Gene Summary

Gene:KDM6A; lysine demethylase 6A
Aliases: UTX, KABUK2, bA386N14.2
Summary:This gene is located on the X chromosome and is the corresponding locus to a Y-linked gene which encodes a tetratricopeptide repeat (TPR) protein. The encoded protein of this gene contains a JmjC-domain and catalyzes the demethylation of tri/dimethylated histone H3. Multiple alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Apr 2014]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:lysine-specific demethylase 6A
Source:NCBIAccessed: 13 March, 2017


What does this gene/protein do?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 13 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Prostate Cancer
  • DNA-Binding Proteins
  • Childhood Cancer
  • Histones
  • Tyrosine
  • High-Throughput Nucleotide Sequencing
  • Exons
  • Medulloblastoma
  • Mutation
  • Histone-Lysine N-Methyltransferase
  • Polycomb Repressive Complex 2
  • Cancer Gene Expression Regulation
  • Breast Cancer
  • Tumor Suppressor Proteins
  • Gene Expression Profiling
  • Epigenetics
  • Renal Cell Carcinoma
  • Chromatin
  • Jumonji Domain-Containing Histone Demethylases
  • Molecular Sequence Data
  • Methylation
  • Genome, Human
  • Transcriptome
  • DNA Methylation
  • Base Sequence
  • Disease Models, Animal
  • Pancreatic Cancer
  • Histone Demethylases
  • Genomics
  • DNA Mutational Analysis
  • Promoter Regions
  • X Chromosome
  • Transcription Factors
  • Kidney Cancer
  • Single Nucleotide Polymorphism
  • Exome
  • Neoplasm Proteins
  • beta Catenin
  • Oncogenes
  • Nuclear Proteins
  • DNA Sequence Analysis
Tag cloud generated 13 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: KDM6A (cancer-related)

Benyoucef A, Palii CG, Wang C, et al.
UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia.
Genes Dev. 2016; 30(5):508-21 [PubMed] Free Access to Full Article Related Publications
T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.

Bailey P, Chang DK, Nones K, et al.
Genomic analyses identify molecular subtypes of pancreatic cancer.
Nature. 2016; 531(7592):47-52 [PubMed] Related Publications
Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-β, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.

Dieci MV, Smutná V, Scott V, et al.
Whole exome sequencing of rare aggressive breast cancer histologies.
Breast Cancer Res Treat. 2016; 156(1):21-32 [PubMed] Related Publications
Little is known about mutational landscape of rare breast cancer (BC) subtypes. The aim of the study was to apply next generation sequencing to three different subtypes of rare BCs in order to identify new genes related to cancer progression. We performed whole exome and targeted sequencing of 29 micropapillary, 23 metaplastic, and 27 pleomorphic lobular BCs. Micropapillary BCs exhibit a profile comparable to common BCs: PIK3CA, TP53, GATA3, and MAP2K4 were the most frequently mutated genes. Metaplastic BCs presented a high frequency of TP53 (78 %) and PIK3CA (48 %) mutations and were recurrently mutated on KDM6A (13 %), a gene involved in histone demethylation. Pleomorphic lobular carcinoma exhibited high mutation rate of PIK3CA (30 %), TP53 (22 %), and CDH1 (41 %) and also presented mutations in PYGM, a gene involved in glycogen metabolism, in 8 out of 27 samples (30 %). Further analyses of publicly available datasets showed that PYGM is dramatically underexpressed in common cancers as compared to normal tissues and that low expression in tumors is correlated with poor relapse-free survival. Immunohistochemical staining on formalin-fixed paraffin-embedded tissues available in our cohort of patients confirmed higher PYGM expression in normal breast tissue compared to equivalent tumoral zone. Next generation sequencing methods applied on rare cancer subtypes can serve as a useful tool in order to uncover new potential therapeutic targets. Sequencing of pleomorphic lobular carcinoma identified a high rate of alterations in PYGM. These findings emphasize the role of glycogen metabolism in cancer progression.

Ward DG, Baxter L, Gordon NS, et al.
Multiplex PCR and Next Generation Sequencing for the Non-Invasive Detection of Bladder Cancer.
PLoS One. 2016; 11(2):e0149756 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Highly sensitive and specific urine-based tests to detect either primary or recurrent bladder cancer have proved elusive to date. Our ever increasing knowledge of the genomic aberrations in bladder cancer should enable the development of such tests based on urinary DNA.
METHODS: DNA was extracted from urine cell pellets and PCR used to amplify the regions of the TERT promoter and coding regions of FGFR3, PIK3CA, TP53, HRAS, KDM6A and RXRA which are frequently mutated in bladder cancer. The PCR products were barcoded, pooled and paired-end 2 x 250 bp sequencing performed on an Illumina MiSeq. Urinary DNA was analysed from 20 non-cancer controls, 120 primary bladder cancer patients (41 pTa, 40 pT1, 39 pT2+) and 91 bladder cancer patients post-TURBT (89 cancer-free).
RESULTS: Despite the small quantities of DNA extracted from some urine cell pellets, 96% of the samples yielded mean read depths >500. Analysing only previously reported point mutations, TERT mutations were found in 55% of patients with bladder cancer (independent of stage), FGFR3 mutations in 30% of patients with bladder cancer, PIK3CA in 14% and TP53 mutations in 12% of patients with bladder cancer. Overall, these previously reported bladder cancer mutations were detected in 86 out of 122 bladder cancer patients (70% sensitivity) and in only 3 out of 109 patients with no detectable bladder cancer (97% specificity).
CONCLUSION: This simple, cost-effective approach could be used for the non-invasive surveillance of patients with non-muscle-invasive bladder cancers harbouring these mutations. The method has a low DNA input requirement and can detect low levels of mutant DNA in a large excess of normal DNA. These genes represent a minimal biomarker panel to which extra markers could be added to develop a highly sensitive diagnostic test for bladder cancer.

Karagianni P, Lambropoulos V, Stergidou D, et al.
Recurrent giant cell fibroblastoma: Malignancy predisposition in Kabuki syndrome revisited.
Am J Med Genet A. 2016; 170A(5):1333-8 [PubMed] Related Publications
Kabuki syndrome is a genetic condition characterized by distinctive facial phenotype, mental retardation, and internal organ malformations. Mutations of the epigenetic genes KMT2D and KDM6A cause dysregulation of certain developmental genes and account for the multiple congenital anomalies of the syndrome. Eight cases of malignancies have been reported in young patients with Kabuki syndrome although a causative association to the syndrome has not been established. We report a case of a 12-year-old girl with Kabuki syndrome who developed a tumor on the right side of her neck. A relapsing tumor 19 months after initial excision, proved to be giant cell fibroblastoma. Τhis is the first report of giant cell fibroblastoma -a rare tumor of childhood- in a patient with Kabuki syndrome.

Zha L, Cao Q, Cui X, et al.
Epigenetic regulation of E-cadherin expression by the histone demethylase UTX in colon cancer cells.
Med Oncol. 2016; 33(3):21 [PubMed] Related Publications
Decreased epithelial cadherin (E-cadherin) gene expression, a hallmark of epithelial-mesenchymal transition (EMT), is essential for triggering metastatic advantage of the colon cancer. Genetic mechanisms underlying the regulation of E-cadherin expression in EMT have been extensively investigated; however, much is unknown about the epigenetic mechanism underlying this process. Here, we identified ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX), a histone demethylase involved in demethylating di- or tri-methylated histone 3 lysine 27 (H3K27me2/3), as a positive regulator for the expression of E-cadherin in the colon cancer cell line HCT-116. We showed that inactivation of UTX down-regulated E-cadherin gene expression, while overexpression of UTX did the opposite. Notably, overexpression of UTX inhibited migration and invasion of HCT-116 cells. Moreover, UTX demethylated H3K27me3, a histone transcriptional repressive mark, leading to decreased H3K27me3 at the E-cadherin promoter. Further, UTX interacted with the histone acetyltransferase (HAT) protein CBP and recruited it to the E-cadherin promoter, resulting in increased H3K27 acetylation (H3K27ac), a histone transcriptional active mark. UTX positively regulates E-cadherin expression through coordinated regulation of H3K27 demethylation and acetylation, switching the transcriptional repressive state to the transcriptional active state at the E-cadherin promoter. We conclude that UTX may play a role in regulation of E-cadherin gene expression in HCT-116 cells and that UTX may serve as a therapeutic target against the metastasis in the treatment of colon cancer.

Singh Nanda J, Kumar R, Raghava GP
dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes.
Sci Rep. 2016; 6:19340 [PubMed] Free Access to Full Article Related Publications
We have developed a database called dbEM (database of Epigenetic Modifiers) to maintain the genomic information of about 167 epigenetic modifiers/proteins, which are considered as potential cancer targets. In dbEM, modifiers are classified on functional basis and comprise of 48 histone methyl transferases, 33 chromatin remodelers and 31 histone demethylases. dbEM maintains the genomic information like mutations, copy number variation and gene expression in thousands of tumor samples, cancer cell lines and healthy samples. This information is obtained from public resources viz. COSMIC, CCLE and 1000-genome project. Gene essentiality data retrieved from COLT database further highlights the importance of various epigenetic proteins for cancer survival. We have also reported the sequence profiles, tertiary structures and post-translational modifications of these epigenetic proteins in cancer. It also contains information of 54 drug molecules against different epigenetic proteins. A wide range of tools have been integrated in dbEM e.g. Search, BLAST, Alignment and Profile based prediction. In our analysis, we found that epigenetic proteins DNMT3A, HDAC2, KDM6A, and TET2 are highly mutated in variety of cancers. We are confident that dbEM will be very useful in cancer research particularly in the field of epigenetic proteins based cancer therapeutics. This database is available for public at URL: http://crdd.osdd.net/raghava/dbem.

Park C, Ha SY, Kim ST, et al.
Identification of the BRAF V600E mutation in gastroenteropancreatic neuroendocrine tumors.
Oncotarget. 2016; 7(4):4024-35 [PubMed] Free Access to Full Article Related Publications
Genomic profiles of gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are still insufficiently understood, and the genetic alterations associated with drug responses have not been studied. Here, we performed whole exome sequencing of 12 GEP-NETs from patients enrolled in a nonrandomized, open-labeled, single-center phase II study for pazopanib, and integrated our results with previously published results on pancreas (n = 12) and small intestine NETs (n = 50). The mean numbers of somatic mutations in each case varied widely from 20 to 4682. Among 12 GEP-NETs, eight showed mutations of more than one cancer-related gene, including TP53, CNBD1, RB1, APC, BCOR, BRAF, CTNNB1, EGFR, EP300, ERBB3, KDM6A, KRAS, MGA, MLL3, PTEN, RASA1, SMARCB1, SPEN, TBC1D12, and VHL. TP53 was recurrently mutated in three cases, whereas CNBD1 and RB1 mutations were identified in two cases. Three GEP-NET patients with TP53 mutations demonstrated a durable response and one small intestinal grade (G) 1 NET patient with BRAF V600E mutation showed progression after pazopanib treatment. We found BRAF V600E (G1 NET from rectum and two G3 NETs from colon) and BRAF G593S (G2 NET from pancreas) missense mutations (9.1%) in an independent cohort of 44 GEP-NETs from the rectum (n = 26), colon (n = 7), pancreas (n = 4), small intestine (n = 3), stomach (n = 3) and appendix (n = 1) by Sanger sequencing. All tumor specimens were obtained before chemotherapy. In conclusion, BRAF V600E mutation is likely to result in resistance to pazopanib but may be a potentianally actionable mutation in metastatic GEP-NETs patients.

Xiao H, Wang LM, Luo Y, et al.
Mutations in epigenetic regulators are involved in acute lymphoblastic leukemia relapse following allogeneic hematopoietic stem cell transplantation.
Oncotarget. 2016; 7(3):2696-708 [PubMed] Free Access to Full Article Related Publications
Although steady improvements to chemotherapeutic treatments has helped cure 80% of childhood acute lymphoblastic leukemia (ALL) cases, chemotherapy has proven to be less effective in treating the majority of adult patients, leaving allogeneic hematopoietic stem cell transplantation (allo-HSCT) as the primary adult treatment option. Nevertheless relapse are the leading cause of death following allo-HSCT. The genetic pathogenesis of relapse following allo-HSCT in Philadelphia chromosome- negative ALL (Ph- ALL) remains unexplored. We performed longitudinal whole-exome sequencing analysis in three adult patients with Ph- B-cell ALL (Ph- B-ALL) on samples collected from diagnosis to relapse after allo-HSCT. Based on these data, we performed target gene sequencing on 23 selected genes in 58 adult patients undergoing allo-HSCT with Ph- B-ALL. Our results revealed a significant enrichment of mutations in epigenetic regulators from relapsed samples, with recurrent somatic mutations in SETD2, CREBBP, KDM6A and NR3C1. The relapsed samples were also enriched in signaling factor mutations, including KRAS, PTPN21, MYC and USP54. Furthermore, we are the first to reveal the clonal evolution patterns during leukemia relapse after allo-HSCT. Cells present in relapsed specimens were genetically related to the diagnosed tumor, these cells therefore arose from either an existing subclone that was not eradicated by allo-HSCT therapy, or from the same progenitor that acquired new mutations. In some cases, however, it is possible that leukemia recurrence following allo-HSCT could result from a secondary malignancy with a distinct set of mutations. We identified novel genetic causes of leukemia relapse after allo-HSCT using the largest generated data set to date from adult patients with Ph- B-ALL.

Rai K, Akdemir KC, Kwong LN, et al.
Dual Roles of RNF2 in Melanoma Progression.
Cancer Discov. 2015; 5(12):1314-27 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Epigenetic regulators have emerged as critical factors governing the biology of cancer. Here, in the context of melanoma, we show that RNF2 is prognostic, exhibiting progression-correlated expression in human melanocytic neoplasms. Through a series of complementary gain-of-function and loss-of-function studies in mouse and human systems, we establish that RNF2 is oncogenic and prometastatic. Mechanistically, RNF2-mediated invasive behavior is dependent on its ability to monoubiquitinate H2AK119 at the promoter of LTBP2, resulting in silencing of this negative regulator of TGFβ signaling. In contrast, RNF2's oncogenic activity does not require its catalytic activity nor does it derive from its canonical gene repression function. Instead, RNF2 drives proliferation through direct transcriptional upregulation of the cell-cycle regulator CCND2. We further show that MEK1-mediated phosphorylation of RNF2 promotes recruitment of activating histone modifiers UTX and p300 to a subset of poised promoters, which activates gene expression. In summary, RNF2 regulates distinct biologic processes in the genesis and progression of melanoma via different molecular mechanisms.
SIGNIFICANCE: The role of epigenetic regulators in cancer progression is being increasingly appreciated. We show novel roles for RNF2 in melanoma tumorigenesis and metastasis, albeit via different mechanisms. Our findings support the notion that epigenetic regulators, such as RNF2, directly and functionally control powerful gene networks that are vital in multiple cancer processes.

Roma D, Palma P, Capolino R, et al.
Spinal ependymoma in a patient with Kabuki syndrome: a case report.
BMC Med Genet. 2015; 16:80 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Kabuki syndrome is a rare disorder characterized by the association of mental retardation and postnatal growth deficiency with distinctive facial appearance, skeletal anomalies, cardiac and renal malformation. Two causative genes have been identified in patients with Kabuki syndrome. Mutation of KMT2D (MLL2) was identified in 55-80% of patients, while 9-14% of KMT2D negative patients have mutation in KDM6A gene. So far, few tumors have been reported in patients with Kabuki syndrome. We describe the first case of a patient with spinal ependymoma and Kabuki syndrome.
CASE PRESENTATION: A 23 years old girl followed at our Center for KMT2D mutated Kabuki syndrome since she was 4 years old presented with acute lumbar pain and intermittent tactile hyposthenia of the feet. Spine magnetic resonance revealed a lumbar endocanalar mass. She underwent surgical resection of the lesion and histologic examination showed a tanycytic ependymoma (WHO grade II).
CONCLUSION: Kabuki syndrome is not considered a cancer predisposition syndrome. Nonetheless, a number of tumors have been reported in patients with Kabuki syndrome. Spinal ependymoma is a rare disease in the pediatric and young adult population. Whereas NF2 mutations are frequently associated to ependymoma such an association has never been described in Kabuki syndrome. To our knowledge this is the first case of ependymoma in a KMT2D mutated Kabuki syndrome patient. Despite KMT2D role in cancer has previously been described, no genetic data are available for previously reported Kabuki syndrome patients with tumors. Nonetheless, the association of two rare diseases raises the suspicion for a common determinant.

Choi HJ, Park JH, Park M, et al.
UTX inhibits EMT-induced breast CSC properties by epigenetic repression of EMT genes in cooperation with LSD1 and HDAC1.
EMBO Rep. 2015; 16(10):1288-98 [PubMed] Free Access to Full Article Related Publications
The histone H3K27 demethylase, UTX, is a known component of the H3K4 methyltransferase MLL complex, but its functional association with H3K4 methylation in human cancers remains largely unknown. Here we demonstrate that UTX loss induces epithelial-mesenchymal transition (EMT)-mediated breast cancer stem cell (CSC) properties by increasing the expression of the SNAIL, ZEB1 and ZEB2 EMT transcription factors (EMT-TFs) and of the transcriptional repressor CDH1. UTX facilitates the epigenetic silencing of EMT-TFs by inducing competition between MLL4 and the H3K4 demethylase LSD1. EMT-TF promoters are occupied by c-Myc and MLL4, and UTX recognizes these proteins, interrupting their transcriptional activation function. UTX decreases H3K4me2 and H3 acetylation at these promoters by forming a transcriptional repressive complex with LSD1, HDAC1 and DNMT1. Taken together, our findings indicate that UTX is a prominent tumour suppressor that functions as a negative regulator of EMT-induced CSC-like properties by epigenetically repressing EMT-TFs.

Gentles AJ, Bratman SV, Lee LJ, et al.
Integrating Tumor and Stromal Gene Expression Signatures With Clinical Indices for Survival Stratification of Early-Stage Non-Small Cell Lung Cancer.
J Natl Cancer Inst. 2015; 107(10) [PubMed] Related Publications
BACKGROUND: Accurate survival stratification in early-stage non-small cell lung cancer (NSCLC) could inform the use of adjuvant therapy. We developed a clinically implementable mortality risk score incorporating distinct tumor microenvironmental gene expression signatures and clinical variables.
METHODS: Gene expression profiles from 1106 nonsquamous NSCLCs were used for generation and internal validation of a nine-gene molecular prognostic index (MPI). A quantitative polymerase chain reaction (qPCR) assay was developed and validated on an independent cohort of formalin-fixed paraffin-embedded (FFPE) tissues (n = 98). A prognostic score using clinical variables was generated using Surveillance, Epidemiology, and End Results data and combined with the MPI. All statistical tests for survival were two-sided.
RESULTS: The MPI stratified stage I patients into prognostic categories in three microarray and one FFPE qPCR validation cohorts (HR = 2.99, 95% CI = 1.55 to 5.76, P < .001 in stage IA patients of the largest microarray validation cohort; HR = 3.95, 95% CI = 1.24 to 12.64, P = .01 in stage IA of the qPCR cohort). Prognostic genes were expressed in distinct tumor cell subpopulations, and genes implicated in proliferation and stem cells portended poor outcomes, while genes involved in normal lung differentiation and immune infiltration were associated with superior survival. Integrating the MPI with clinical variables conferred greatest prognostic power (HR = 3.43, 95% CI = 2.18 to 5.39, P < .001 in stage I patients of the largest microarray cohort; HR = 3.99, 95% CI = 1.67 to 9.56, P < .001 in stage I patients of the qPCR cohort). Finally, the MPI was prognostic irrespective of somatic alterations in EGFR, KRAS, TP53, and ALK.
CONCLUSION: The MPI incorporates genes expressed in the tumor and its microenvironment and can be implemented clinically using qPCR assays on FFPE tissues. A composite model integrating the MPI with clinical variables provides the most accurate risk stratification.

Zhuang J, Weng Z
Local sequence assembly reveals a high-resolution profile of somatic structural variations in 97 cancer genomes.
Nucleic Acids Res. 2015; 43(17):8146-56 [PubMed] Free Access to Full Article Related Publications
Genomic structural variations (SVs) are pervasive in many types of cancers. Characterizing their underlying mechanisms and potential molecular consequences is crucial for understanding the basic biology of tumorigenesis. Here, we engineered a local assembly-based algorithm (laSV) that detects SVs with high accuracy from paired-end high-throughput genomic sequencing data and pinpoints their breakpoints at single base-pair resolution. By applying laSV to 97 tumor-normal paired genomic sequencing datasets across six cancer types produced by The Cancer Genome Atlas Research Network, we discovered that non-allelic homologous recombination is the primary mechanism for generating somatic SVs in acute myeloid leukemia. This finding contrasts with results for the other five types of solid tumors, in which non-homologous end joining and microhomology end joining are the predominant mechanisms. We also found that the genes recursively mutated by single nucleotide alterations differed from the genes recursively mutated by SVs, suggesting that these two types of genetic alterations play different roles during cancer progression. We further characterized how the gene structures of the oncogene JAK1 and the tumor suppressors KDM6A and RB1 are affected by somatic SVs and discussed the potential functional implications of intergenic SVs.

Lee SH, Lee EH, Lee SH, et al.
Epigenetic Role of Histone 3 Lysine Methyltransferase and Demethylase in Regulating Apoptosis Predicting the Recurrence of Atypical Meningioma.
J Korean Med Sci. 2015; 30(8):1157-66 [PubMed] Free Access to Full Article Related Publications
Alteration of apoptosis is related with progression and recurrence of atypical meningiomas (AMs). However, no comprehensive study has been conducted regarding histone modification regulating apoptosis in AMs. This study aimed to determine the prognostic values of certain apoptosis-associated factors, and examine the role of histone modification on apoptosis in AMs. The medical records of 67 patients with AMs, as diagnosed during recent 13 yr, were reviewed retrospectively. Immunohistochemical staining was performed on archived paraffin-embedded tissues for pro-apoptotic factors (CASP3, IGFBP, TRAIL-R1, BAX, and XAF1), anti-apoptotic factors (survivin, ERK, RAF1, MDM2, and BCL2), and the histone modifying enzymes (MLL2, RIZ, EZH1, NSD2, KDM5c, JMJD2a, UTX, and JMJD5). Twenty-six (38.8%) patients recurred during the follow-up period (mean duration 47.7 months). In terms of time-to-recurrence (TTR), overexpression of CASP3, TRAIL-R1, and BAX had a longer TTR than low expression, and overexpression of survivin, MDM2, and BCL2 had a shorter TTR than low expression (P<0.05). Additionally, overexpression of MLL2, UTX, and JMJ5 had shorter TTRs than low expression, and overexpression of KDM5c had a longer TTR than low expression. However, in the multi-variate analysis of predicting factors for recurrence, low expression of CASP3 (P<0.001), and BAX (P<0.001), and overexpression of survivin (P=0.007), and MDM2 (P=0.037) were associated with recurrence independently, but any enzymes modifying histone were not associated with recurrence. Conclusively, this study suggests certain apoptosis-associated factors should be associated with recurrence of AMs, which may be regulated epigenetically by histone modifying enzymes.

Burchfield JS, Li Q, Wang HY, Wang RF
JMJD3 as an epigenetic regulator in development and disease.
Int J Biochem Cell Biol. 2015; 67:148-57 [PubMed] Free Access to Full Article Related Publications
Gene expression is epigenetically regulated through DNA methylation and covalent chromatin modifications, such as acetylation, phosphorylation, ubiquitination, sumoylation, and methylation of histones. Histone methylation state is dynamically regulated by different groups of histone methyltransferases and demethylases. The trimethylation of histone 3 (H3K4) at lysine 4 is usually associated with the activation of gene expression, whereas trimethylation of histone 3 at lysine 27 (H3K27) is associated with the repression of gene expression. The polycomb repressive complex contains the H3K27 methyltransferase Ezh2 and controls dimethylation and trimethylation of H3K27 (H3K27me2/3). The Jumonji domain containing-3 (Jmjd3, KDM6B) and ubiquitously transcribed X-chromosome tetratricopeptide repeat protein (UTX, KDM6A) have been identified as H3K27 demethylases that catalyze the demethylation of H3K27me2/3. The role and mechanisms of both JMJD3 and UTX have been extensively studied for their involvement in development, cell plasticity, immune system, neurodegenerative disease, and cancer. In this review, we will focus on recent progresses made on understanding JMJD3 in the regulation of gene expression in development and diseases. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.

Su Y, Subedee A, Bloushtain-Qimron N, et al.
Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer.
Cell Rep. 2015; 11(10):1549-63 [PubMed] Related Publications
Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin) profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

Xu B, Konze KD, Jin J, Wang GG
Targeting EZH2 and PRC2 dependence as novel anticancer therapy.
Exp Hematol. 2015; 43(8):698-712 [PubMed] Free Access to Full Article Related Publications
Distinctive patterns of chromatin modification control gene expression and define cellular identity during development and cell differentiation. Polycomb repressive complex 2 (PRC2), the sole mammalian enzymatic complex capable of establishing gene-repressive high-degree methylation of histone H3 at lysine 27 (H3K27), plays crucial roles in regulation of normal and malignant hematopoiesis. Recently, increasing evidence has indicated that recurrent gain-of-function mutation and overexpression of EZH2, the catalytic subunit of PRC2, drive and promote malignant transformation such as B-cell lymphomagenesis, providing a rationale for PRC2 inhibition as a novel anticancer strategy. Here, we summarize the recently developed strategies for inhibition of PRC2, which include a series of highly specific, highly potent, small-molecule inhibitors of EZH2 and EZH1, an EZH2-related methyltransferase. PRC2 establishes functional crosstalk with numerous epigenetic machineries during dynamic regulation of gene transcription. Perturbation of such functional crosstalk caused by genetic events observed in various hematologic cancers, such as inactivation of SNF5 and somatic mutation of UTX, confers PRC2 dependence, thus rendering an increased sensitivity to PRC2 inhibition. We discuss our current understanding of EZH2 somatic mutations frequently found in B-cell lymphomas and recurrent mutations in various other epigenetic regulators as novel molecular predictors and determinants of PRC2 sensitivity. As recent advances have indicated a critical developmental or tumor-suppressive role for PRC2 and EZH2 in various tissue types, we discuss concerns over potentially toxic or even adverse effects associated with EZH2/1 inhibition in certain biological contexts or on cancer genetic background. Collectively, inhibition of PRC2 catalytic activity has emerged as a promising therapeutic intervention for the precise treatment of a range of genetically defined hematologic malignancies and can be potentially applied to a broader spectrum of human cancers that bear similar genetic and epigenetic characteristics.

Chesi M, Bergsagel PL
Advances in the pathogenesis and diagnosis of multiple myeloma.
Int J Lab Hematol. 2015; 37 Suppl 1:108-14 [PubMed] Related Publications
Multiple myeloma (MM) is a tumor of indolent, bone marrow (BM) localized, isotype-switched plasma cells. Recently, the diagnostic criteria have been amended to include some patients who would previously have been diagnosed with ultra-high-risk smoldering MM and benefit from immediate treatment. Genetically it can be divided into tumors with different recurrent immunoglobulin heavy chain gene translocations (4p16, 11q13, 6p21, 16q23, 20q11) and tumors characterized by hyperdiploidy with multiple trisomies. Recent genomic studies have shown that almost half of untreated patients have a genetic rearrangements of the MYC locus that result in juxtaposition of ectopic super-enhancers adjacent to MYC, as well as somatic mutations that activate the RAS/MAPK pathway (NRAS, KRAS, BRAF, FGFR3). Mutations that result in constitutive activation of the NFkB pathway and that inactivate TP53, CDKN2C, KDM6A, FAM46C, and DIS3 are also recurrent. A major insight from these studies has been the recognition of the high degree of subclonal heterogeneity in MM, which is more frequent in patients with high-risk genetics. The subclones may alternate in dominance under alternating therapeutic pressure, a phenomenon known as 'clonal tides'. The identification of marked subclonal heterogeneity argues in those patients for the use of therapeutic strategies to maximize response, and long-term suppressive therapies to prevent tumor regrowth and development of additional subclones.

Ross JS, Badve S, Wang K, et al.
Genomic profiling of advanced-stage, metaplastic breast carcinoma by next-generation sequencing reveals frequent, targetable genomic abnormalities and potential new treatment options.
Arch Pathol Lab Med. 2015; 139(5):642-9 [PubMed] Related Publications
CONTEXT: Metastatic metaplastic breast carcinoma (MPBC) is an uncommon, but aggressive, tumor resistant to conventional chemotherapy.
OBJECTIVE: To learn whether next-generation sequencing could identify potential targets of therapy for patients with relapsed and metastatic MPBC.
DESIGN: Hybridization capture of 3769 exons from 236 cancer-related genes and 47 introns of 19 genes commonly rearranged in cancer was applied to a minimum of 50 ng of DNA extracted from 20 MPBC formalin-fixed, paraffin-embedded specimens and sequenced to high uniform coverage.
RESULTS: The 20 patients with MPBC had a median age of 62 years (range, 42-86 years). There were 9 squamous (45%), 9 chondroid (45%), and 2 spindle cell (10%) MPBCs, all of which were high grade. Ninety-three genomic alterations were identified, (range, 1-11) with 19 of the 20 cases (95%) harboring an alteration that could potentially lead to a targeted treatment option. The most-common alterations were in TP53 (n = 69; 75%), PIK3CA (n = 37; 40%), MYC (n = 28; 30%), MLL2 (n = 28; 30%), PTEN (n = 23; 25%), CDKN2A/B (n = 19; 20%), CCND3 (n = 14; 15%), CCNE1 (n = 9; 10%), EGFR (n = 9; 10%), and KDM6A (n = 9; 10%); AKT3, CCND1, CCND2, CDK4, FBXW7, FGFR1, HRAS, NF1, PIK3R1, and SRC were each altered in a single case. All 16 MPBCs (100%) that were negative for ERBB2 (HER2) overexpression by immunohistochemistry and/or ERBB2 (HER2) amplification by fluorescence in situ hybridization were also uniformly (100%) negative for ERBB2 amplification by next-generation sequencing-based copy-number assessment.
CONCLUSIONS: Our results indicate that genomic profiling using next-generation sequencing can identify clinically meaningful alterations that have the potential to guide targeted treatment decisions in most patients with metastatic MPBC.

Liao L, Testa JR, Yang H
The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer.
Cancer Genet. 2015; 208(5):206-14 [PubMed] Free Access to Full Article Related Publications
Clear cell renal cell carcinoma (ccRCC) is the major subtype of kidney cancer that is characterized by frequent inactivation of the von Hippel-Lindau (VHL) gene in 80-90% of the tumors. Recent reports using massive parallel sequencing technologies have discovered additional cancer driver genes. PBRM1 was found to be mutated in about 40% of ccRCC tumors, whereas BAP1 and SETD2 were each mutated in about 10-15% of ccRCC tumors. JARID1C and UTX, two histone H3 demethylases, were also found to harbor mutations in ccRCC, albeit at lower rates. ccRCC tumors display a high degree of intra-tumoral heterogeneity, with some mutations present in all cancer cells (ubiquitous), whereas others are subclonal. The VHL mutations were always ubiquitous in the tumors; PBRM1 mutations were also ubiquitous but to a lesser extent. On the contrary, mutations in BAP1, SETD2, JARID1C, and UTX were all subclonal, meaning that they were present in a subset of cancer cells in a tumor. The prognostic value of PBRM1 mutations in ccRCC is still controversial, whereas BAP1 mutations were tightly linked to worse clinical outcomes in multiple studies. The molecular functions of these newly identified cancer driver genes are discussed, and they were known readers, writers, or erasers of histone marks on histone H2 and H3 tails that are very close to each other, suggesting that these factors might functionally interact and affect common pathways. The studies on these newly identified tumor suppressors will shed light on ccRCC tumorigenesis and development, and will likely lead to development of novel therapeutic interventions for ccRCC patients.

Waddell N, Pajic M, Patch AM, et al.
Whole genomes redefine the mutational landscape of pancreatic cancer.
Nature. 2015; 518(7540):495-501 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.

Skvarova Kramarzova K, Fiser K, Mejstrikova E, et al.
Homeobox gene expression in acute myeloid leukemia is linked to typical underlying molecular aberrations.
J Hematol Oncol. 2014; 7:94 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Although distinct patterns of homeobox (HOX) gene expression have been described in defined cytogenetic and molecular subsets of patients with acute myeloid leukemia (AML), it is unknown whether these patterns are the direct result of transcriptional alterations or rather represent the differentiation stage of the leukemic cell.
METHOD: To address this question, we used qPCR to analyze mRNA expression of HOXA and HOXB genes in bone marrow (BM) samples of 46 patients with AML and sorted subpopulations of healthy BM cells. These various stages of myeloid differentiation represent matched counterparts of morphological subgroups of AML. To further study the transcriptional alterations of HOX genes in hematopoiesis, we also analyzed gene expression of epigenetic modifiers in the subpopluations of healthy BM and leukemic cells.
RESULTS: Unsupervised hierarchical clustering divided the AMLs into five clusters characterized by the presence of prevalent molecular genetic aberrations. Notably, the impact of genotype on HOX gene expression was significantly more pronounced than that of the differentiation stage of the blasts. This driving role of molecular aberrations was best exemplified by the repressive effect of the PML-RARa fusion gene on HOX gene expression, regardless of the presence of the FLT3/ITD mutation. Furthermore, HOX gene expression was positively correlated with mRNA levels of histone demethylases (JMJD3 and UTX) and negatively correlated with gene expression of DNA methyltranferases. No such relationships were observed in subpopulations of healthy BM cells.
CONCLUSION: Our results demonstrate that specific molecular genetic aberrations, rather than differentiation per se, underlie the observed differences in HOX gene expression in AML. Moreover, the observed correlations between epigenetic modifiers and HOX expression that are specific to malignant hematopoiesis, suggest their potential causal relationships.

van den Beucken T, Koch E, Chu K, et al.
Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER.
Nat Commun. 2014; 5:5203 [PubMed] Free Access to Full Article Related Publications
MicroRNAs are small regulatory RNAs that post transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet, the underlying mechanisms are not well understood. Here we identify tumour hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumour stem cell phenotypes that may underlie poor outcome in breast cancer.

Van der Meulen J, Sanghvi V, Mavrakis K, et al.
The H3K27me3 demethylase UTX is a gender-specific tumor suppressor in T-cell acute lymphoblastic leukemia.
Blood. 2015; 125(1):13-21 [PubMed] Free Access to Full Article Related Publications
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive form of leukemia that is mainly diagnosed in children and shows a skewed gender distribution toward males. In this study, we report somatic loss-of-function mutations in the X-linked histone H3K27me3 demethylase ubiquitously transcribed X (UTX) chromosome, in human T-ALL. Interestingly, UTX mutations were exclusively present in male T-ALL patients and allelic expression analysis revealed that UTX escapes X-inactivation in female T-ALL lymphoblasts and normal T cells. Notably, we demonstrate in vitro and in vivo that the H3K27me3 demethylase UTX functions as a bona fide tumor suppressor in T-ALL. Moreover, T-ALL driven by UTX inactivation exhibits collateral sensitivity to pharmacologic H3K27me3 inhibition. All together, our results show how a gender-specific and therapeutically relevant defect in balancing H3K27 methylation contributes to T-cell leukemogenesis.

Yap KL, Kiyotani K, Tamura K, et al.
Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.
Clin Cancer Res. 2014; 20(24):6605-17 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators.
EXPERIMENTAL DESIGN: Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients.
RESULTS: We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage.
CONCLUSION: Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted.

Moreira AL, Won HH, McMillan R, et al.
Massively parallel sequencing identifies recurrent mutations in TP53 in thymic carcinoma associated with poor prognosis.
J Thorac Oncol. 2015; 10(2):373-80 [PubMed] Related Publications
BACKGROUND: The characterization of the molecular alterations in thymic epithelial tumors may lead to a better understanding of tumorigenesis, new therapeutic targets, and biomarkers in these tumors.
METHODS: Paired tissue (tumor and matched normal) from 15 thymic carcinomas (TCA) and six B3 thymomas were evaluated by exon capture of 275 cancer-related genes, followed by deep coverage next-generation sequencing, which identifies somatic sequence variants, small insertions and deletions, and copy number alterations involving all exons of the captured genes.
RESULTS: Non-silent somatic mutations were identified in 12 of 15 (80%) TCA with a median of one mutation per tumor (range 0-26). Recurrent mutations were identified in tumor suppressor genes TP53 (n = 4), SMAD4 (n = 2), and CYLD (n = 2); and chromatin remodeling genes KDM6A (n = 3), SETD2 (n = 2), MLL3 (n = 2), and MLL2 (n = 2). Tumors with TP53 mutation appeared to exhibit more aggressive behavior. Therefore, the role of P53 was evaluated by immunohistochemistry in an additional ten cases. P53 overexpression correlated with TP53 mutation. These tumors had a higher rate of recurrence and death of disease compared to carcinoma with normal p53 expression (p = 0.02 for disease-free survival and p = 0.05 for overall survival). Among the B3 thymomas, mutations were identified in four of six tumors. Mutations in BCOR (BCL6 co-repressor) were seen in three thymomas and MLL3 (involved in histone methylation) in one tumor.
CONCLUSIONS: Next-generation sequencing of cancer genes in thymic epithelial tumors revealed a low frequency of mutation, with different patterns between TCA and B3 thymomas. TP53 and BCOR were the most frequently mutated genes in TCA and B3 thymomas, respectively. Alterations in p53 are associated with worse prognosis in TCA.

Martin D, Abba MC, Molinolo AA, et al.
The head and neck cancer cell oncogenome: a platform for the development of precision molecular therapies.
Oncotarget. 2014; 5(19):8906-23 [PubMed] Free Access to Full Article Related Publications
The recent elucidation of the genomic landscape of head and neck squamous cell carcinoma (HNSCC) has provided a unique opportunity to develop selective cancer treatment options. These efforts will require the establishment of relevant HNSCC models for preclinical testing. Here, we performed full exome and transcriptome sequencing of a large panel of HNSCC-derived cells from different anatomical locations and human papillomavirus (HPV) infection status. These cells exhibit typical mutations in TP53, FAT1, CDK2NA, CASP8, and NOTCH1, and copy number variations (CNVs) and mutations in PIK3CA, HRAS, and PTEN that reflect the widespread activation of the PI3K-mTOR pathway. SMAD4 alterations were observed that may explain the decreased tumor suppressive effect of TGF-β in HNSCC. Surprisingly, we identified HPV+ HNSCC cells harboring TP53 mutations, and documented aberrant TP53 expression in a subset of HPV+ HNSCC cases. This analysis also revealed that most HNSCC cells harbor multiple mutations and CNVs in epigenetic modifiers (e.g., EP300, CREBP, MLL1, MLL2, MLL3, KDM6A, and KDM6B) that may contribute to HNSCC initiation and progression. These genetically-defined experimental HNSCC cellular systems, together with the identification of novel actionable molecular targets, may now facilitate the pre-clinical evaluation of emerging therapeutic agents in tumors exhibiting each precise genomic alteration.

Nickerson ML, Dancik GM, Im KM, et al.
Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer.
Clin Cancer Res. 2014; 20(18):4935-48 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Genetic analysis of bladder cancer has revealed a number of frequently altered genes, including frequent alterations of the telomerase (TERT) gene promoter, although few altered genes have been functionally evaluated. Our objective is to characterize alterations observed by exome sequencing and sequencing of the TERT promoter, and to examine the functional relevance of histone lysine (K)-specific demethylase 6A (KDM6A/UTX), a frequently mutated histone demethylase, in bladder cancer.
EXPERIMENTAL DESIGN: We analyzed bladder cancer samples from 54 U.S. patients by exome and targeted sequencing and confirmed somatic variants using normal tissue from the same patient. We examined the biologic function of KDM6A using in vivo and in vitro assays.
RESULTS: We observed frequent somatic alterations in BRCA1 associated protein-1 (BAP1) in 15% of tumors, including deleterious alterations to the deubiquitinase active site and the nuclear localization signal. BAP1 mutations contribute to a high frequency of tumors with breast cancer (BRCA) DNA repair pathway alterations and were significantly associated with papillary histologic features in tumors. BAP1 and KDM6A mutations significantly co-occurred in tumors. Somatic variants altering the TERT promoter were found in 69% of tumors but were not correlated with alterations in other bladder cancer genes. We examined the function of KDM6A, altered in 24% of tumors, and show depletion in human bladder cancer cells, enhanced in vitro proliferation, in vivo tumor growth, and cell migration.
CONCLUSIONS: This study is the first to identify frequent BAP1 and BRCA pathway alterations in bladder cancer, show TERT promoter alterations are independent of other bladder cancer gene alterations, and show KDM6A loss is a driver of the bladder cancer phenotype.

Gao YB, Chen ZL, Li JG, et al.
Genetic landscape of esophageal squamous cell carcinoma.
Nat Genet. 2014; 46(10):1097-102 [PubMed] Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the deadliest cancers. We performed exome sequencing on 113 tumor-normal pairs, yielding a mean of 82 non-silent mutations per tumor, and 8 cell lines. The mutational profile of ESCC closely resembles those of squamous cell carcinomas of other tissues but differs from that of esophageal adenocarcinoma. Genes involved in cell cycle and apoptosis regulation were mutated in 99% of cases by somatic alterations of TP53 (93%), CCND1 (33%), CDKN2A (20%), NFE2L2 (10%) and RB1 (9%). Histone modifier genes were frequently mutated, including KMT2D (also called MLL2; 19%), KMT2C (MLL3; 6%), KDM6A (7%), EP300 (10%) and CREBBP (6%). EP300 mutations were associated with poor survival. The Hippo and Notch pathways were dysregulated by mutations in FAT1, FAT2, FAT3 or FAT4 (27%) or AJUBA (JUB; 7%) and NOTCH1, NOTCH2 or NOTCH3 (22%) or FBXW7 (5%), respectively. These results define the mutational landscape of ESCC and highlight mutations in epigenetic modulators with prognostic and potentially therapeutic implications.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. KDM6A, Cancer Genetics Web: http://www.cancer-genetics.org/KDM6A.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 13 March, 2017     Cancer Genetics Web, Established 1999