25 expression and the leukemia-initiating cell (LIC) properties of AML using a patient-derived xenograft model. We divided lineage marker-negative (Lin-) CD34+CD38- or Lin-CD34+ cells from CD25-positive AML into CD25-positive and -negative populations, and then transplanted each population into NOD.Cg-PrkdcscidIl2rgtm1Wjl/Sz mice. Leukemic engraftment was observed with both CD25-positive and -negative populations from three of nine CD25-positive AML patients. In two of those three patients, CD25-positive and -negative Lin-CD34+ cells engrafted at the primary transplantation led to leukemic engraftment at the secondary transplantation, in which engrafted cells contained both CD25-positive and -negative Lin-CD34+ AML cells. In an in vitro culture system, expression of CD25 was considerably induced in the CD25-negative population of Lin-CD34+ cells from two cases of CD25-positive AML. In one case, CD25-positive Lin-CD34+ cells gave rise to CD25-negative as well as -positive CD34+ cells. These observations suggest that there exist CD25-positive and -negative populations that can reconstitute CD25-positive AML in a patient-derived xenograft model, and that CD25 expression fluctuates in the LICs of AML.

Schultz K, Grieger Lindner C, Li Y, et al.
Gamma secretase dependent release of the CD44 cytoplasmic tail upregulates IFI16 in cd44-/- tumor cells, MEFs and macrophages.
PLoS One. 2018; 13(12):e0207358 [PubMed] Article available free on PMC after 01/06/2020 Related Publications
The adhesion molecule and co-receptor of receptor tyrosine kinases, CD44, is expressed in all cells of the immune system, but also in numerous non-immune cells. CD44 plays roles in the cellular response to different pathogens. The molecular actions of CD44 during these processes are by and large still unknown. The CD44 molecule undergoes a sequential proteolytic cleavage which leads to the release of a soluble intracellular domain (CD44-ICD). Previous reports had shown that the CD44-ICD is taken up into the nucleus where it enhances transcription of specific target genes. By RNA profiling we identified a CD44-dependent transcriptional increase of interferon-responsive genes, among them IFI16. IFI16 is important in the innate immune response. It senses and binds pathogenic DNA and, together with cGAS, activates the cGAS-cGAMP-STING pathway and induces the expression of genes relevant for the response, e.g. IFN-β. Our results show that the enhancement of IFI16 expression depended on CD44 cleavage. A CD44-negative tumor cell line, embryonic fibroblasts and bone marrow-derived macrophages from cd44-/- mice were reduced in their response to IFN-γ, to viral DNA fragments and to Listeria monocytogenes infection. We could rescue the deficiency of CD44 negative RPM-MC cells and cd44-/- MEFs by expressing only the soluble CD44-ICD in the absence of any other CD44 domain. Expression of the CD44-ICD carrying a mutation that prevented the uptake into the nucleus, could not rescue the absence of CD44. This molecular aspect of regulation by CD44 may explain part of the immune phenotypes of mice with cd44 gene disruption.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IL2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999