IRF6

Gene Summary

Gene:IRF6; interferon regulatory factor 6
Aliases: LPS, PIT, PPS, VWS, OFC6, PPS1, VWS1
Location:1q32.3-q41
Summary:This gene encodes a member of the interferon regulatory transcription factor (IRF) family. Family members share a highly-conserved N-terminal helix-turn-helix DNA-binding domain and a less conserved C-terminal protein-binding domain. The encoded protein may be a transcriptional activator. Mutations in this gene can cause van der Woude syndrome and popliteal pterygium syndrome. Mutations in this gene are also associated with non-syndromic orofacial cleft type 6. Alternate splicing results in multiple transcript variants.[provided by RefSeq, May 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:interferon regulatory factor 6
HPRD
Source:NCBIAccessed: 06 August, 2015

Ontology:

What does this gene/protein do?
Show (19)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Missense Mutation
  • Interferon Regulatory Factors
  • Infant
  • Cleft Lip
  • Cleft Palate
  • Protein Interaction Domains and Motifs
  • Tumor Markers
  • Gene Expression Regulation
  • Phenotype
  • Exons
  • Cysts
  • Multiple Abnormalities
  • Premature Birth
  • Urogenital Abnormalities
  • Genotype
  • Point Mutation
  • Tumor Suppressor Proteins
  • Pterygium
  • Chromosome 1
  • Family
  • Genetic Association Studies
  • Lip
  • Twins, Monozygotic
  • Case-Control Studies
  • Genetic Predisposition
  • Taiwan
  • Newborns
  • Pedigree
  • Squamous Cell Carcinoma
  • Binding Sites
  • Smoking
  • Transcription Factors
  • Mutation
  • Tobacco
  • Molecular Sequence Data
  • Twins
  • Risk Factors
  • DNA Mutational Analysis
  • Base Sequence
Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Latest Publications: IRF6 (cancer-related)

Didiasova M, Zakrzewicz D, Magdolen V, et al.
STIM1/ORAI1-mediated Ca2+ Influx Regulates Enolase-1 Exteriorization.
J Biol Chem. 2015; 290(19):11983-99 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
Tumor cells use broad spectrum proteolytic activity of plasmin to invade tissue and form metastatic foci. Cell surface-associated enolase-1 (ENO-1) enhances plasmin formation and thus participates in the regulation of pericellular proteolysis. Although increased levels of cell surface bound ENO-1 have been described in different types of cancer, the molecular mechanism responsible for ENO-1 exteriorization remains elusive. In the present study, increased ENO-1 protein levels were found in ductal breast carcinoma and on the cell surface of highly metastatic breast cancer cell line MDA-MB-231. Elevated cell surface-associated ENO-1 expression correlated with augmented MDA-MB-231 cell migratory and invasive properties. Exposure of MDA-MB-231 cells to LPS potentiated translocation of ENO-1 to the cell surface and its release into the extracellular space in the form of exosomes. These effects were independent of de novo protein synthesis and did not require the classical endoplasmic reticulum/Golgi pathway. LPS-triggered ENO-1 exteriorization was suppressed by pretreatment of MDA-MB-231 cells with the Ca(2+) chelator BAPTA or an inhibitor of endoplasmic reticulum Ca(2+)-ATPase pump, cyclopiazonic acid. In line with these observations, the stromal interaction molecule (STIM) 1 and the calcium release-activated calcium modulator (ORAI) 1-mediated store-operated Ca(2+) entry were found to regulate LPS-induced ENO-1 exteriorization. Pharmacological blockage or knockdown of STIM1 or ORAI1 reduced ENO-1-dependent migration of MDA-MB-231 cells. Collectively, our results demonstrate the pivotal role of store-operated Ca(2+) channel-mediated Ca(2+) influx in the regulation of ENO-1 exteriorization and thus in the modulation of cancer cell migratory and invasive properties.

Zhang JJ, Gu LY, Chen XY, et al.
Endoscopic diagnosis of invasion depth for early colorectal carcinomas: a prospective comparative study of narrow-band imaging, acetic acid, and crystal violet.
Medicine (Baltimore). 2015; 94(7):e528 [PubMed] Related Publications
Several studies have validated the effectiveness of narrow-band imaging (NBI) in estimating invasion depth of early colorectal cancers. However, comparative diagnostic accuracy between NBI and chromoendoscopy remains unclear. Other than crystal violet, use of acetic acid as a new staining method to diagnose deep submucosal invasive (SM-d) carcinomas has not been extensively evaluated. We aimed to assess the diagnostic accuracy and interobserver agreement of NBI, acetic acid enhancement, and crystal violet staining in predicting invasion depth of early colorectal cancers. A total of 112 early colorectal cancers were prospectively observed by NBI, acetic acid, and crystal violet staining in sequence by 1 expert colonoscopist. All endoscopic images of each technique were stored and reassessed. Finally, 294 images of 98 lesions were selected for evaluation by 3 less experienced endoscopists. The accuracy of NBI, acetic acid, and crystal violet for real-time diagnosis was 85.7%, 86.6%, and 92.9%, respectively. For image evaluation by novices, NBI achieved the highest accuracy of 80.6%, compared with that of 72.4% by acetic acid, and 75.8% by crystal violet. The kappa values of NBI, acetic acid, and crystal violet among the 3 trainees were 0.74 (95% CI 0.65-0.83), 0.68 (95% CI 0.59-0.77), and 0.70 (95% CI 0.61-0.79), respectively. For diagnosis of SM-d carcinoma, NBI was slightly inferior to crystal violet staining, when performed by the expert endoscopist. However, NBI yielded higher accuracy than crystal violet staining, in terms of less experienced endoscopists. Acetic acid enhancement with pit pattern analysis was capable of predicting SM-d carcinoma, comparable to the traditional crystal violet staining.

Turbica I, Gallais Y, Gueguen C, et al.
Ectosomes from neutrophil-like cells down-regulate nickel-induced dendritic cell maturation and promote Th2 polarization.
J Leukoc Biol. 2015; 97(4):737-49 [PubMed] Related Publications
DCs are the first immune cells to be exposed to allergens, including chemical sensitizers, such as nickel, a human TLR4 agonist that induces DC maturation. In ACD, DCs can interact with PMNs that are recruited and activated, leading, in particular, to ectosome release. The objective of this work was to characterize the effects of PMN-Ect on DC functions in an ACD context. We first developed a standardized protocol to produce, characterize, and quantify ectosomes by use of human PLB-985 cells, differentiated into mature PMN (PLB-Ect). We then studied the in vitro effects of these purified ectosomes on human moDC functions in response to NiSO4 and to LPS, another TLR4 agonist. Confocal fluorescence microscopy showed that PLB-Ect was internalized by moDCs and localized in the lysosomal compartment. We then showed that PLB-Ect down-regulated NiSO4-induced moDC maturation, as witnessed by decreased expression of CD40, CD80, CD83, CD86, PDL-1, and HLA-DR and by decreased levels of IL-1β, IL-6, TNF-α, and IL-12p40 mRNAs. These effects were related to p38MAPK and NF-κB down-regulation. However, no increase in pan-regulatory DC marker genes (GILZ, CATC, C1QA) was observed; rather, levels of effector DC markers (Mx1, NMES1) were increased. Finally, when these PLB-Ect + NiSO4-treated moDCs were cocultured with CD4(+) T cells, a Th2 cytokine profile seemed to be induced, as shown, in particular, by enhanced IL-13 production. Together, these results suggest that the PMN-Ect can modulate DC maturation in response to nickel, a common chemical sensitizer responsible for ADC.

Liu WT, Jing YY, Yu GF, et al.
Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma.
Cancer Lett. 2015; 358(2):136-43 [PubMed] Related Publications
Cancer stem cells (CSCs) or tumor-initiating cells (TICs), a small subset of tumor cells, are involved in tumor initiation, progression, recurrence and metastasis. In human hepatocellular carcinoma (HCC), TICs are enriched with cell surface markers and play a key role in chemotherapy resistance, tumor invasion and migration. Toll like receptor 4 (TLR4), acting as a receptor for lipopolysaccharide (LPS), has been reported to be responsible for carcinogenesis, invasion, metastasis and cancer progression. In our study, two HCC cell lines and a splenic vein metastasis of the nude mouse model were used to study the invasive ability of TLR4 positive HCC cells in vitro and in vivo. Stem-like features were also detected in TLR4 positive HCC cells. A total of 88 clinical samples from HCC patients were used to evaluate the association of TLR4 and stem-cell marker expression, and the relationship between TLR4 expression and clinicopathological characteristics was analyzed. The in vitro and in vivo experiments indicated that TLR4 positive HCC cells displayed significantly enhanced invasion and migration, and stem-like properties were also detected in TLR4 positive HCC cells. Clinically, TLR4 expression levels were found to be significantly higher in HCC tissues with microvascular invasion. Additionally, high expression of TLR4 in HCC tissues was strongly associated with both early recurrence and poor survivals in patients. Our results indicated that there was a relationship between TLR4 expression and CSC's features, TLR4 may act as a CSC marker, prompting tumor invasion and migration, which contributes to the poor prognosis of HCC.

Wang Y, Tu Q, Yan W, et al.
CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway.
Biochem Biophys Res Commun. 2015; 456(1):373-9 [PubMed] Related Publications
CXC195 showed strong protective effects in neuronal apoptosis by exerting its antioxidant activity. However, the anti-cancer effects of CXC195 is still with limited acquaintance. Here, we investigated the role of CXC195 in lipopolysaccharide (LPS)-induced human hepatocellular carcinoma (HCC) cells lines (HepG2) and the possible signaling pathways. CXC195 exhibited significant anti-proliferative effect and induced cell cycle arrest in LPS-induced HepG2 cells. In addition, CXC195 suppressed the release of pro-inflammatory mediators in LPS-induced HepG2 cells, including TNF-α, iNOS, IL-1β, IL-6, CC chemokine ligand (CCL)-2, CCL-22 and epidermal growth factor receptor (EGFR). Moreover, CXC195 inhibited the expressions and interactions of TLR4, MyD88 and TAK1, NF-κB translocation to nucleus and its DNA binding activity, phosphorylation of ERK1/2, p38 and JNK. Our results suggested that treatment with CXC195 could attenuate the TLR4-mediated proliferation and inflammatory response in LPS-induced HepG2 cells, thus might be beneficial for the treatment of HCC.

Wang J, Hu G, Lin Z, et al.
Characteristic and functional analysis of a newly established porcine small intestinal epithelial cell line.
PLoS One. 2014; 9(10):e110916 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
The mucosal surface of intestine is continuously exposed to both potential pathogens and beneficial commensal microorganisms. Recent findings suggest that intestinal epithelial cells, which once considered as a simple physical barrier, are a crucial cell lineage necessary for maintaining intestinal immune homeostasis. Therefore, establishing a stable and reliable intestinal epithelial cell line for future research on the mucosal immune system is necessary. In the present study, we established a porcine intestinal epithelial cell line (ZYM-SIEC02) by introducing the human telomerase reverse transcriptase (hTERT) gene into small intestinal epithelial cells derived from a neonatal, unsuckled piglet. Morphological analysis revealed a homogeneous cobblestone-like morphology of the epithelial cell sheets. Ultrastructural indicated the presence of microvilli, tight junctions, and a glandular configuration typical of the small intestine. Furthermore, ZYM-SIEC02 cells expressed epithelial cell-specific markers including cytokeratin 18, pan-cytokeratin, sucrase-isomaltase, E-cadherin and ZO-1. Immortalized ZYM-SIEC02 cells remained diploid and were not transformed. In addition, we also examined the host cell response to Salmonella and LPS and verified the enhanced expression of mRNAs encoding IL-8 and TNF-α by infection with Salmonella enterica serovars Typhimurium (S. Typhimurium). Results showed that IL-8 protein expression were upregulated following Salmonella invasion. TLR4, TLR6 and IL-6 mRNA expression were upregulated following stimulation with LPS, ZYM-SIEC02 cells were hyporeponsive to LPS with respect to IL-8 mRNA expression and secretion. TNFα mRNA levels were significantly decreased after LPS stimulation and TNF-α secretion were not detected challenged with S. Typhimurium neither nor LPS. Taken together, these findings demonstrate that ZYM-SIEC02 cells retained the morphological and functional characteristics typical of primary swine intestinal epithelial cells and thus provide a relevant in vitro model system for future studies on porcine small intestinal pathogen-host cell interactions.

Ye F, Tang C, Shi W, et al.
A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by Helicobacter pylori lipopolysaccharide.
Int J Cancer. 2015; 136(9):2120-31 [PubMed] Related Publications
Dysregulation of microRNAs (miRNAs) has been linked to virulence factors of Helicobacter pylori and shown to contribute to the progression of gastric cancer. However, the mechanisms of these processes remain poorly understood. The aim of this study was to investigate the mechanisms by which lipopolysaccharide (LPS), a virulence factor of H. pylori, regulates miR-375 and miR-106b expression in gastric epithelial cells. The results show that LPS from H. pylori 26695 downregulated the expression of miR-375 and miR-106b in gastric epithelial cells, and low levels of Dicer were also observed. Downregulation of miR-375 was found to increase expression of MDM2 with SP1 activation. Overexpression of MDM2 inhibited Dicer by repressing p63 to create a positive-feedback loop involving SP1/MDM2/p63/Dicer that leads to inhibition of miR-375 and miR-106b expression. In addition, we demonstrated that JAK1 and STAT3 were downstream target genes of miR-106b. H. pylori LPS also enhanced the tyrosine phosphorylation of JAK1, JAK2 and STAT3. Together, these results provide insight into the regulatory mechanisms of MDM2 on H. pylori LPS-induced specific miRNAs, and furthermore, suggest that gastric epithelial cells treated with H. pylori LPS may be susceptible to JAK/STAT3 signal pathway activation via inhibition of miR-375 and miR-106b.

Kelly C, Yadav AB, Lawlor C, et al.
Therapeutic aerosol bioengineering of siRNA for the treatment of inflammatory lung disease by TNFα gene silencing in macrophages.
Mol Pharm. 2014; 11(11):4270-9 [PubMed] Related Publications
The development of small interfering RNA (siRNA) to silence specific genes offers a new means of understanding and treating a range of respiratory diseases, including inflammatory lung disease. The alveolar macrophage (AM) is a key component of the inflammatory process in the lungs, associated with high levels of gene expression in inflammatory lung disease and therefore an attractive target for therapeutic siRNA. Delivery of siRNA to macrophages presents a significant delivery challenge, as fully differentiated alveolar macrophages are difficult to access and transfect. In this study we engineered particles suitable for inhalation that would efficiently transfect macrophages postinhalation. The process for encapsulation of siRNA in poly(lactic-co-glycolic acid) microparticles (MPs) was optimized using a double emulsion technique, and the resulting particles were characterized for size, shape, aerosol characteristics, encapsulation efficiency, and integrity of encapsulated siRNA. The cell uptake of the siRNA-loaded microparticles was determined by flow cytometry, confocal laser scanning microscopy (CLSM), and high-content analysis (HCA) with MPs capable of transfecting up to 55% of cells. Anti-TNFα siRNA-MPs were then prepared to study the functional activity of encapsulated siRNA in LPS-stimulated macrophages as a model of inflammation. The anti-TNFα siRNA-MPs were able to decrease TNFα expression by 45% over 48 h in the differentiated human monocytic cell line THP-1 compared to negligible knockdown using commercial transfection reagents and offered significant, sustained siRNA knockdown of TNFα in primary monocytes for up to 72 h.

Park YM, Cheong HS, Lee JK
Genome-wide detection of allelic gene expression in hepatocellular carcinoma cells using a human exome SNP chip.
Gene. 2014; 551(2):236-42 [PubMed] Related Publications
Allelic variations in gene expression influence many biological responses and cause phenotypic variations in humans. In this study, Illumina Human Exome BeadChips containing more than 240,000 single nucleotide polymorphisms (SNPs) were used to identify changes in allelic gene expression in hepatocellular carcinoma cells following lipopolysaccharide (LPS) stimulation. We found 17 monoallelically expressed genes, 58 allelic imbalanced genes, and 7 genes showing allele substitution. In addition, we also detected 33 differentially expressed genes following LPS treatment in vitro using these human exome SNP chips. However, alterations in allelic gene expression following LPS treatment were detected in only three genes (MLXIPL, TNC, and MX2), which were observed in one cell line sample only, indicating that changes in allelic gene expression following LPS stimulation of liver cells are rare events. Among a total of 75 genes showing allelic expression in hepatocellular carcinoma cells, either monoallelic or imbalanced, 43 genes (57.33%) had expression quantitative trait loci (eQTL) data, indicating that high-density exome SNP chips are useful and reliable for studying allelic gene expression. Furthermore, most genes showing allelic expression were regulated by cis-acting mechanisms and were also significantly associated with several human diseases. Overall, our study provides a better understanding of allele-specific gene expression in hepatocellular carcinoma cells with and without LPS stimulation and potential clues for the cause of human disease due to alterations in allelic gene expression.

Takazawa Y, Kiniwa Y, Ogawa E, et al.
Toll-like receptor 4 signaling promotes the migration of human melanoma cells.
Tohoku J Exp Med. 2014; 234(1):57-65 [PubMed] Related Publications
Immune cell Toll-like receptors (TLRs) recognize conserved microbial components, leading to immune and inflammatory responses. However, TLRs are also expressed in cancer cells, including melanoma cells, which express TLR2-4. TLR4 ligands have received attention as immunotherapies; therefore, we assessed the expression of TLR4 in human melanoma specimens (29 primary lesions and 28 metastatic lesions) representing different types of melanoma. A high percentage (≥ 90%) of melanoma lesions expressed TLR4, as judged by immunohistochemistry. Next, the role of TLR4 in cell proliferation and migration was assessed using the TLR4-positive (TLR4(+)) melanoma cell lines 501mel and 888mel, and TLR4-negative (TLR4(‒)) 928mel melanoma cells. Lipopolysaccharide (LPS), a TLR4 agonist, increased the proliferation of TLR4(+) melanoma cells but not of TLR4(‒) 928mel cells. The proliferation-inducing effect of LPS in 888mel cells was abolished by blockade of TLR4 signaling via treatment with short interfering RNA (siRNA) targeting TLR4 or myeloid differentiation primary response gene 88 (MyD88), a molecule downstream of TLR4. However, knockdown of TLR4 or MyD88 expression did not affect the LPS-induced proliferation of 501mel cells, suggesting that residual TLR4 signaling is sufficient to maintain cell proliferation. By contrast, LPS increased the migration of TLR4(+) melanoma cells, and this effect was substantially inhibited by TLR4 or MyD88 knockdown. Furthermore, TLR4 knockdown decreased cell migration even in the absence of LPS, suggesting the presence of an endogenous TLR4 ligand(s) in melanoma cells. TLR4 signaling may contribute to melanoma progression, and caution should be exercised when using TLR4 ligands as adjuvant therapy for cancer.

Lee E, Jeong KW, Jnawali HN, et al.
Cytotoxic activity of 3,6-dihydroxyflavone in human cervical cancer cells and its therapeutic effect on c-Jun N-terminal kinase inhibition.
Molecules. 2014; 19(9):13200-11 [PubMed] Related Publications
Previously we have shown that 3,6-dihydroxyflavone (3,6-DHF) is a potent agonist of the human peroxisome proliferator-activated receptor (hPPAR) with cytotoxic effects on human cervical cancer cells. To date, the mechanisms by which 3,6-DHF exerts its antitumor effects on cervical cells have not been clearly defined. Here, we demonstrated that 3,6-DHF exhibits a novel antitumor activity against HeLa cells with IC50 values of 25 μM and 9.8 μM after 24 h and 48 h, respectively. We also showed that the anticancer effects of 3,6-DHF are mediated via the toll-like receptor (TLR) 4/CD14, p38 mitogen-activated protein kinase (MAPK), Jun-N terminal kinase (JNK), extracellular-signaling regulated kinase (ERK), and cyclooxygenase (COX)-2 pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. We found that 3,6-DHF showed a similar IC50 (113 nM) value to that of the JNK inhibitor, SP600125 (IC50 = 118 nM) in a JNK1 kinase assay. Binding studies revealed that 3,6-DHF had a strong binding affinity to JNK1 (1.996 × 105 M-1) and that the 6-OH and the carbonyl oxygen of the C ring of 3,6-DHF participated in hydrogen bonding interactions with the carbonyl oxygen and the amide proton of Met111, respectively. Therefore, 3,6-DHF may be a candidate inhibitor of JNKs, with potent anticancer effects.

Diaz-Rodriguez E, Garcia-Rendueles AR, Ibáñez-Costa A, et al.
Somatotropinomas, but not nonfunctioning pituitary adenomas, maintain a functional apoptotic RET/Pit1/ARF/p53 pathway that is blocked by excess GDNF.
Endocrinology. 2014; 155(11):4329-40 [PubMed] Related Publications
Acromegaly is caused by somatotroph cell adenomas (somatotropinomas [ACROs]), which secrete GH. Human and rodent somatotroph cells express the RET receptor. In rodents, when normal somatotrophs are deprived of the RET ligand, GDNF (Glial Cell Derived Neurotrophic Factor), RET is processed intracellularly to induce overexpression of Pit1 [Transcription factor (gene : POUF1) essential for transcription of Pituitary hormones GH, PRL and TSHb], which in turn leads to p19Arf/p53-dependent apoptosis. Our purpose was to ascertain whether human ACROs maintain the RET/Pit1/p14ARF/p53/apoptosis pathway, relative to nonfunctioning pituitary adenomas (NFPAs). Apoptosis in the absence and presence of GDNF was studied in primary cultures of 8 ACROs and 3 NFPAs. Parallel protein extracts were analyzed for expression of RET, Pit1, p19Arf, p53, and phospho-Akt. When GDNF deprived, ACRO cells, but not NFPAs, presented marked level of apoptosis that was prevented in the presence of GDNF. Apoptosis was accompanied by RET processing, Pit1 accumulation, and p14ARF and p53 induction. GDNF prevented all these effects via activation of phospho-AKT. Overexpression of human Pit1 (hPit1) directly induced p19Arf/p53 and apoptosis in a pituitary cell line. Using in silico studies, 2 CCAAT/enhancer binding protein alpha (cEBPα) consensus-binding sites were found to be 100% conserved in mouse, rat, and hPit1 promoters. Deletion of 1 cEBPα site prevented the RET-induced increase in hPit1 promoter expression. TaqMan qRT-PCR (real time RT-PCR) for RET, Pit1, Arf, TP53, GDNF, steroidogenic factor 1, and GH was performed in RNA from whole ACRO and NFPA tumors. ACRO but not NFPA adenomas express RET and Pit1. GDNF expression in the tumors was positively correlated with RET and negatively correlated with p53. In conclusion, ACROs maintain an active RET/Pit1/p14Arf/p53/apoptosis pathway that is inhibited by GDNF. Disruption of GDNF's survival function might constitute a new therapeutic route in acromegaly.

Li G, Wang Z, Ye J, et al.
Uncontrolled inflammation induced by AEG-1 promotes gastric cancer and poor prognosis.
Cancer Res. 2014; 74(19):5541-52 [PubMed] Related Publications
Gastric cancer is one of the most common causes of cancer-related death worldwide. Helicobacter pylori infection plays an important role in the development and progression of gastric cancer. The expression of astrocyte-elevated gene-1 (AEG-1) is increased in gastric cancer tissues, thereby contributing to the inflammatory response. We investigated whether and how AEG-1 regulated proinflammatory signaling in gastric cancer cells. We used human gastric cancer cell lines and athymic nude mice to investigate the role of AEG-1 in the regulation of the TLR4/nuclear factor-κB (NF-κB) signaling pathway and cancer invasion and compared the expression of AEG-1 and related proteins in 93 patients with gastric cancer by immunohistochemistry. In human gastric cancer cells, both AEG-1 and TLR4 could be induced by lipopolysaccharide (LPS) stimulation. AEG-1 was upregulated via LPS-TLR4 signaling and in turn promoted nuclear translocation of the NF-κB p65 subunit. At the same time, AEG-1 overexpression decreased the levels of suppressor of cytokine signaling (SOCS) protein SOCS-1, a negative regulator of the TLR4 pathway. Furthermore, nude mice engrafted with AEG-1/TLR4-expressing cells demonstrated larger tumor volumes than control animals. In patients with gastric cancer, the expression of AEG-1 correlated with that of TLR4, SOCS-1, and NF-κB and was higher in tumors compared with noncancerous adjacent tissues. Overall survival in patients with gastric cancer with simultaneous expression of AEG-1 and TLR4 was poor. Our results demonstrate that AEG-1 can promote gastric cancer progression by a positive feedback TLR4/NF-κB signaling-related mechanism, thus providing new mechanistic explanation for the role of inflammation in cancer progression.

Li H, Li Y, Liu D, Liu J
LPS promotes epithelial-mesenchymal transition and activation of TLR4/JNK signaling.
Tumour Biol. 2014; 35(10):10429-35 [PubMed] Related Publications
The endotoxin level in the portal and peripheral veins of hepatocellular carcinoma (HCC) patients is higher and lipopolysaccharide (LPS), has been reported to inhibit tumor growth. However, in this study, we found that LPS-induced Toll-like receptor 4 (TLR4) signaling was involved in tumor invasion and the molecular mechanism was investigated. The HCC cells were used to study the invasion ability of LPS-induced HCC cells and the epithelial-mesenchymal transition (EMT) in vitro. The in vitro experiments demonstrated that LPS could significantly enhance the invasive potential and induce EMT in HCC cells with TLR4 dependent. Further studies showed that LPS could directly activate JNK/MAPK signaling through TLR4 in HCC cells. Interestingly, blocking JNK/MAPK signaling significantly inhibited EMT occurrence. Our results indicate that TLR4/JNK/MAPK signaling is required for LPS-induced EMT, tumor cell invasion and metastasis, which provide molecular insights for LPS-related pathogenesis and a basis for developing new strategies against metastasis in HCC.

Zhou Y, Zhang Y, Huang Y, et al.
Liposarcoma miRNA signatures identified from genome-wide miRNA expression profiling.
Future Oncol. 2014; 10(8):1373-86 [PubMed] Related Publications
AIMS: To identify the miRNA expression profile of liposarcoma (LPS) that could facilitate detection of LPS, and provide the basis for further investigation of molecular-targeted therapeutic drugs.
MATERIALS & METHODS: A real-time quantitative PCR assay was performed to analyze the expression of 1888 miRNAs from 25 LPS tumor tissue samples, 16 samples of adipose tissue adjacent to the tumors and 18 normal adipose tissue samples from patients with LPS.
RESULTS: Ten dysregulated miRNAs were identified that effectively distinguished LPS tissue from adipose tissue and benign lipoma tissue, and LPS tumor tissues from normal adipose tissues in LPS patients. Furthermore, the expression profiles of miRNAs could also classify the subtype of LPS.
CONCLUSION: The identified miRNAs appear to be novel biomarkers for the detection of LPS, and may contribute to an understanding of the mechanisms of LPS tumorigenesis and its development, and further elucidate the characteristics of LPS subtypes.

Chen S, Wang X, Wu X, et al.
IL-10 signalling blockade at the time of immunization inhibits Human papillomavirus 16 E7 transformed TC-1 tumour cells growth in mice.
Cell Immunol. 2014; 290(1):145-51 [PubMed] Related Publications
IL-10 signalling blockade by intra-peritoneal injection of anti-IL-10 receptor antibodies at the time of immunization enhances vaccine induced CD8+ T cell responses and promotes bacteria, parasitic and viral control. We now show that blockade of IL-10 signalling at the time of immunization enhances vaccine induced antigen specific CD8+ T cell responses to both dominant and subdominant CTL epitopes. Injection of anti-IL-10 receptor antibodies subcutaneous at the time of immunization also enhances CD8+ T cell responses. Furthermore, IL-10 signalling blockade at the time of a Human papillomavirus 16 E7 peptide/LPS immunization, prevents HPV16 E7 transformed TC-1 tumour growth in mice. Immunization in the presence of anti-IL-10R antibodies and Monophosphoryl lipid A, generates antigen specific CD8+ T cell responses similar to immunization with LPS. Our results suggest that immunization and IL-10 signalling blockade may provide a novel way for the development of therapeutic vaccines against cancer.

Kim DH, Sung B, Kang YJ, et al.
Anti-inflammatory effects of betaine on AOM/DSS‑induced colon tumorigenesis in ICR male mice.
Int J Oncol. 2014; 45(3):1250-6 [PubMed] Related Publications
Betaine is an important human nutrient obtained from various foods and studies in animals and humans have provided results suggesting their pathogenesis of various chronic diseases and points to a role in risk assessment and disease prevention. However, the molecular mechanisms of its activity remain poorly understood and warrant further investigation. This study was performed to investigate the anti-inflammation and tumor preventing capacity of betaine on colitis-associated cancer in mice. In in vivo experiments, we induced colon tumors in mice by azoxymethane (AOM) and dextran sulfate sodium (DSS) and evaluated the effects of betaine on tumor growth. Administration with betaine significantly decreased the incidence of tumor formation with downregulation of inflammation. Treatment with betaine inhibited ROS generation and GSSG concentration in colonic mucosa. Based on the qPCR data, administration of betaine inhibited inflammatory cytokines such TNF-α, IL-6, iNOS and COX-2. In in vitro experiments, LPS-induced NF-κB and inflammatory-related cytokines were inhibited by betaine treatment in RAW 264.7 murine macrophage cells. Our findings suggest that betaine is one of the candidates for the prevention of inflammation-associated colon carcinogenesis.

Turnquist C, Wang Y, Severson DT, et al.
STAT1-induced ASPP2 transcription identifies a link between neuroinflammation, cell polarity, and tumor suppression.
Proc Natl Acad Sci U S A. 2014; 111(27):9834-9 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
Inflammation and loss of cell polarity play pivotal roles in neurodegeneration and cancer. A central question in both diseases is how the loss of cell polarity is sensed by cell death machinery. Here, we identify apoptosis-stimulating protein of p53 with signature sequences of ankyrin repeat-, SH3 domain-, and proline-rich region-containing protein 2 (ASPP2), a haploinsufficient tumor suppressor, activator of p53, and regulator of cell polarity, as a transcriptional target of signal transducer and activator of transcription 1 (STAT1). LPS induces ASPP2 expression in murine macrophage and microglial cell lines, a human monocyte cell line, and primary human astrocytes in vitro. LPS and IFNs induce ASPP2 transcription through an NF-κB RELA/p65-independent but STAT1-dependent pathway. In an LPS-induced maternal inflammation mouse model, LPS induces nuclear ASPP2 in vivo at the blood-cerebral spinal fluid barrier (the brain's barrier to inflammation), and ASPP2 mediates LPS-induced apoptosis. Consistent with the role of ASPP2 as a gatekeeper to inflammation, ASPP2-deficient brains possess enhanced neuroinflammation. Elevated ASPP2 expression is also observed in mouse models and human neuroinflammatory disease tissue, where ASPP2 was detected in GFAP-expressing reactive astrocytes that coexpress STAT1. Because the ability of ASPP2 to maintain cellular polarity is vital to CNS development, our findings suggest that the identified STAT1/ASPP2 pathway may connect tumor suppression and cell polarity to neuroinflammation.

Sussman DA, Santaolalla R, Bejarano PA, et al.
In silico and Ex vivo approaches identify a role for toll-like receptor 4 in colorectal cancer.
J Exp Clin Cancer Res. 2014; 33:45 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
BACKGROUND: Inflammation increases the risk of colorectal cancer (CRC). We and others have described a role for TLR4, the receptor for LPS, in colon cancer. To explore the relationships between TLR4 expression and CRC, we combined the strength of transcriptome array data and immunohistochemical (IHC) staining.
METHODS: TLR4 signal intensity was scored in the stromal and epithelial compartments. Detection of differential expression between conditions of interest was performed using linear models, Cox proportional hazards models, and empirical Bayes methods.
RESULTS: A strong association between TLR4 expression and survival was noted, though a dichotomous relationship between survival and specific TLR4 transcripts was observed. Increasing TLR4 expression was seen with advancing tumor stage and was also over-expressed in some adenomas. IHC staining confirmed the positive relationship between TLR4 staining score in the CRC tumor stroma and epithelium with tumor stage, with up to 47% of colon cancer stroma positive for TLR4 staining. Increased TLR4 expression by IHC was also marginally associated with decreased survival. We now also describe that pericryptal myofibroblasts are responsible for a portion of the TLR4 stromal staining.
CONCLUSIONS: Increased TLR4 expression occurs early in colonic neoplasia. TLR4 is associated with the important cancer-related outcomes of survival and stage.

Nakajima T, Sato K, Hanaoka H, et al.
The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity.
BMC Cancer. 2014; 14:389 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
BACKGROUND: Photoimmunotherapy (PIT) is a highly cell-selective cancer therapy, which employs monoclonal antibodies conjugated to a potent photosensitizer (mAb-IR700). Once the conjugate has bound to the target cell, exposure to near infrared (NIR) light induces necrosis only in targeted cells with minimal damage to adjacent normal cells in vivo. Herein, we report on the effect of altering mAb-IR700 and light power and dose on effectiveness of PIT.
METHODS: For evaluating cytotoxicity, we employed ATP-dependent bioluminescence imaging using a luciferase-transfected MDA-MB-468luc cell line, which expresses EGFR and luciferase. In in vitro experiments, panitumumab-IR700 (Pan-IR700) concentration was varied in combination with varying NIR light doses administered by an LED at one of three power settings, 100 mA and 400 mA continuous wave and 1733 mA intermittent wave. For in vivo experiments, the MDA-MB-468luc orthotopic breast cancer was treated with varying doses of Pan-IR700 and light.
RESULTS: The in vitro cell study demonstrated that PIT induced cytotoxicity depended on light dose, when the conjugate concentration was kept constant. Increasing the dose of Pan-IR700 allowed lowering of the light dose to achieve equal effects thus indicating that for a given level of efficacy, the conjugate concentration multiplied by the light dose was a constant. A similar relationship between conjugate and light dose was observed in vivo.
CONCLUSIONS: The efficacy of PIT is defined by the product of the number of bound antibody conjugates and the dose of NIR light and can be achieve equally with continuous and pulse wave LED light using different power densities.

Wang Y, Weng Y, Shi Y, et al.
Expression and functional analysis of Toll-like receptor 4 in human cervical carcinoma.
J Membr Biol. 2014; 247(7):591-9 [PubMed] Related Publications
Toll-like receptors are expressed in human immune cells and many tumors, but the role of toll-like receptor 4 (TLR4) in the development of tumors is controversial. We demonstrated the expression, distribution, and functional activity of TLR4 in tissues of normal cervix, cervical intraepithelial neoplasia (CIN), invasion cervical cancers (ICC), and different human papillomavirus (HPV)-infected cervical cancer cells. The results showed that TLR4 expression was in accordance with the histopathological grade: higher in ICC than in CIN, and low in normal cervical tissues and malignant cervical stroma. Expression was higher in SiHa (HPV16+) than in HeLa (HPV18+) cells, but was not observed in C33A (HPV-) cells. After treatment with its agonist, lipopolysaccharide (LPS), the expression levels of TLR4 was increased and apoptosis resistance was induced in SiHa cells, but not in HeLa or C33A cells. Meanwhile, LPS treatment did not alter the cell cycle distribution in SiHa cells. The mechanism of apoptosis resistance may be related to HPV16 infection and not correlated with the cell cycle distribution. Targeting TLR4 in combination with traditional drug treatment may serve as a novel strategy for more effectively killing cancer cells.

Zhao K, Song X, Huang Y, et al.
Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling.
Eur J Pharmacol. 2014; 737:57-69 [PubMed] Related Publications
Wogonin has been shown to have anti-angiogenesis and anti-tumor effects. However, whether wogonin inhibits LPS-induced tumor angiogenesis is not well known. In this study, we investigated the effect of wogonin on inhibiting LPS-induced tumor angiogenesis and further probed the underlying mechanisms. ELISA results revealed that wogonin could suppress LPS-induced VEGF secretion from tumor cells. Transwell assay, tube formation assay, rat aortic ring assay and CAM model were used to evaluate the effect of wogonin on angiogenesis induced by MCF-7 cell (treated with LPS) in vitro and in vivo. The inhibitory effect of wogonin on angiogenesis in LPS-treated MCF-7 cells was then confirmed by the above in vitro and in vivo assays. The study of the molecular mechanism showed that wogonin could suppress PI3K/Akt signaling activation. Moreover, wogonin inhibited nuclear translocation of NF-κB and its binding to DNA. The result of real-time PCR and luciferase reporter assay suggested that VEGF expression was down-regulated by wogonin primarily at the transcriptional level. IGF-1 and p65 expression plasmid were used to activate PI3K/Akt and NF-κB pathways, and to observe the effect of wogonin on the simualtion of PI3K/Akt/NF-κB signaling. Taken together, the result suggested that wogonin was a potent inhibitor of tumor angiogenesis and provided a new insight into the mechanisms of wogonin against cancer.

Koido S, Homma S, Kan S, et al.
Induction of antigen-specific cytotoxic T lymphocytes by fusion cells generated from allogeneic plasmacytoid dendritic and tumor cells.
Int J Oncol. 2014; 45(1):470-8 [PubMed] Related Publications
Previous work has demonstrated that fusion cells generated from autologous monocyte-derived dendritic cells (MoDCs) and whole tumor cells induce efficient antigen-specific cytotoxic T lymphocytes. A major limitation to the use of this strategy is the availability of adequate amounts of autologous tumor cells. Moreover, MoDCs from cancer patients are often defective in their antigen-processing and presentation machinery. In this study, two types of allogeneic cells, a leukemia plasmacytoid dendritic cell (pDC) line (PMDC05) and pancreatic cancer cell lines (PANC-1 or MIA PaCa-2), were fused instead of autologous MoDCs and tumor cells. We created four types of pDC/tumor fusion cells by alternating fusion partners and treating with lipopolysaccharide (LPS): i) PMDC05 fused with PANC-1 (pDC/PANC-1), ii) PMDC05 fused with MIA PaCa-2 (pDC/MIA PaCa-2), iii) LPS-stimulated pDC/PANC-1 (LPS-pDC/PANC-1) and iv) LPS-stimulated pDC/MIA PaCa-2 (LPS-pDC/MIA PaCa-2) and examined their antitumor immune responses. The LPS-pDC/tumor cell fusions were the most active, as demonstrated by their: i) upregulated expression of HLA-DR and CD86 on a per-fusion-cell basis, ii) increased production of IL-12p70, iii) generation of a higher percentage of IFN-γ-producing CD4⁺ and CD8⁺ T cells and iv) augmented induction of MUC1-specific CD8⁺ T cells that lyse target tumor cells. This study provides the first evidence for an in vitro induction of antigen-specific cytotoxic T lymphocytes by LPS-stimulated fusion cells generated from leukemia plasmacytoid DCs and tumor cells and suggests that this strategy has potential applicability to the field of adoptive immunotherapy.

Duzgun A, Bedir A, Ozdemir T, et al.
Effect of dexamethasone on unfolded protein response genes (MTJ1, Grp78, Grp94, CHOP, HMOX-1) in HEp2 cell line.
Indian J Biochem Biophys. 2013; 50(6):505-10 [PubMed] Related Publications
The endoplasmic reticulum (ER) is related to the various signal routes that are activated in unfolded protein response (UPR). The Grp78, Grp94, CHOP, MTJ1 and HMOX1 genes expressions demonstrate UPR activity. In this study, we investigated the UPR gene expressions in larynx epidermoid carcinoma (HEp2) to which dexamethasone (dex) was applied. HEp2 cells were administered for 48 h with different combinations using 0.1 microM and 1 microM dex, 1 mM phenyl butyric acid (PBA) and 100 ng/ml lipopolysaccharide (LPS). The Grp78, Grp94, CHOP, MTJ1 and HMOX1 genes expression was determined using quantitative RT-PCR. The Grp78, MTJ1 and HMOX1 gene expression increased with the administration of 1 microM dex. CHOP expression, on the other hand, decreased with 0.1 microM dex. When dex was combined with LPS, nearly all gene expressions decreased. The increase in Grp78, Grp94, HMOX1 and MTJ1 gene expression was greater in groups in which dex was administered in combination with PBA than in groups in which dex was administered alone. Dex in low dose (0.1 microM) caused a decrease in CHOP expression in HEp2 cells and an increase in Grp78 expression, in particular. The changes in UPR genes expressions may lead to the extended survival of the cells.

Ren G, Hu J, Wang R, et al.
Rapamycin inhibits Toll-like receptor 4-induced pro-oncogenic function in head and neck squamous cell carcinoma.
Oncol Rep. 2014; 31(6):2804-10 [PubMed] Related Publications
Toll-like receptor 4 (TLR4) is expressed in head and neck squamous cell carcinoma (HNSCC) cells and is associated with HNSCC cancer progression. Rapamycin has been proven to be efficient for the treatment of HNSCC in vivo, yet the mechanism is not understood and rapamycin demonstrates little effect in vitro. In the present study, the HNSCC cell lines CAL27 and SCC4 were pre-treated with rapamycin then stimulated with a TLR4 ligand lipopolysaccharide (LPS). Cell proliferation, migration, invasion, resistance to TRAIL-induced apoptosis, cytokine production, NF-κB and p65 activation were determined. The results indicated that LPS significantly stimulated HNSCC cell proliferation, cytokine production, migration, invasion and resistance to apoptosis induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). Pretreatment with rapamycin significantly attenuated LPS-induced pro-oncogenic effects by inhibiting the activation of NF-κB by LPS. siRNA knockdown of TLR4 in HNSCC cells demonstrated that rapamycin attenuated LPS-induced pro-oncogenic effects via TLR4. Hence, this study suggests rapamycin may be efficient for the treatment of HNSCC by attenuating TLR4-induced pro-oncogenic effects.

Li H, Chan L, Bartuzi P, et al.
Copper metabolism domain-containing 1 represses genes that promote inflammation and protects mice from colitis and colitis-associated cancer.
Gastroenterology. 2014; 147(1):184-195.e3 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
BACKGROUND & AIMS: Activation of the transcription factor nuclear factor-κB (NF-κB) has been associated with the development of inflammatory bowel disease (IBD). Copper metabolism MURR1 domain containing 1 (COMMD1), a regulator of various transport pathways, has been shown to limit NF-κB activation. We investigated the roles of COMMD1 in the pathogenesis of colitis in mice and IBD in human beings.
METHODS: We created mice with a specific disruption of Commd1 in myeloid cells (Mye-knockout [K/O] mice); we analyzed immune cell populations and functions and expression of genes regulated by NF-κB. Sepsis was induced in Mye-K/O and wild-type mice by cecal ligation and puncture or intraperitoneal injection of lipopolysaccharide (LPS), colitis was induced by administration of dextran sodium sulfate, and colitis-associated cancer was induced by administration of dextran sodium sulfate and azoxymethane. We measured levels of COMMD1 messenger RNA in colon biopsy specimens from 29 patients with IBD and 16 patients without (controls), and validated findings in an independent cohort (17 patients with IBD and 22 controls). We searched for polymorphisms in or near COMMD1 that were associated with IBD using data from the International IBD Genetics Consortium and performed quantitative trait locus analysis.
RESULTS: In comparing gene expression patterns between myeloid cells from Mye-K/O and wild-type mice, we found that COMMD1 represses expression of genes induced by LPS. Mye-K/O mice had more intense inflammatory responses to LPS and developed more severe sepsis and colitis, with greater mortality. More Mye-K/O mice with colitis developed colon dysplasia and tumors than wild-type mice. We observed a reduced expression of COMMD1 in colon biopsy specimens and circulating leukocytes from patients with IBD. We associated single-nucleotide variants near COMMD1 with reduced expression of the gene and linked them with increased risk for ulcerative colitis.
CONCLUSIONS: Expression of COMMD1 by myeloid cells has anti-inflammatory effects. Reduced expression or function of COMMD1 could be involved in the pathogenesis of IBD.

Wu Y, Hu X, Song L, et al.
The inhibitory effect of a novel polypeptide fraction from Arca subcrenata on cancer-related inflammation in human cervical cancer HeLa cells.
ScientificWorldJournal. 2014; 2014:768938 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
Inflammation is known to be closely associated with the development of cancer. The study was launched in human cervical cancer HeLa cells to investigate the antitumor and anti-inflammatory effects of P2, a marine polypeptide fraction from an important fishery resource Arca subcrenata. The basic research showed that P2 could suppress the production of nitric oxide in LPS-induced RAW264.7 macrophage cells as well as the secretion of inflammatory cytokines IL-6 and TNF- α in human cervical cancer HeLa cells. For the molecular mechanisms, P2 was shown to downregulate the gene expression of proinflammatory cytokines IL-6 and IL-8 and to inhibit the COX-2 and iNOS-related pathways in HeLa cells. In consequence, P2 might inhibit tumor development by blocking the interaction between tumor microenvironment and proinflammatory mediators. All findings indicate that P2 possesses the potential to be developed as a novel agent for cancer therapy.

Sic H, Kraus H, Madl J, et al.
Sphingosine-1-phosphate receptors control B-cell migration through signaling components associated with primary immunodeficiencies, chronic lymphocytic leukemia, and multiple sclerosis.
J Allergy Clin Immunol. 2014; 134(2):420-8 [PubMed] Related Publications
BACKGROUND: Five different G protein-coupled sphingosine-1-phosphate (S1P) receptors (S1P1-S1P5) regulate a variety of physiologic and pathophysiologic processes, including lymphocyte circulation, multiple sclerosis (MS), and cancer. Although B-lymphocyte circulation plays an important role in these processes and is essential for normal immune responses, little is known about S1P receptors in human B cells.
OBJECTIVE: To explore their function and signaling, we studied B-cell lines and primary B cells from control subjects, patients with leukemia, patients with S1P receptor inhibitor-treated MS, and patients with primary immunodeficiencies.
METHODS: S1P receptor expression was analyzed by using multicolor immunofluorescence microscopy and quantitative PCR. Transwell assays were used to study cell migration. S1P receptor internalization was visualized by means of time-lapse imaging with fluorescent S1P receptor fusion proteins expressed by using lentiviral gene transfer. B-lymphocyte subsets were characterized by means of flow cytometry and immunofluorescence microscopy.
RESULTS: Showing that different B-cell populations express different combinations of S1P receptors, we found that S1P1 promotes migration, whereas S1P4 modulates and S1P2 inhibits S1P1 signals. Expression of CD69 in activated B lymphocytes and B cells from patients with chronic lymphocytic leukemia inhibited S1P-induced migration. Studying B-cell lines, normal B lymphocytes, and B cells from patients with primary immunodeficiencies, we identified Bruton tyrosine kinase, β-arrestin 2, LPS-responsive beige-like anchor protein, dedicator of cytokinesis 8, and Wiskott-Aldrich syndrome protein as critical signaling components downstream of S1P1.
CONCLUSION: Thus S1P receptor signaling regulates human B-cell circulation and might be a factor contributing to the pathology of MS, chronic lymphocytic leukemia, and primary immunodeficiencies.

Li L, Yu C, Ren J, et al.
Synergistic effects of eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes on lung cancer in vitro and in vivo.
J Cancer Res Clin Oncol. 2014; 140(6):895-907 [PubMed] Related Publications
PURPOSE: LKB1 and FUS1 are two kinds of new tumor suppressor genes as well as early-stage genes in lung cancer. Recent studies showed that LKB1 and FUS1 play important roles in lung carcinogenesis process. We hypothesized that combined gene therapy with LKB1 and FUS1 could inhibit lung cancer growth and development synergistically.
METHODS: In this study, two kinds of tumor suppressor genes, LKB1 and FUS1, were constructed in an eukaryotic coexpression plasmid pVITRO(2), and then, we evaluated the synergistic effects of the two genes on anticancer activity and explored the relevant molecular mechanisms.
RESULTS: We defined coexpression of LKB1 and FUS1 could synergistically inhibited lung cancer cells growth,invasion and migration and induced the cell apoptosis and arrested cell cycle in vitro. Intratumoral administration of liposomes: pVITRO(2)–LKB1–FUS1 complex (LPs–pVITRO(2)–LKB1–FUS1) into subcutaneous lung tumor xenograft resulted in more significant inhibition of tumor growth. Furthermore, intravenous injection of LPs–pVITRO(2)–LKB1–FUS1 into mice bearing experimental A549 lung metastasis demonstrated synergistic decrease in the number of metastatic tumor nodules. Finally, combined treatment with LKB1 and FUS1 prolonged overall survival in lung tumor-bearing mice. Further study showed tha tthe synergistic anti-lung cancer effects of coexpression ofLKB1 and FUS1 might be related to upregulation of p-p53, p-AMPK and downregulation of p-mTOR, p-FAK, MMPs, NEDD9, VEGF/R and PDGF/R.
CONCLUSIONS: Our results suggest that combined therapy with eukaryotic coexpression plasmid carrying LKB1 and FUS1 genes may be a novel and efficient treatment strategy for human lung cancer.

Jiang M, Xu X, Bi Y, et al.
Systemic inflammation promotes lung metastasis via E-selectin upregulation in mouse breast cancer model.
Cancer Biol Ther. 2014; 15(6):789-96 [PubMed] Article available free on PMC after 08/05/2016 Related Publications
Systemic inflammation might modulate the microenvironment in the lungs and promotes metastasis. E-selectin, an inflammation inducible endothelial cell adhesion molecule, has been reported to play an important role in homing metastatic cancer cells. To study the effects of E-selectin expression induced by systemic inflammation on breast cancer metastasis, we first treated BALB/c mice with lipopolysaccharide (LPS) to induce systemic inflammation. Pulmonary tissues were analyzed by wet/dry ratio, hematoxylin and eosin (H&E) staining and immunohistochemistry. Then 4T1 cells were injected via tail vein. Lung surface metastasis was counted and detected by histological analysis. LPS-induced E-selectin expression and tumor cells adhesion were assessed by western blotting and immunofluorescence. The circulating levels of proinflammatory cytokines in sera were evaluated by ELISA. Our results showed that a significant increase in breast cancer metastasis to lungs was observed in LPS-treated mice vs. the PBS-treated mice, accompanying with an increased E-selectin expression in pulmonary tissue of LPS-treated mice. In vitro studies showed a significant elevation of E-selectin production in MPVECs which enhanced the adhesion activity of 4T1 cells. Treatment with anti-E-selectin antibody significantly reduced the development of metastasis in vivo, and significantly reduced the adhesion of 4T1 cells to MPVECs in vitro. Our results suggest that systemic inflammation may increase the expression of E-selectin which mediated the lung metastasis of breast cancer in mouse model.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IRF6, Cancer Genetics Web: http://www.cancer-genetics.org/IRF6.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999