Gene Summary

Gene:MAP3K1; mitogen-activated protein kinase kinase kinase 1
Summary:The protein encoded by this gene is a serine/threonine kinase and is part of some signal transduction cascades, including the ERK and JNK kinase pathways as well as the NF-kappa-B pathway. The encoded protein is activated by autophosphorylation and requires magnesium as a cofactor in phosphorylating other proteins. This protein has E3 ligase activity conferred by a plant homeodomain (PHD) in its N-terminus and phospho-kinase activity conferred by a kinase domain in its C-terminus. [provided by RefSeq, Mar 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:mitogen-activated protein kinase kinase kinase 1
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (40)
Pathways:What pathways are this gene/protein implicaed in?
Show (30)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Phosphorylation
  • Single Nucleotide Polymorphism
  • European Continental Ancestry Group
  • Chromosome 5
  • JNK Mitogen-Activated Protein Kinases
  • p53 Protein
  • Enzyme Inhibitors
  • Mutation
  • Estrogen Receptors
  • Microfilament Proteins
  • CRAF
  • Signal Transduction
  • Enzyme Activation
  • Proto-Oncogene Proteins
  • Biomarkers, Tumor
  • Species Specificity
  • Young Adult
  • Genome-Wide Association Study
  • Logistic Models
  • FGFR2
  • Alleles
  • Mitogen-Activated Protein Kinases
  • Protein-Serine-Threonine Kinases
  • Breast Cancer
  • Messenger RNA
  • Genetic Predisposition
  • Chromosome 8
  • MAP Kinase Kinase Kinase 1
  • Genotype
  • Risk Assessment
  • Odds Ratio
  • Risk Factors
  • Transcription
  • Neoplasm Proteins
  • Case-Control Studies
  • BRCA1
  • MAP Kinase Signaling System
  • Cancer Gene Expression Regulation
  • Promoter Regions
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MAP3K1 (cancer-related)

Marouf C, Göhler S, Filho MI, et al.
Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population.
BMC Cancer. 2016; 16:165 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Breast cancer (BC) is the most prevalent cancer in women and a major public health problem in Morocco. Several Moroccan studies have focused on studying this disease, but more are needed, especially at the genetic and molecular levels. Therefore, we investigated the potential association of several functional germline variants in the genes commonly mutated in sporadic breast cancer.
METHODS: In this case-control study, we examined 36 single nucleotide polymorphisms (SNPs) in 13 genes (APOBEC3A, APOBEC3B, ARID1B, ATR, MAP3K1, MLL2, MLL3, NCOR1, RUNX1, SF3B1, SMAD4, TBX3, TTN), which were located in the core promoter, 5'-and 3'UTR or which were nonsynonymous SNPs to assess their potential association with inherited predisposition to breast cancer development. Additionally, we identified a ~29.5-kb deletion polymorphism between APOBEC3A and APOBEC3B and explored possible associations with BC. A total of 226 Moroccan breast cancer cases and 200 matched healthy controls were included in this study.
RESULTS: The analysis showed that12 SNPs in 8 driver genes, 4 SNPs in APOBEC3B gene and 1 SNP in APOBEC3A gene were associated with BC risk and/or clinical outcome at P ≤ 0.05 level. RUNX1_rs8130963 (odds ratio (OR) = 2.25; 95 % CI 1.42-3.56; P = 0.0005; dominant model), TBX3_rs8853 (OR = 2.04; 95 % CI 1.38-3.01; P = 0.0003; dominant model), TBX3_rs1061651 (OR= 2.14; 95 % CI1.43-3.18; P = 0.0002; dominant model), TTN_rs12465459 (OR = 2.02; 95 % confidence interval 1.33-3.07; P = 0.0009; dominant model), were the most significantly associated SNPs with BC risk. A strong association with clinical outcome were detected for the genes SMAD4 _rs3819122 with tumor size (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009) and TTN_rs2244492 with estrogen receptor (OR = 0.45; 95 % CI 0.25-0.82; P = 0.009).
CONCLUSION: Our results suggest that genetic variations in driver and APOBEC3 genes were associated with the risk of BC and may have impact on clinical outcome. However, the reported association between the deletion polymorphism and BC risk was not confirmed in the Moroccan population. These preliminary findings require replication in larger studies.

Zhao L, Wang Y, Jiang L, et al.
MiR-302a/b/c/d cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein(P-gp) by targeting MAP/ERK kinase kinase 1 (MEKK1).
J Exp Clin Cancer Res. 2016; 35:25 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The importance of individual microRNAs (miRNAs) in tumor has been established in different cancers. However, their association with tumor chemoresistance has not been fully understood. Previously, we found two novel MDR-associated microRNAs (miRNAs). In this report, we investigated the combined effects of miRNA gene cluster in chemoresistance of breast cancer.
METHODS: This study was performed in two different breast cancer cell lines (MCF-7 and MCF-7/ADR). The levels of miRNAs and mRNA expression were determined by using Quantitative Real-Time PCR. Western blotting was used to detect the levels of protein molecules. Cell viability was assessed by MTS assay. Bioinformatics and Luciferase reporter assay was performed to examine miRNA binding to the 3'-UTR of target genes.
RESULTS: The miR-302S family including miR-302a, miR-302b, miR-302c, and miR-302d was significantly down-regulated in P-glycoprotein (P-gp)-overexpressing MCF-7/ADR cells. Overexpression of miR-302 increased intracellular accumulation of ADR and sensitized breast cancer cells to ADR. Most importantly, miR-302S produced stronger effects than each individual member alone. The four miRNAs cooperatively downregulate P-gp expression in regulating drug sensitivity. However, our results showed that the suppression of P-gp expression by miR-302 is not through typical miRNA-mediated mRNA degradation but at the level of protein and transcription. Further studies identified MAP/ERK kinase kinase 1 (MEKK1) as a direct and functional target of miR-302. miR-302 showed combinatorial effects on MKEE1 repression and MEKK1-mediated ERK pathway. The suppression of P-gp by miR-302 was reversed by MEKK1 overexpression.
CONCLUSION: Our results indicate that miR-302 cooperatively sensitizes breast cancer cells to adriamycin via suppressing P-glycoprotein by targeting MEKK1 of ERK pathway. miR-302 gene cluster may be a potential target for reversing P-gp-mediated chemoresistance in breast cancer.

Goh G, Walradt T, Markarov V, et al.
Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy.
Oncotarget. 2016; 7(3):3403-15 [PubMed] Free Access to Full Article Related Publications
Merkel cell carcinoma (MCC) is a rare but highly aggressive cutaneous neuroendocrine carcinoma, associated with the Merkel cell polyomavirus (MCPyV) in 80% of cases. To define the genetic basis of MCCs, we performed exome sequencing of 49 MCCs. We show that MCPyV-negative MCCs have a high mutation burden (median of 1121 somatic single nucleotide variants (SSNVs) per-exome with frequent mutations in RB1 and TP53 and additional damaging mutations in genes in the chromatin modification (ASXL1, MLL2, and MLL3), JNK (MAP3K1 and TRAF7), and DNA-damage pathways (ATM, MSH2, and BRCA1). In contrast, MCPyV-positive MCCs harbor few SSNVs (median of 12.5 SSNVs/tumor) with none in the genes listed above. In both subgroups, there are rare cancer-promoting mutations predicted to activate the PI3K pathway (HRAS, KRAS, PIK3CA, PTEN, and TSC1) and to inactivate the Notch pathway (Notch1 and Notch2). TP53 mutations appear to be clinically relevant in virus-negative MCCs as 37% of these tumors harbor potentially targetable gain-of-function mutations in TP53 at p.R248 and p.P278. Moreover, TP53 mutational status predicts death in early stage MCC (5-year survival in TP53 mutant vs wild-type stage I and II MCCs is 20% vs. 92%, respectively; P = 0.0036). Lastly, we identified the tumor neoantigens in MCPyV-negative and MCPyV-positive MCCs. We found that virus-negative MCCs harbor more tumor neoantigens than melanomas or non-small cell lung cancers (median of 173, 65, and 111 neoantigens/sample, respectively), two cancers for which immune checkpoint blockade can produce durable clinical responses. Collectively, these data support the use of immunotherapies for virus-negative MCCs.

Haddad SA, Lunetta KL, Ruiz-Narváez EA, et al.
Hormone-related pathways and risk of breast cancer subtypes in African American women.
Breast Cancer Res Treat. 2015; 154(1):145-54 [PubMed] Free Access to Full Article Related Publications
We sought to investigate genetic variation in hormone pathways in relation to risk of overall and subtype-specific breast cancer in women of African ancestry (AA). Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related genes for 3663 breast cancer cases (1098 ER-, 1983 ER+, 582 ER unknown) and 4687 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, the Women's Circle of Health Study, the Black Women's Health Study, and the Multiethnic Cohort Study. Pathway- and gene-based analyses were conducted, and single-SNP tests were run for the top genes. There were no strong associations at the pathway level. The most significantly associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based nominal p ≤ 0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p ≤ 0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER- disease (p ≤ 0.02). Single-SNP tests for SNPs with pairwise linkage disequilibrium r (2) < 0.8 in the top genes identified 12 common SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated with overall or subtype-specific breast cancer after gene-level correction for multiple testing. Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER- disease. We identified eight genes in hormone pathways that contain common variants associated with breast cancer in AA women after gene-level correction for multiple testing.

Shain AH, Garrido M, Botton T, et al.
Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway.
Nat Genet. 2015; 47(10):1194-9 [PubMed] Free Access to Full Article Related Publications
Desmoplastic melanoma is an uncommon variant of melanoma with sarcomatous histology, distinct clinical behavior and unknown pathogenesis. We performed low-coverage genome and high-coverage exome sequencing of 20 desmoplastic melanomas, followed by targeted sequencing of 293 genes in a validation cohort of 42 cases. A high mutation burden (median of 62 mutations/Mb) ranked desmoplastic melanoma among the most highly mutated cancers. Mutation patterns strongly implicate ultraviolet radiation as the dominant mutagen, indicating a superficially located cell of origin. Newly identified alterations included recurrent promoter mutations of NFKBIE, encoding NF-κB inhibitor ɛ (IκBɛ), in 14.5% of samples. Common oncogenic mutations in melanomas, in particular in BRAF (encoding p.Val600Glu) and NRAS (encoding p.Gln61Lys or p.Gln61Arg), were absent. Instead, other genetic alterations known to activate the MAPK and PI3K signaling cascades were identified in 73% of samples, affecting NF1, CBL, ERBB2, MAP2K1, MAP3K1, BRAF, EGFR, PTPN11, MET, RAC1, SOS2, NRAS and PIK3CA, some of which are candidates for targeted therapies.

Hou J, Ma J, Yu KN, et al.
Non-thermal plasma treatment altered gene expression profiling in non-small-cell lung cancer A549 cells.
BMC Genomics. 2015; 16:435 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Recent technological advances in atmospheric plasmas have made the creation of non-thermal atmospheric pressure plasma (NTP) possible for utilization in the medical field. Although accumulated evidence suggests that NTP induces cell death in various cancer cell types thus offering a promising alternative treatment strategy, the mechanism underlying its therapeutic effect is not fully understood.
RESULTS: We analyzed relevant signaling cascades associated with the tumor protein p53, in particular the cell cycle arrest, DNA damage as well as the underlying apoptosis pathways. Based on our results, the major effect from plasma exposure was found to be the activation of MAPK and p53 signaling pathways, resulting in changes in gene expression of MEKK, GADD, FOS and JUN. Finally, a significant modulation in expression of genes related to cellular proliferation and differentiation was observed.
CONCLUSION: Overall, the presented data of the tumor transcriptome helped identify the key players in modulated gene expression following exposure to plasma at the molecular level, and also helped interpret the downstream processes. The present work laid the foundation for further studies to clarify the roles of multiple pathways in plasma-induced biological processes. Further investigation of these genes in other cell lines may reveal comprehensive mechanisms of plasma induced effects.

Aloraifi F, McDevitt T, Martiniano R, et al.
Detection of novel germline mutations for breast cancer in non-BRCA1/2 families.
FEBS J. 2015; 282(17):3424-37 [PubMed] Related Publications
The identification of the breast cancer susceptibility genes BRCA1 and BRCA2 enhanced clinicians' ability to select high-risk individuals for aggressive surveillance and prevention, and led to the development of targeted therapies. However, BRCA1/2 mutations account for only 25% of familial breast cancer cases. To systematically identify rare, probably pathogenic variants in familial cases of breast cancer without BRCA1/2 mutations, we developed a list of 312 genes, and performed targeted DNA enrichment coupled to multiplex next-generation sequencing on 104 'BRCAx' patients and 101 geographically matched controls in Ireland. As expected, this strategy allowed us to identify mutations in several well-known high-susceptibility and moderate-susceptibility genes, including ATM (~ 5%), RAD50 (~ 3%), CHEK2 (~ 2%), TP53 (~ 1%), PALB2 (~ 1%), and MRE11A (~ 1%). However, we also identified novel pathogenic variants in 30 other genes, which, when taken together, potentially explain the etiology of the missing heritability in up to 35% of BRCAx patients. These included novel potential pathogenic mutations in MAP3K1, CASP8, RAD51B, ZNF217, CDKN2B-AS1, and ERBB2, including a splice site mutation, which we predict would generate a constitutively active HER2 protein. Taken together, this work extends our understanding of the genetics of familial breast cancer, and supports the need to implement hereditary multigene panel testing to more appropriately orientate clinical management.

Gavine PR, Wang M, Yu D, et al.
Identification and validation of dysregulated MAPK7 (ERK5) as a novel oncogenic target in squamous cell lung and esophageal carcinoma.
BMC Cancer. 2015; 15:454 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MAPK7/ERK5 (extracellular-signal-regulated kinase 5) functions within a canonical three-tiered MAPK (mitogen activated protein kinase) signaling cascade comprising MEK (MAPK/ERK kinase) 5, MEKK(MEK kinase) 2/3 and ERK5 itself. Despite being the least well studied of the MAPK-modules, evidence supports a role for MAPK7-signaling in the pathology of several cancer types.
METHODS AND RESULTS: Fluorescence in situ hybridization (FISH) analysis identified MAPK7 gene amplification in 4% (3/74) of non-small cell lung cancers (NSCLC) (enriched to 6% (3/49) in squamous cell carcinoma) and 2% (2/95) of squamous esophageal cancers (sqEC). Immunohistochemical (IHC) analysis revealed a good correlation between MAPK7 gene amplification and protein expression. MAPK7 was validated as a proliferative oncogenic driver by performing in vitro siRNA knockdown of MAPK7 in tumor cell lines. Finally, a novel MEK5/MAPK7 co-transfected HEK293 cell line was developed and used for routine cell-based pharmacodynamic screening. Phosphorylation antibody microarray analysis also identified novel downstream pharmacodynamic (PD) biomarkers of MAPK7 kinase inhibition in tumor cells (pMEF2A and pMEF2D).
CONCLUSIONS: Together, these data highlight a broader role for dysregulated MAPK7 in driving tumorigenesis within niche populations of highly prevalent tumor types, and describe current efforts in establishing a robust drug discovery screening cascade.

Zang WQ, Yang X, Wang T, et al.
MiR-451 inhibits proliferation of esophageal carcinoma cell line EC9706 by targeting CDKN2D and MAP3K1.
World J Gastroenterol. 2015; 21(19):5867-76 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the underlying molecular mechanisms of miR-451 to inhibit proliferation of esophageal carcinoma cell line EC9706.
METHODS: Assays for cell growth, apoptosis and invasion were used to evaluate the effects of miR-451 expression on EC cells. Luciferase reporter and Western blot assays were used to test whether cyclin-dependent kinase inhibitor 2D (CDKN2D) and MAP3K1 act as major targets of miR-451.
RESULTS: The results showed that CDKN2D and MAP3K1 are direct targets of miR-451. CDKN2D and MAP3K1 overexpression reversed the effect of miR-451. MiR-451 inhibited the proliferation of EC9706 by targeting CDKN2D and MAP3K1.
CONCLUSION: These findings suggest that miR-451 might be a novel prognostic biomarker and a potential target for the treatment of esophageal squamous cell carcinoma in the future.

Bai M, Ma X, Li X, et al.
The Accomplices of NF-κB Lead to Radioresistance.
Curr Protein Pept Sci. 2015; 16(4):279-94 [PubMed] Related Publications
Ionizing radiation (IR) plays an important role in the treatment of epithelial tumors, such as lung and prostate cancer, by wounding and killing cancer cells. However, IR also activates sophisticated anti-apoptotic transcriptional factors such that cancer cells fail to repair DNA damage and obtain resistance to apoptosis under conditions of radiotherapy. Among these transcription factors, the transcription factor nuclear factor kappa B (NF-κB) is recognized as a key feature for protecting cells from apoptosis in most cell types. Moreover, the induction of radioresistance is mediated by several genes that are regulated by NF- κB. The primary purpose of this review is to introduce the studies of the signaling mechanisms of IR in NF-κB activation, such as ROS/NF-κB, ATM or DNA-PK/MAPKK/ p90rsk, PI3K/AKT/IKK and k-ras/c-raf/ MEKK/ NF-κB pathways. Moreover, we describe how the expression of the target genes (e.g., XIAP, A20, FLIP, Bcl-xL) are induced by NF-κB to regulate the activation of survival signaling pathways and to inhibit apoptotic signaling pathways. In addition, IR activates NF-κB to express cell cycle-specific genes, for example cyclin D1, which is associated with reinforcing radioresistance. We exhibit the signaling pathways that are induced by IR stimulation of NF-κB and illustrate the molecular mechanisms of radioresistance.

Ho MY, Liang CM, Liang SM
MIG-7 and phosphorylated prohibitin coordinately regulate lung cancer invasion/metastasis.
Oncotarget. 2015; 6(1):381-93 [PubMed] Free Access to Full Article Related Publications
Growth factors and COX-2/PGE2 enhance lung cancer invasion/metastasis via PI3K/Akt and RAS/Raf. Here, we explored their mechanism of action further. We found first that higher levels of migration inducting gene-7 protein (MIG-7) and PHB phosphorylated at threonine 258 (phospho-PHBT258) are positively correlated with advanced stages of human lung cancer in tissue microarray. PGE2 or growth factors such as EGF, HGF and IGF-1 increased complex formation of phospho-PHBT258 with Ras, phospho-AktS473, phospho-Raf-1S338, MEKK1 and IKKα/βS176/180 in the raft domain transiently within 1 hour and MIG-7 in the cytosol 12-24 hours later. Association of phospho-PHBT258 with MEKK1 but not MEKK3 activates IKK/IκB/NF-κB and MEK/ERK to increase cellular COX-2/PGE2 and an E-cadherin suppressor Snail leading to enhancement of epithelial-mesenchymal transition (EMT) and lung cancer migration/invasion. MIG-7, on the other hand, was induced by growth factors and PGE2 via Akt/GSK-3β in a phospho-PHBT258 independent manner. MIG-7 increased two E-cadherin suppressors ZEB-1 and Twist to enhance EMT and cancer migration/invasion. Downregulating phospho-PHBT258 and MIG-7 had an additive effect on attenuating lung cancer invasion/metastasis and prolonging the survival of xenograft mice. Phospho-PHBT258 and MIG-7 may thus play complementary roles in the initiation and sustainment of the effects of growth factors and COX-2/PGE2 on cancer invasion/metastasis.

Glubb DM, Maranian MJ, Michailidou K, et al.
Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1.
Am J Hum Genet. 2015; 96(1):5-20 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWASs) have revealed SNP rs889312 on 5q11.2 to be associated with breast cancer risk in women of European ancestry. In an attempt to identify the biologically relevant variants, we analyzed 909 genetic variants across 5q11.2 in 103,991 breast cancer individuals and control individuals from 52 studies in the Breast Cancer Association Consortium. Multiple logistic regression analyses identified three independent risk signals: the strongest associations were with 15 correlated variants (iCHAV1), where the minor allele of the best candidate, rs62355902, associated with significantly increased risks of both estrogen-receptor-positive (ER(+): odds ratio [OR] = 1.24, 95% confidence interval [CI] = 1.21-1.27, ptrend = 5.7 × 10(-44)) and estrogen-receptor-negative (ER(-): OR = 1.10, 95% CI = 1.05-1.15, ptrend = 3.0 × 10(-4)) tumors. After adjustment for rs62355902, we found evidence of association of a further 173 variants (iCHAV2) containing three subsets with a range of effects (the strongest was rs113317823 [pcond = 1.61 × 10(-5)]) and five variants composing iCHAV3 (lead rs11949391; ER(+): OR = 0.90, 95% CI = 0.87-0.93, pcond = 1.4 × 10(-4)). Twenty-six percent of the prioritized candidate variants coincided with four putative regulatory elements that interact with the MAP3K1 promoter through chromatin looping and affect MAP3K1 promoter activity. Functional analysis indicated that the cancer risk alleles of four candidates (rs74345699 and rs62355900 [iCHAV1], rs16886397 [iCHAV2a], and rs17432750 [iCHAV3]) increased MAP3K1 transcriptional activity. Chromatin immunoprecipitation analysis revealed diminished GATA3 binding to the minor (cancer-protective) allele of rs17432750, indicating a mechanism for its action. We propose that the cancer risk alleles act to increase MAP3K1 expression in vivo and might promote breast cancer cell survival.

King TF, Conway GS
Swyer syndrome.
Curr Opin Endocrinol Diabetes Obes. 2014; 21(6):504-10 [PubMed] Related Publications
PURPOSE OF REVIEW: This review focuses on the pathogenesis, diagnosis, management and long-term outcomes of disorders of sex development, specifically women with Swyer syndrome (46,XY complete gonadal dysgenesis).
RECENT FINDINGS: Recent discoveries have broadened our understanding of the complex pathways involved in normal and abnormal sex development. In 46,XY gonadal dysgenesis, lack of testis development may be triggered by sex determining region Y, NR5A1, DHH or testis-determining gene loss-of-function mutations, DAX1 or WNT4 duplication or MAP3K1 gain-of-function mutations. The diagnosis and management of patients with Swyer syndrome is complex, and optimal care requires an experienced multidisciplinary team. Early diagnosis is vital because of the significant risk of germ cell tumour, and bilateral gonadectomy should be performed. Furthermore, early sex hormone treatment is necessary to induce and maintain typical pubertal development and to achieve optimal bone mineral accumulation. Pregnancy is possible via ova donation, and outcomes are similar to women with 46,XX ovarian failure.
SUMMARY: Further pathogenic gene mutations are likely to be identified, and the function, interaction and phenotypic effects of new and existing mutations will be further defined. Patients require long-term follow-up in specialist centres.

Miles WO, Korenjak M, Griffiths LM, et al.
Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pRb-deficient cells.
EMBO J. 2014; 33(19):2201-15 [PubMed] Free Access to Full Article Related Publications
Inactivation of the retinoblastoma tumor suppressor (pRb) is a common oncogenic event that alters the expression of genes important for cell cycle progression, senescence, and apoptosis. However, in many contexts, the properties of pRb-deficient cells are similar to wild-type cells suggesting there may be processes that counterbalance the transcriptional changes associated with pRb inactivation. Therefore, we have looked for sets of evolutionary conserved, functionally related genes that are direct targets of pRb/E2F proteins. We show that the expression of NANOS, a key facilitator of the Pumilio (PUM) post-transcriptional repressor complex, is directly repressed by pRb/E2F in flies and humans. In both species, NANOS expression increases following inactivation of pRb/RBF1 and becomes important for tissue homeostasis. By analyzing datasets from normal retinal tissue and pRb-null retinoblastomas, we find a strong enrichment for putative PUM substrates among genes de-regulated in tumors. These include pro-apoptotic genes that are transcriptionally down-regulated upon pRb loss, and we characterize two such candidates, MAP2K3 and MAP3K1, as direct PUM substrates. Our data suggest that NANOS increases in importance in pRb-deficient cells and helps to maintain homeostasis by repressing the translation of transcripts containing PUM Regulatory Elements (PRE).

Slattery ML, Hines LH, Lundgreen A, et al.
Diet and lifestyle factors interact with MAPK genes to influence survival: the Breast Cancer Health Disparities Study.
Cancer Causes Control. 2014; 25(9):1211-25 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: MAPK genes are activated by a variety of factors related to growth factors, hormones, and environmental stress.
METHODS: We evaluated associations between 13 MAPK genes and survival among 1,187 nonHispanic White and 1,155 Hispanic/Native American (NA) women diagnosed with breast cancer. We assessed the influence of diet, lifestyle, and genetic ancestry on these associations. Percent NA ancestry was determined from 104 Ancestry Informative Markers. Adaptive rank truncation product (ARTP) was used to determine gene and pathway significance.
RESULTS: Associations were predominantly observed among women with lower NA ancestry. Specifically, the mitogen-activated protein kinases (MAPK) pathway was associated with all-cause mortality (P ARTP = 0.02), but not with breast cancer-specific mortality (P ARTP = 0.10). However, MAP2K1 and MAP3K9 were associated with both breast cancer-specific and all-cause mortality. MAPK12 (P ARTP = 0.05) was only associated with breast cancer-specific mortality, and MAP3K1 (P ARTP = 0.02) and MAPK1 (P ARTP = 0.05) were only associated with all-cause mortality. Among women with higher NA ancestry, MAP3K2 was significantly associated with all-cause mortality (P ARTP = 0.04). Several diet and lifestyle factors, including alcohol consumption, caloric intake, dietary folate, and cigarette smoking, significantly modified the associations with MAPK genes and all-cause mortality.
CONCLUSIONS: Our study supports an association between MAPK genes and survival after diagnosis with breast cancer, especially among women with low NA ancestry. The interaction between genetic variation in the MAPK pathway with diet and lifestyle factors for all women supports the important role of these factors for breast cancer survivorship.

Gilaberte Y, Milla L, Salazar N, et al.
Cellular intrinsic factors involved in the resistance of squamous cell carcinoma to photodynamic therapy.
J Invest Dermatol. 2014; 134(9):2428-37 [PubMed] Related Publications
Photodynamic therapy (PDT) is widely used to treat non-melanoma skin cancer. However, some patients affected with squamous cell carcinoma (SCC) do not respond adequately to PDT with methyl-δ-aminolevulinic acid (MAL-PDT) and the tumors acquire an infiltrative phenotype and became histologically more aggressive, less differentiated, and more fibroblastic. To search for potential factors implicated in SCC resistance to PDT, we have used the SCC-13 cell line (parental) and resistant SCC-13 cells obtained by repeated MAL-PDT treatments (5th and 10th PDT-resistant generations). Xenografts assays in immunodeficient mice showed that the tumors generated by resistant cells were bigger than those induced by parental cells. Comparative genomic hybridization array (aCGH) showed that the three cell types presented amplicons in 3p12.1 CADM2, 7p11.2 EFGR, and 11q13.3 CCND1 genes. The 5th and 10th PDT-resistant cells showed an amplicon in 5q11.2 MAP3K1, which was not present in parental cells. The changes detected by aCGH on CCND1, EFGR, and MAP3K1 were confirmed in extracts of SCC-13 cells by reverse-transcriptase PCR and by western blot, and by immunohistochemistry in human biopsies from persistent tumors after MAL-PDT. Our data suggest that genomic imbalances related to CCND1, EFGR, and particularly MAP3K1 seem to be involved in the development of the resistance of SCC to PDT.

Zheng Q, Ye J, Wu H, et al.
Association between mitogen-activated protein kinase kinase kinase 1 polymorphisms and breast cancer susceptibility: a meta-analysis of 20 case-control studies.
PLoS One. 2014; 9(3):e90771 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The genome-wide single-nucleotide polymorphisms (SNPs) profiles can be used as diagnostic markers for human cancers. The associations between mitogen-activated protein kinase kinase kinase 1 (MAP3K1) SNPs rs889312 A>C, rs16886165 T>G and breast cancer risk have been widely evaluated, but the results were inconsistent. To derive a conclusive assessment of the associations, we performed a meta-analysis by combining data from all eligible case-control studies up to date.
METHODS: By searching PubMed, ISI web of knowledge, Embase and Cochrane databases, we identified all eligible studies published before September 2013. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations in fixed-effect or random-effect model. False-positive report probability (FPRP) was calculated to confirm the significance of the results.
RESULTS: A total of 59670 cases in 20 case-control studies were included in this meta-analysis. Significant associations with breast cancer risk were observed for SNPs rs889312 and rs16886165 polymorphisms with a per-allele OR of 1.11 (95% CI: 1.09-1.13) and 1.14 (95% CI: 1.09-1.20) respectively. For rs889312, in subgroup analysis by ethnicity, significant associations were identified in Europeans and Asians, but not in Africans. When stratified by estrogen receptor (ER) expression status, rs889312 was associated with both ER-positive and ER-negative breast cancers. Results from the FPRP analyses were consistent with and supportive to the above results.
CONCLUSIONS: The present meta-analysis suggests that rs889312-C allele and rs16886165-G allele might be risk factors for breast cancer, especially in Europeans and Asians.

Subbiah V, Westin SN, Wang K, et al.
Targeted therapy by combined inhibition of the RAF and mTOR kinases in malignant spindle cell neoplasm harboring the KIAA1549-BRAF fusion protein.
J Hematol Oncol. 2014; 7:8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Oncologic patients who are extreme responders to molecularly targeted therapy provide an important opportunity to better understand the biologic basis of response and, in turn, inform clinical decision making. Malignant neoplasms with an uncertain histologic and immunohistochemical characterization present challenges both on initial diagnostic workups and then later in management, as current treatment algorithms are based on a morphologic diagnosis. Herein, we report a case of a difficult to characterize sarcoma-like lesion for which genomic profiling with clinical next generation sequencing (NGS) identified the molecular underpinnings of arrested progression(stable disease) under combination targeted therapy within a phase I clinical trial.
METHODS: Genomic profiling with clinical next generation sequencing was performed on the FoundationOne™ platform (Foundation Medicine, Cambridge MA). Histopathology and immunohistochemical studies were performed in the Department of Pathology, MD Anderson Cancer Center (Houston, TX). Treatment was administered in the context of a phase I clinical trial Identifier: (NCT01187199).
RESULTS: The histology of the tumor was that of a spindle cell neoplasm, grade 2 by FNCLCC standards. Immunohistochemical staining was positive for S100 and CD34. Genomic profiling identified the following alterations: a KIAA1549-BRAF gene fusion resulting from a tandem duplication event, a homozygous deletion of PTEN, and frameshift insertion/deletions in CDKN2A A68fs*51, SUFU E283fs*3, and MAP3K1 N325fs*3. The patient had a 25% reduction in tumor (RECIST v1.1) following combination therapy consisting of sorafenib, temsirolimus, and bevazicumab within a phase I clinical trial.
CONCLUSIONS: The patient responded to combination targeted therapy that fortuitously targeted KIAA1549-BRAF and PTEN loss within a spindle cell neoplasm, as revealed by genomic profiling based on NGS. This is the first report of a tumor driven by a KIAA1549-BRAF fusion responding to sorafenib-based combination therapy.

Hu P, Huang Q, Li Z, et al.
Silencing MAP3K1 expression through RNA interference enhances paclitaxel-induced cell cycle arrest in human breast cancer cells.
Mol Biol Rep. 2014; 41(1):19-24 [PubMed] Related Publications
The objective of this study is to compare the expression level of MAP3K1 between normal mammary gland cells and breast cancer cells, and to analyze the effects of silencing MAP3K1 on breast cancer cells with paclitaxel treatment. Western blotting analysis was used to detect the expression level of MAP3K1 in MCF-7 and MCF-12F cells. The effect of gene silencing through different siRNAs was determined by realtime-PCR. MTT assay was used to test the cell proliferation. Cell cycle was detected by flow cytometry. MAP3K1 protein expression level in breast cancer cells was higher than that in normal mammary gland cells. MAP3K1 siRNA transfection significantly reduced the expression level of MAP3K1, and enhanced paclitaxel-induced cell proliferation inhibition and cell cycle arrest in breast cancer cells. Targeting MAP3K1 expression through small RNA interference can promote the therapeutic effects of paclitaxel in breast cancer.

Ganeshan VR, Schor NF
p75 neurotrophin receptor and fenretinide-induced signaling in neuroblastoma.
Cancer Chemother Pharmacol. 2014; 73(2):271-9 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Neuroblastoma is the most common extracranial solid tumor of childhood. The retinoic acid analogue, fenretinide (4-hydroxyphenyl retinamide; 4-HPR), induces apoptosis in neuroblastoma cells in vitro and is currently in clinical trials for children with refractory neuroblastoma. We have previously shown that expression of the p75 neurotrophin receptor (p75NTR) enhances apoptosis induction and mitochondrial accumulation of reactive oxygen species by 4-HPR in neuroblastoma cells. We now examine the signaling events that underlie this effect.
METHODS: Systematic examination of pro- and anti-apoptotic signaling effectors was performed by Western blot. Specific inhibitors of JNK phosphorylation and scavengers of mitochondrial reactive oxygen species were used to demonstrate the roles of these phenomena in the enhancement of fenretinide efficacy.
RESULTS: The present studies demonstrate that enhancement of 4-HPR-induced apoptosis by p75NTR is dependent upon p38MAPK phosphorylation, JNK phosphorylation, caspase 3 activation, Akt cleavage, and decreased Akt phosphorylation. In addition, treatment with 4-HPR results in upregulation of MKK4 and MEKK1, and phosphorylation of MKK3/6. Efforts to enhance the efficacy of 4-HPR and to identify those tumors most likely to respond to it might exploit these effectors of 4-HPR-induced apoptosis.
CONCLUSIONS: Pharmacological agents that enhance MKK4 or MEKK1 expression or JNK expression or phosphorylation may enhance efficacy of 4-HPR in neuroblastomas that do not express high levels of p75NTR.

O'Brien KM, Cole SR, Poole C, et al.
Replication of breast cancer susceptibility loci in whites and African Americans using a Bayesian approach.
Am J Epidemiol. 2014; 179(3):382-94 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWAS) and candidate gene analyses have led to the discovery of several dozen genetic polymorphisms associated with breast cancer susceptibility, many of which are considered well-established risk factors for the disease. Despite attempts to replicate these same variant-disease associations in African Americans, the evaluable populations are often too small to produce precise or consistent results. We estimated the associations between 83 previously identified single nucleotide polymorphisms (SNPs) and breast cancer among Carolina Breast Cancer Study (1993-2001) participants using maximum likelihood, Bayesian, and hierarchical methods. The selected SNPs were previous GWAS hits (n = 22), near-hits (n = 19), otherwise well-established risk loci (n = 5), or located in the same genes as selected variants (n = 37). We successfully replicated 18 GWAS-identified SNPs in whites (n = 2,352) and 10 in African Americans (n = 1,447). SNPs in the fibroblast growth factor receptor 2 gene (FGFR2) and the TOC high mobility group box family member 3 gene (TOX3) were strongly associated with breast cancer in both races. SNPs in the mitochondrial ribosomal protein S30 gene (MRPS30), mitogen-activated protein kinase kinase kinase 1 gene (MAP3K1), zinc finger, MIZ-type containing 1 gene (ZMIZ1), and H19, imprinted maternally expressed transcript gene (H19) were associated with breast cancer in whites, and SNPs in the estrogen receptor 1 gene (ESR1) and H19 gene were associated with breast cancer in African Americans. We provide precise and well-informed race-stratified odds ratios for key breast cancer-related SNPs. Our results demonstrate the utility of Bayesian methods in genetic epidemiology and provide support for their application in small, etiologically driven investigations.

O'Brien KM, Cole SR, Engel LS, et al.
Breast cancer subtypes and previously established genetic risk factors: a bayesian approach.
Cancer Epidemiol Biomarkers Prev. 2014; 23(1):84-97 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Gene expression analyses indicate that breast cancer is a heterogeneous disease with at least five immunohistologic subtypes. Despite growing evidence that these subtypes are etiologically and prognostically distinct, few studies have investigated whether they have divergent genetic risk factors. To help fill in this gap in our understanding, we examined associations between breast cancer subtypes and previously established susceptibility loci among white and African-American women in the Carolina Breast Cancer Study.
METHODS: We used Bayesian polytomous logistic regression to estimate ORs and 95% posterior intervals for the association between each of 78 single nucleotide polymorphisms (SNP) and five breast cancer subtypes. Subtypes were defined using five immunohistochemical markers: estrogen receptors (ER), progesterone receptors (PR), human epidermal growth factor receptors 1 and 2 (HER1/2), and cytokeratin (CK) 5/6.
RESULTS: Several SNPs in TNRC9/TOX3 were associated with luminal A (ER/PR+, HER2-) or basal-like breast cancer (ER-, PR-, HER2-, HER1, or CK 5/6+), and one SNP (rs3104746) was associated with both. SNPs in FGFR2 were associated with luminal A, luminal B (ER/PR+, HER2+), or HER2+/ER- disease, but none were associated with basal-like disease. We also observed subtype differences in the effects of SNPs in 2q35, 4p, TLR1, MAP3K1, ESR1, CDKN2A/B, ANKRD16, and ZM1Z1.
CONCLUSION AND IMPACT: We found evidence that genetic risk factors for breast cancer vary by subtype and further clarified the role of several key susceptibility genes. .

Ciriello G, Sinha R, Hoadley KA, et al.
The molecular diversity of Luminal A breast tumors.
Breast Cancer Res Treat. 2013; 141(3):409-20 [PubMed] Free Access to Full Article Related Publications
Breast cancer is a collection of diseases with distinct molecular traits, prognosis, and therapeutic options. Luminal A breast cancer is the most heterogeneous, both molecularly and clinically. Using genomic data from over 1,000 Luminal A tumors from multiple studies, we analyzed the copy number and mutational landscape of this tumor subtype. This integrated analysis revealed four major subtypes defined by distinct copy-number and mutation profiles. We identified an atypical Luminal A subtype characterized by high genomic instability, TP53 mutations, and increased Aurora kinase signaling; these genomic alterations lead to a worse clinical prognosis. Aberrations of chromosomes 1, 8, and 16, together with PIK3CA, GATA3, AKT1, and MAP3K1 mutations drive the other subtypes. Finally, an unbiased pathway analysis revealed multiple rare, but mutually exclusive, alterations linked to loss of activity of co-repressor complexes N-Cor and SMRT. These rare alterations were the most prevalent in Luminal A tumors and may predict resistance to endocrine therapy. Our work provides for a further molecular stratification of Luminal A breast tumors, with potential direct clinical implications.

Ni TK, Landrette SF, Bjornson RD, et al.
Low-copy piggyBac transposon mutagenesis in mice identifies genes driving melanoma.
Proc Natl Acad Sci U S A. 2013; 110(38):E3640-9 [PubMed] Free Access to Full Article Related Publications
Despite considerable efforts to sequence hypermutated cancers such as melanoma, distinguishing cancer-driving genes from thousands of recurrently mutated genes remains a significant challenge. To circumvent the problematic background mutation rates and identify new melanoma driver genes, we carried out a low-copy piggyBac transposon mutagenesis screen in mice. We induced eleven melanomas with mutation burdens that were 100-fold lower relative to human melanomas. Thirty-eight implicated genes, including two known drivers of human melanoma, were classified into three groups based on high, low, or background-level mutation frequencies in human melanomas, and we further explored the functional significance of genes in each group. For two genes overlooked by prevailing discovery methods, we found that loss of membrane associated guanylate kinase, WW and PDZ domain containing 2 and protein tyrosine phosphatase, receptor type, O cooperated with the v-raf murine sarcoma viral oncogene homolog B (BRAF) recurrent V600E mutation to promote cellular transformation. Moreover, for infrequently mutated genes often disregarded by current methods, we discovered recurrent mitogen-activated protein kinase kinase kinase 1 (Map3k1)-activating insertions in our screen, mirroring recurrent MAP3K1 up-regulation in human melanomas. Aberrant expression of Map3k1 enabled growth factor-autonomous proliferation and drove BRAF-independent ERK signaling, thus shedding light on alternative means of activating this prominent signaling pathway in melanoma. In summary, our study contributes several previously undescribed genes involved in melanoma and establishes an important proof-of-principle for the utility of the low-copy transposon mutagenesis approach for identifying cancer-driving genes, especially those masked by hypermutation.

Zhao S, Sun HZ, Zhu ST, et al.
Effects of parafibromin expression on the phenotypes and relevant mechanisms in the DLD-1 colon carcinoma cell line.
Asian Pac J Cancer Prev. 2013; 14(7):4249-54 [PubMed] Related Publications
BACKGROUND: Parafibromin is a protein encoded by the HRPT2 (hyperparathyroidism 2) oncosuppressor gene and its down-regulated expression is involved in pathogenesis of parathyroid, breast, gastric and colorectal carcinomas. This study aimed to clarify the effects of parafibromin expression on the phenotypes and relevant mechanisms of DLD-1 colon carcinoma cells.
METHODS: DLD-1 cells transfected with a parafibromin-expressing plasmid were subjected to examination of phenotype, including proliferation, differentiation, apoptosis, migration and invasion. Phenotype-related proteins were measured by Western blot. Parafibromin and ki-67 expression was detected by immunohistochemistry on tissue microarrays.
RESULTS: The transfectants showed higher proliferation by CCK-8, better differentiation by electron microscopy and ALP activity and more apoptotic resistance to cisplatin by DNA fragmentation than controls. There was no difference in early apoptosis by annexin V, capase-3 activity, migration and invasion between DLD-1 cells and their transfectants. Ectopic parafibromin expression resulted in down-regulated expression of smad4, MEKK, GRP94, GRP78, GSK3β-ser9, and Caspase-9. However, no difference was detectable in caspase-12 and -8 expression. A positive relationship was noted between parafibromin and ki-67 expression in colorectal carcinoma.
CONCLUSIONS: Parafibromin overexpression could promote cell proliferation, apoptotic resistance, and differentiation of DLD-1 cells.

Slattery ML, Lundgreen A, Wolff RK
Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer.
Nutr Cancer. 2013; 65(5):729-38 [PubMed] Free Access to Full Article Related Publications
Mitogen-activated protein kinase (MAPK) pathways regulate cellular functions including cell proliferation, differentiation, migration, and apoptosis. Associations between genes in the DUSP, ERK1/2, JNK, and p38 MAPK-signaling pathways and dietary factors associated with growth factors, inflammation, and oxidative stress and risk of colon and rectal cancer were evaluated. Data include colon cases (n = 1555) and controls (n = 1956) and rectal cases (n = 754) and controls (n = 959). Statistically significant interactions were observed for the MAPK-signaling pathways after adjustment for multiple comparisons. DUSP genes interacted with carbohydrates, mutagen index, calories, calcium, vitamin D, lycopene, dietary fats, folic acid, and selenium. MAPK1, MAPK3, MAPK1, and RAF1 within the ERK1/2 MAPK-signaling pathway interacted with dietary fats and cruciferous vegetables. Within the JNK MAPK-signaling pathway, interactions between MAP3K7 and protein, vitamin C, iron, folic acid, carbohydrates, and cruciferous vegetables; MAP3K10 and folic acid; MAP3K9 and lutein/zeaxanthin; MAPK8 and calcium; MAP3K3 and calcium and lutein; MAP3K1 and cruciferous vegetables. Interaction within the p38-signaling pathway included MAPK14 with calories, carbohydrates saturated fat, selenium, vitamin C; MAP3K2 and carbohydrates, and folic acid. These data suggest that dietary factors involved in inflammation and oxidative stress interact with MAPK-signaling genes to alter risk of colorectal cancer.

Qiu Z, Zhou B, Jin L, et al.
In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite, urolithins, on human bladder cancer T24 cells.
Food Chem Toxicol. 2013; 59:428-37 [PubMed] Related Publications
Urolithins were the metabolites of ellagic acid by intestinal flora in gastrointestinal tract. In previous research, it was found that urolithins could mainly inhibit prostate cancer and colon cancer cell growth. However, there is no report about bladder cancer therapy of urolithins. In this paper, three urolithin-type compounds (urolithin A, urolithin B, 8-OMe-urolithin A) and ellagic acid were evaluated for antiproliferative activity in vitro against human bladder cancer cell lines T24. The IC₅₀ values for T24 cell inhibition were 43.9, 35.2, 46.3 and 33.7 μM for urolithin A, urolithin B, 8-OMe-urolithin A and ellagic acid, respectively. After the administration of urolithins and ellagic acid, we found these compounds could increase mRNA and protein expression of Phospho-p38 MAPK, and decrease mRNA and protein expression of MEKK1 and Phospho-c-Jun in T24 cells. Caspase-3 was also activated and PPAR-γ protein expression increased in drug-induced apoptosis. And what's more, the antioxidant assay afforded by three urolithins and EA treatments were associated with decreases in the intracellular ROS and MDA levels, and increased SOD activity in H₂O₂-treated T24 cells. The results suggested that these compounds could inhibit cell proliferation by p38-MAPK and/or c-Jun medicated caspase-3 activation and reduce the oxidative stress status in bladder cancer.

Shi W, Hou X, Li X, et al.
Differential gene expressions of the MAPK signaling pathway in enterovirus 71-infected rhabdomyosarcoma cells.
Braz J Infect Dis. 2013 Jul-Aug; 17(4):410-7 [PubMed] Related Publications
BACKGROUND: Mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in response to viral infection. The aim of this study was to explore the function and mechanism of MAPK signaling pathway in enterovirus 71 (EV71) infection of human rhabdomyosarcoma (RD) cells.
METHODS: Apoptosis of RD cells was observed using annexin V-FITC/PI binding assay under a fluorescence microscope. Cellular RNA was extracted and transcribed to cDNA. The expressions of 56 genes of MAPK signaling pathway in EV71-infected RD cells at 8h and 20h after infection were analyzed by PCR array. The levels of IL-2, IL-4, IL-10, and TNF-α in the supernatant of RD cells infected with EV71 at different time points were measured by ELISA.
RESULTS: The viability of RD cells decreased obviously within 48h after EV71 infection. Compared with the control group, EV71 infection resulted in the significantly enhanced releases of IL-2, IL-4, IL-10 and TNF-α from infected RD cells (p<0.05). At 8h after infection, the expressions of c-Jun, c-Fos, IFN-β, MEKK1, MLK3 and NIK genes in EV71-infected RD cells were up-regulated by 2.08-6.12-fold, whereas other 19 genes (e.g. AKT1, AKT2, E2F1, IKK and NF-κB1) exhibited down-regulation. However, at 20h after infection, those MAPK signaling molecules including MEKK1, ASK1, MLK2, MLK3, NIK, MEK1, MEK2, MEK4, MEK7, ERK1, JNK1 and JNK2 were up-regulated. In addition, the expressions of AKT2, ELK1, c-Jun, c-Fos, NF-κB p65, PI3K and STAT1 were also increased.
CONCLUSION: EV71 infection induces the differential gene expressions of MAPK signaling pathway such as ERK, JNK and PI3K/AKT in RD cells, which may be associated with the secretions of inflammatory cytokines and host cell apoptosis.

Xia Y, Yang W, Bu W, et al.
Differential regulation of c-Jun protein plays an instrumental role in chemoresistance of cancer cells.
J Biol Chem. 2013; 288(27):19321-9 [PubMed] Free Access to Full Article Related Publications
The chemotherapeutic drug cisplatin (cis-diamminedichloroplatinum(II) (CDDP)) is widely used in the treatment of human cancers. However, the mechanism underlying intrinsic tumor resistance to CDDP remains elusive. Here, we demonstrate that treatment with CDDP resulted in down-regulation of c-Jun expression via caspase-9-dependent cleavage of c-Jun at Asp-65 and MEKK1-mediated ubiquitylation and degradation of c-Jun in CDDP-sensitive cancer cells. In contrast, activation of JNK2 (but not JNK1) phosphorylated and up-regulated the expression of c-Jun in CDDP-resistant cells. Activated c-Jun bound to the promoter regions of the MDR1 gene and promoted the expression of MDR1. Expression of a cleavage-resistant c-Jun mutant (D65A) suppressed CDDP-induced apoptosis of CDDP-sensitive cells, whereas depletion of JNK2, c-Jun, or MDR1 in CDDP-resistant cancer cells promoted apoptosis upon CDDP treatment. In addition, mammary gland tumors induced by polyomavirus middle T antigen in JNK2(-/-) mice were more sensitive to CDDP compared with those in JNK2(+/+) mice. These findings highlight the instrumental role of c-Jun in the resistance of tumors to treatment with CDDP and indicate that c-Jun is a molecular target for improving cancer therapy.

Resler AJ, Malone KE, Johnson LG, et al.
Genetic variation in TLR or NFkappaB pathways and the risk of breast cancer: a case-control study.
BMC Cancer. 2013; 13:219 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Toll-like receptors (TLRs) and the transcription factor nuclear factor-κB (NFκB) are important in inflammation and cancer.
METHODS: We examined the association between breast cancer risk and 233 tagging single nucleotide polymorphisms within 31 candidate genes involved in TLR or NFκB pathways. This population-based study in the Seattle area included 845 invasive breast cancer cases, diagnosed between 1997 and 1999, and 807 controls aged 65-79.
RESULTS: Variant alleles in four genes were associated with breast cancer risk based on gene-level tests: MAP3K1, MMP9, TANK, and TLR9. These results were similar when the risk of breast cancer was examined within ductal and luminal subtypes. Subsequent exploratory pathway analyses using the GRASS algorithm found no associations for genes in TLR or NFκB pathways. Using publicly available CGEMS GWAS data to validate significant findings (N = 1,145 cases, N = 1,142 controls), rs889312 near MAP3K1 was confirmed to be associated with breast cancer risk (P = 0.04, OR 1.15, 95% CI 1.01-1.30). Further, two SNPs in TANK that were significant in our data, rs17705608 (P = 0.05) and rs7309 (P = 0.04), had similar risk estimates in the CGEMS data (rs17705608 OR 0.83, 95% CI 0.72-0.96; CGEMS OR 0.90, 95% CI 0.80-1.01 and rs7309 OR 0.83, 95% CI 0.73-0.95; CGEMS OR 0.91, 95% CI 0.81-1.02).
CONCLUSIONS: Our findings suggest plausible associations between breast cancer risk and genes in TLR or NFκB pathways. Given the few suggestive associations in our data and the compelling biologic rationale for an association between genetic variation in these pathways and breast cancer risk, further studies are warranted that examine these effects.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MAP3K1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999