Gene Summary

Gene:MT1G; metallothionein 1G
Aliases: MT1, MT1K
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MT1G (cancer-related)

Sneeggen M, Pedersen NM, Campsteijn C, et al.
WDFY2 restrains matrix metalloproteinase secretion and cell invasion by controlling VAMP3-dependent recycling.
Nat Commun. 2019; 10(1):2850 [PubMed] Free Access to Full Article Related Publications
Cancer cells secrete matrix metalloproteinases to remodel the extracellular matrix, which enables them to overcome tissue barriers and form metastases. The membrane-bound matrix metalloproteinase MT1-MMP (MMP14) is internalized by endocytosis and recycled in endosomal compartments. It is largely unknown how endosomal sorting and recycling of MT1-MMP are controlled. Here, we show that the endosomal protein WDFY2 controls the recycling of MT1-MMP. WDFY2 localizes to endosomal tubules by binding to membranes enriched in phosphatidylinositol 3-phosphate (PtdIns3P). We identify the v-SNARE VAMP3 as an interaction partner of WDFY2. WDFY2 knockout causes a strong redistribution of VAMP3 into small vesicles near the plasma membrane. This is accompanied by increased, VAMP3-dependent secretion of MT1-MMP, enhanced degradation of extracellular matrix, and increased cell invasion. WDFY2 is frequently lost in metastatic cancers, most predominantly in ovarian and prostate cancer. We propose that WDFY2 acts as a tumor suppressor by serving as a gatekeeper for VAMP3 recycling.

Maleckaite R, Zalimas A, Bakavicius A, et al.
DNA methylation of metallothionein genes is associated with the clinical features of renal cell carcinoma.
Oncol Rep. 2019; 41(6):3535-3544 [PubMed] Related Publications
Metallothioneins are low‑weight cysteine‑rich proteins responsible for metal ion homeostasis in a cell and, thus, capable of regulating cell proliferation and differentiation. Deregulation of metallothionein genes has been reported in various human tumors. However, their role in renal cell carcinoma (RCC) has been poorly investigated. In the present study, we aimed to evaluate the importance of promoter DNA methylation of selected metallothionein genes for RCC. Based on the initial analysis of kidney renal clear cell carcinoma dataset from The Cancer Genome Atlas, genes MT1E, MT1F, MT1G and MT1M were selected for qualitative methylation analysis in 30 tumors (including 10 multifocal cases), 10 pericancerous, and 30 non‑cancerous renal tissues (NRT). Methylation of MT1E and MT1M was tumor‑specific (P=0.0056 and P=0.0486, respectively) and showed moderate interfocal variation in paired tumor foci. Methylated promoter status of the two genes was associated with larger tumor size (P=0.0110 and P=0.0156, respectively). Furthermore, aberrant MT1E methylation was more frequent in tumors having necrotic zones (P=0.0449) or characterized with higher differentiation grade (P=0.0144), while MT1M was more commonly methylated in tumors with higher Fuhrman grade (P=0.0272). Only unmethylated MT1F promoter status was observed in all analyzed samples. Gene expression analysis (51 RCC and 9 NRT) revealed MT1G downregulation in tumors (P<0.0001), while lower MT1E expression levels were associated with the promoter methylation (P=0.0077). In clear cell RCC, MT1E, MT1G and MT1M expression was higher than that noted in other histological tumor subtypes (all P<0.0500). In addition, some associations were observed between metabolic syndrome‑related clinical parameters and promoter methylation or gene expression. In conclusion, the present study revealed the potential role of MT1E and MT1M promoter methylation in RCC development.

Xu XH, Kou LC, Wang HM, et al.
Genetic polymorphisms of melatonin receptors 1A and 1B may result in disordered lipid metabolism in obese patients with polycystic ovary syndrome.
Mol Med Rep. 2019; 19(3):2220-2230 [PubMed] Free Access to Full Article Related Publications
Polycystic ovary syndrome (PCOS) is a condition in which a woman's levels of the sex hormones (estrogen and progesterone) are out of balance, leading to the growth of ovarian cysts. PCOS can affect the menstrual cycle, fertility, cardiac function and even appearance of women. Therefore, we aimed to explore the genetic polymorphism of the melatonin receptors 1A and 1B in obese patients with PCOS to identify a new theoretical basis for its treatment. Patients presenting with PCOS (n=359) were enrolled and classified into an obese OB‑PCOS group [body mass index (BMI) of PCOS patients ≥25 kg/m2] or a nonobese NOB‑PCOS group, and 215 oviduct infertile patients who experienced normal ovulation were used as the control group. All baseline characteristics, endocrine hormone levels, lipid and glucose metabolism, and insulin indices were measured. The genotypes of rs2119882 within the MTNR1A gene and of rs10830963 within the MTNR1B gene were determined by PCR‑RFLP; the genotype frequency and the difference in the distribution of allele frequency were compared. For rs2119882, C allele carriers who were not diagnosed with PCOS had an increased risk of developing PCOS, and C allele carriers with PCOS had an increased risk of developing OB‑PCOS. For rs10830963, G allele carriers who were not diagnosed with PCOS had an increased risk of developing PCOS. The TT genotype in rs2119882 and the CC genotype in rs10830963 were protective factors for OB‑PCOS, and increased levels of LH, testosterone, and estradiol and abnormal menstruation were key risk factors for PCOS. Furthermore, the TT genotype at the rs2119882 site was the key protective factor for OB‑PCOS patients. Our study found that MTNR1A rs2119882 and MTNR1B rs10830963 could increase the risk for PCOS and cause glycolipid metabolism disorder in PCOS patients.

Jiang B, Liu J, Lee MH
Targeting a Designer TIMP-1 to the Cell Surface for Effective MT1-MMP Inhibition: A Potential Role for the Prion Protein in Renal Carcinoma Therapy.
Molecules. 2019; 24(2) [PubMed] Free Access to Full Article Related Publications
Renal carcinoma cells express Membrane Type 1-Matrix Metalloproteinase (MT1-MMP, MMP-14) to degrade extracellular matrix components and a range of bioactive molecules to allow metastasis and cell proliferation. The activity of MT1-MMP is modulated by the endogenous inhibitors, Tissue Inhibitor of Metalloproteinases (TIMPs). In this study, we describe a novel strategy that would enable a "designer" TIMP-1 tailored specifically for MT1-MMP inhibition (V4A/P6V/T98L;

Panossian A, Seo EJ, Efferth T
Novel molecular mechanisms for the adaptogenic effects of herbal extracts on isolated brain cells using systems biology.
Phytomedicine. 2018; 50:257-284 [PubMed] Related Publications
INTRODUCTION: Adaptogens are natural compounds or plant extracts that increase adaptability and survival of organisms under stress. Adaptogens stimulate cellular and organismal defense systems by activating intracellular and extracellular signaling pathways and expression of stress-activated proteins and neuropeptides. The effects adaptogens on mediators of adaptive stress response and longevity signaling pathways have been reported, but their stress-protective mechanisms are still not fully understood.
AIM OF THE STUDY: The aim of this study was to identify key molecular mechanisms of adaptogenic plants traditionally used to treat stress and aging-related disorders, i.e., Rhodiola rosea, Eleutherococcus senticosus, Withania somnifera, Rhaponticum carthamoides, and Bryonia alba.
MATERIALS AND METHODS: To investigate the underlying molecular mechanisms of adaptogens, we conducted RNA sequencing to profile gene expression alterations in T98G neuroglia cells upon treatment of adaptogens and analyzed the relevance of deregulated genes to adaptive stress-response signaling pathways using in silico pathway analysis software.
RESULTS AND DISCUSSION: At least 88 of the 3516 genes regulated by adaptogens were closely associated with adaptive stress response and adaptive stress-response signaling pathways (ASRSPs), including neuronal signaling related to corticotropin-releasing hormone, cAMP-mediated, protein kinase A, and CREB; pathways related to signaling involving CXCR4, melatonin, nitric oxide synthase, GP6, Gαs, MAPK, neuroinflammation, neuropathic pain, opioids, renin-angiotensin, AMPK, calcium, and synapses; and pathways associated with dendritic cell maturation and G-coupled protein receptor-mediated nutrient sensing in enteroendocrine cells. All samples tested showed significant effects on the expression of genes encoding neurohormones CRH, GNRH, UCN, G-protein-coupled and other transmembrane receptors TLR9, PRLR, CHRNE, GP1BA, PLXNA4, a ligand-dependent nuclear receptor RORA, transmembrane channels, transcription regulators FOS, FOXO6, SCX, STAT5A, ZFPM2, ZNF396, ZNF467, protein kinases MAPK10, MAPK13, MERTK, FLT1, PRKCH, ROS1, TTN), phosphatases PTPRD, PTPRR, peptidases, metabolic enzymes, a chaperone (HSPA6), and other proteins, all of which modulate numerous life processes, playing key roles in several canonical pathways involved in defense response and regulation of homeostasis in organisms. It is for the first time we report that the molecular mechanism of actions of melatonin and plant adaptogens are alike, all adaptogens tested activated the melatonin signaling pathway by acting through two G-protein-coupled membrane receptors MT1 and MT2 and upregulation of the ligand-specific nuclear receptor RORA, which plays a role in intellectual disability, neurological disorders, retinopathy, hypertension, dyslipidemia, and cancer, which are common in aging. Furthermore, melatonin activated adaptive signaling pathways and upregulated expression of UCN, GNRH1, TLR9, GP1BA, PLXNA4, CHRM4, GPR19, VIPR2, RORA, STAT5A, ZFPM2, ZNF396, FLT1, MAPK10, MERTK, PRKCH, and TTN, which were commonly regulated by all adaptogens tested. We conclude that melatonin is an adaptation hormone playing an important role in regulation of homeostasis. Adaptogens presumably worked as eustressors ("stress-vaccines") to activate the cellular adaptive system by inducing the expression of ASRSPs, which then reciprocally protected cells from damage caused by distress. Functional investigation by interactive pathways analysis demonstrated that adaptogens activated ASRSPs associated with stress-induced and aging-related disorders such as chronic inflammation, cardiovascular health, neurodegenerative cognitive impairment, metabolic disorders, and cancer.
CONCLUSION: This study has elucidated the genome-wide effects of several adaptogenic herbal extracts in brain cells culture. These data highlight the consistent activation of ASRSPs by adaptogens in T98G neuroglia cells. The extracts affected many genes playing key roles in modulation of adaptive homeostasis, indicating their ability to modify gene expression to prevent stress-induced and aging-related disorders. Overall, this study provides a comprehensive look at the molecular mechanisms by which adaptogens exerts stress-protective effects.

de Castro TB, Mota AL, Bordin-Junior NA, et al.
Immunohistochemical Expression of Melatonin Receptor MT1 and Glucose Transporter GLUT1 in Human Breast Cancer.
Anticancer Agents Med Chem. 2018; 18(15):2110-2116 [PubMed] Related Publications
BACKGROUND: Breast cancer is a heterogeneous disease and is the leading cause of cancer-related deaths among women. Even after diagnosis, the prognosis cannot be concluded since patients can develop resistance to therapy, which favors tumor growth, invasion and metastasis. In recent years, research has focused on identifying significant markers that can be used to determine the prognosis. Melatonin can act through G protein- coupled MT1 receptor, which controls selected protein kinases, influences the levels of transcription factor phosphorylation, specific genes expression, proliferation, angiogenesis, cell differentiation, migration, and indirectly controls the transport of glucose in cancer cells. It is known that glucose enters the cells by glucose transporters, such as GLUT1 which shows wide tissue distribution and appears to be altered in human breast carcinoma. High GLUT1 expression is associated with increased malignant potential, invasiveness and poor prognosis in some cancers including breast cancer.
OBJECTIVE: The aim of this study was to evaluate the expression of MT1 receptor and GLUT1 in breast tumors and correlate with molecular subtypes and prognostic characteristics.
METHOD: Protein expression was performed by an immunohistochemical procedure with specific antibodies and positive and negative controls.
RESULTS: We found that MT1 high expression was associated with good prognosis subtype (Luminal A), while GLUT1 high expression was related to poor prognosis subtype (triple-negative). In addition, we found high expression of MT1 in ER+ and the inverse in GLUT1 expression. GLUT1 is also highly expressed in tumor ≥20mm.
CONCLUSION: These results indicate MT1 and GLUT1 as potential targets for breast cancer subtypes and prognosis.

Nasrabadi NN, Sargazi F, Shokrzadeh M, et al.
Expression of MT1 receptor in patients with gastric adenocarcinoma and its relationship with clinicopathological features.
Neuro Endocrinol Lett. 2018; 39(2):111-118 [PubMed] Related Publications
Gastric cancer accounts 8% of the total cancer cases leading to 10% of total cancer deaths worldwide. The indoleamine N-acetyl-5-methoxytryptamine, better known as melatonin, is the principal hormone produced by the pineal gland. Recently, it has been well documented some anti-cancer roles of melatonin in some malignancies as breast and colon cancer; as well as some its protective roles in the GI tract that have been known as free radical scavenger, antimitogenic and apoptotic properties. According to the anti-cancer effects of melatonin, wide distribution of this neurohormone in GI tract and some proposed physiologic and pharmacologic roles for this neurohormone and following our previous study which has shown expression of MT2 receptor in gastric adenocarcinoma, this study initially scheduled to determine the expression of melatonin receptor MT1 in tissue samples of adenocarcinoma cancer patients. A total of 10 gastric adenocarcinoma patients and 10 normal individuals were examined for MT1 gene expression by real-time PCR. Additionally, for screening of different alleles of MT1 in our samples, the SSCP-PCR procedure was developed. Our results have shown interestingly high expression for MT1 receptor in cancer and marginal cancer groups comparing with normal group. Our findings also have shown that a remarkable association between MT1 receptor mRNA levels and grade in individuals over age 50. PCR-SSCP analysis results showed a variation between individuals which may be effective on their gene expression patterns. According to our knowledge, for the first time this study evaluated the expression of MT1 receptor gene in gastric adenocarcinoma tissues which consistent with our previous study but with some difference in comparisons between kind of tissue expression and difference in polymorphisms. Moreover, these results show the defending role of melatonin in the GI system.

Majumder A, Ray S, Banerji A
Epidermal growth factor receptor-mediated regulation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in MCF-7 breast cancer cells.
Mol Cell Biochem. 2019; 452(1-2):111-121 [PubMed] Related Publications
In breast cancer, increased epidermal growth factor receptor (EGFR) expression and phosphorylation have been correlated with increased invasive potential and poor prognosis. Interaction of EGFR with its ligand epidermal growth factor (EGF) activates cellular signalling cascades promoting tumour invasion. Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are upregulated in most cancers and play crucial roles in modulating invasion and metastasis. EGFR-mediated regulation of MMP-2 and MMP-9 in breast cancer was investigated using metastatic human breast ductal carcinoma cell line MCF-7. Culture of MCF-7 cells on 1 µg/ml EGF-coated culture dishes for 24 h led to appreciable increase in MMP-2 and MMP-9 expression and activity. Expression of membrane type-1 matrix metalloproteinase (MT1-MMP) and focal adhesion kinase (FAK), phosphorylation of EGFR and phosphatidylinositol 3' kinase (PI3K), and nuclear translocation of EGFR and cellular migration were also appreciably increased. Targeting EGFR-EGF interactions by treatment of MCF-7 cells with anti-EGFR monoclonal antibodies prior to culture on EGF prevented appreciable upregulation of MMP-2 and MMP-9 expression and activity. Increased expression of MT1-MMP and FAK, phosphorylation of EGFR and PI3K and enhanced cell migration were also inhibited. Treatment of cells with PI3K inhibitor LY294002 prevented upregulation of MMP-2 and MMP-9 indicating that EGFR-mediated signalling for MMP regulation occurs through PI3K. As increased EGFR activity has been observed in highly invasive breast cancers, targeting EGFR-EGF interactions might render such cancers less invasive by inhibiting EGFR-mediated upregulation of MMP-2 and MMP-9 and therefore could be of importance in their clinical management.

Liu Z, Ye Q, Wu L, et al.
Metallothionein 1 family profiling identifies MT1X as a tumor suppressor involved in the progression and metastastatic capacity of hepatocellular carcinoma.
Mol Carcinog. 2018; 57(11):1435-1444 [PubMed] Related Publications
Metallothionein 1 (MT1s) is a family of cysteine-rich proteins with diverse functions such as metal homeostasis, oxidative stress, and carcinogenesis. However, its involvement in hepatocellular carcinoma (HCC) remains not fully understood. We aimed to explore the contribution of the individual member of MT1s to HCC. Its member mRNA levels were determined in cohort 1 of normal (n = 30), cirrhotic (n = 30), peritumoral (n = 135), and HCC (n = 135). In cohort 1, seven of eight members were down-regulated during the transition from normal liver to HCC, and only MT1G and MT1X were correlated with tumor features and outcomes. The MT1X was selected to be further stained in cohort 2 consisting of a series of liver nodules (15 normal livers, 33 cirrhotic livers, 12 dysplastic nodules, 31 HCC, and 9 HCC metastasis), and in cohort 3 (HCC, n = 85). In cohort 2, MT1X immunoreactivity was reduced in HCC and lost in metastatic HCC and showed good diagnostic performance for HCC (AUC = 0.754, 95%IC = 0.659-0.849). In cohort 3, MT1X expression in peritumoral tissues was independent predictor for HCC (recurrence free survival: HR = 0.34, 95%CI = 0.17-0.66; overall survival: HR = 0.32, 95%CI = 0.16-0.60). Moreover, we found that ectopic overexpression of MT1X delayed G1/S progression of cell cycle and promoted apoptosis in HCC cells in vitro, and suppressed tumor growth and lung metastasis in nude mice in vivo. We further demonstrated that MT1X induces cell cycle arrest and apoptosis by inactivating NF-κB signaling in HCC. In conclusion, MT1X may serve as a candidate of prognostic indicator and inhibits the progression and metastasis of HCC.

Bouris P, Manou D, Sopaki-Valalaki A, et al.
Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling.
Matrix Biol. 2018; 74:35-51 [PubMed] Related Publications
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.

Sánchez DI, González-Fernández B, Crespo I, et al.
Melatonin modulates dysregulated circadian clocks in mice with diethylnitrosamine-induced hepatocellular carcinoma.
J Pineal Res. 2018; 65(3):e12506 [PubMed] Related Publications
Disruption of circadian rhythms, which are regulated by the circadian clock machinery, plays an important role in different long-term diseases including hepatocellular carcinoma (HCC). Melatonin has been reported to alleviate promotion and progression of HCC, but the potential contribution of circadian clock modulation is unknown. We investigated the effects of melatonin in mice which received diethylnitrosamine (DEN) (35 mg/kg body weight ip) once a week for 8 weeks. Melatonin was given at 5 or 10 mg kg

Saby C, Rammal H, Magnien K, et al.
Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.
Cell Adh Migr. 2018; 12(4):335-347 [PubMed] Free Access to Full Article Related Publications
Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

Lee H, Lee HJ, Jung JH, et al.
Melatonin disturbs SUMOylation-mediated crosstalk between c-Myc and nestin via MT1 activation and promotes the sensitivity of paclitaxel in brain cancer stem cells.
J Pineal Res. 2018; 65(2):e12496 [PubMed] Related Publications
Here the underlying antitumor mechanism of melatonin and its potency as a sensitizer of paclitaxel was investigated in X02 cancer stem cells. Melatonin suppressed sphere formation and induced G2/M arrest in X02 cells expressing nestin, CD133, CXCR4, and SOX-2 as biomarkers of stemness. Furthermore, melatonin reduced the expression of CDK2, CDK4, cyclin D1, cyclin E, and c-Myc and upregulated cyclin B1 in X02 cells. Notably, genes of c-Myc related mRNAs were differentially expressed in melatonin-treated X02 cells by microarray analysis. Consistently, melatonin reduced the expression of c-Myc at mRNA and protein levels, which was blocked by MG132. Of note, overexpression of c-Myc increased the expression of nestin, while overexpression of nestin enhanced c-Myc through crosstalk despite different locations, nucleus, and cytoplasm. Interestingly, melatonin attenuated small ubiquitin-related modifier-1 (SUMO-1) more than SUMO-2 or SUMO-3 and disturbed nuclear translocation of nestin for direct binding to c-Myc by SUMOylation of SUMO-1 protein by immunofluorescence and immunoprecipitation. Also, melatonin reduced trimethylated histone H3K4me3 and H3K36me3 more than dimethylation in X02 cells by Western blotting and chromatin immunoprecipitation assay. Notably, melatonin upregulated MT1, not MT2, in X02 cells and melatonin receptor inhibitor luzindole blocked the ability of melatonin to decrease the expression of nestin, p-c-Myc(S62), and c-Myc. Furthermore, melatonin promoted cytotoxicity, sub-G1 accumulation, and apoptotic body formation by Paclitaxcel in X02 cells. Taken together, these findings suggest that melatonin inhibits stemness via suppression of c-Myc, nestin, and histone methylation via MT1 activation and promotes anticancer effect of Paclitaxcel in brain cancer stem cells.

Harun SNA, Israf DA, Tham CL, et al.
The Molecular Targets and Anti-Invasive Effects of 2,6-bis-(4-hydroxyl-3methoxybenzylidine) cyclohexanone or BHMC in MDA-MB-231 Human Breast Cancer Cells.
Molecules. 2018; 23(4) [PubMed] Free Access to Full Article Related Publications
In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.

Yang R, Zheng G, Ren D, et al.
The clinical significance and biological function of tropomyosin 4 in colon cancer.
Biomed Pharmacother. 2018; 101:1-7 [PubMed] Related Publications
Tropomyosin 4 (TPM4) has been found to be dys-regulated, and function as oncogene or anti-oncogene in human cancers. However, there was no report on the clinical significance and biological function of TPM4 in colon cancer. This study was designed to investigate the clinical value and biological function of TPM4 in colon cancer. Thus, we detected the TPM4 expression in colon cancer clinical samples, and conducted the gain-of-function in colon cancer cell lines. In our results, TPM4 mRNA and protein expressions were reduced in colon cancer tissues and cell lines compared with normal colon tissues and colon epithelial cell line, respectively. TPM4 protein low-expression was obviously associated with clinical stage, T classification (invasion depth), N classification (lymph node metastasis), distant metastasis and differentiation. Survival analysis showed low-expression of TPM4 was an unfavorable independent prognostic factor for colon cancer patients. Moreover, the experiments in vitro suggested up-regulated TPM4 expression suppressed colon cancer cell migration, invasion and metastasis-associated gene expression including MMP-2, MMP-9 and MT1-MMP, but had no effect on cell proliferation. In conclusion, TPM4 is associated with clinical progression in colon cancer patient and acts as a tumor suppressor in colon cancer cell.

Nguyen AT, Chia J, Ros M, et al.
Organelle Specific O-Glycosylation Drives MMP14 Activation, Tumor Growth, and Metastasis.
Cancer Cell. 2017; 32(5):639-653.e6 [PubMed] Related Publications
Cancers grow within tissues through molecular mechanisms still unclear. Invasiveness correlates with perturbed O-glycosylation, a covalent modification of cell-surface proteins. Here, we show that, in human and mouse liver cancers, initiation of O-glycosylation by the GALNT glycosyl-transferases increases and shifts from the Golgi to the endoplasmic reticulum (ER). In a mouse liver cancer model, expressing an ER-targeted GALNT1 (ER-G1) massively increased tumor expansion, with median survival reduced from 23 to 10 weeks. In vitro cell growth was unaffected, but ER-G1 strongly enabled matrix degradation and tissue invasion. Unlike its Golgi-localized counterpart, ER-G1 glycosylates the matrix metalloproteinase MMP14, a process required for tumor expansion. Together, our results indicate that GALNTs strongly promote liver tumor growth after relocating to the ER.

Lin YW, Wang SS, Wen YC, et al.
Genetic Variations of Melatonin Receptor Type 1A are Associated with the Clinicopathologic Development of Urothelial Cell Carcinoma.
Int J Med Sci. 2017; 14(11):1130-1135 [PubMed] Free Access to Full Article Related Publications
Melatonin counteracts tumor occurrence and tumor cell progression in several cancer types

Hebbrecht T, Van Audenhove I, Zwaenepoel O, et al.
VCA nanobodies target N-WASp to reduce invadopodium formation and functioning.
PLoS One. 2017; 12(9):e0185076 [PubMed] Free Access to Full Article Related Publications
Invasive cancer cells develop small actin-based protrusions called invadopodia, which perform a primordial role in metastasis and extracellular matrix remodelling. Neural Wiskott-Aldrich syndrome protein (N-WASp) is a scaffold protein which can directly bind to actin monomers and Arp2/3 and is a crucial player in the formation of an invadopodium precursor. Expression modulation has pointed to an important role for N-WASp in invadopodium formation but the role of its C-terminal VCA domain in this process remains unknown. In this study, we generated alpaca nanobodies against the N-WASp VCA domain and investigated if these nanobodies affect invadopodium formation. By using this approach, we were able to study functions of a selected functional/structural N-WASp protein domain in living cells, without requiring overexpression, dominant negative mutants or siRNAs which target the gene, and hence the entire protein. When expressed as intrabodies, the VCA nanobodies significantly reduced invadopodium formation in both MDA-MB-231 breast cancer and HNSCC61 head and neck squamous cancer cells. Furthermore, expression of distinct VCA Nbs (VCA Nb7 and VCA Nb14) in PC-3 prostate cancer cells resulted in reduced overall matrix degradation without affecting MMP9 secretion/activation or MT1-MMP localisation at invadopodial membranes. From these results, we conclude that we have generated nanobodies targeting N-WASp which reduce invadopodium formation and functioning, most likely via regulation of N-WASp-Arp2/3 complex interaction, indicating that this region of N-WASp plays an important role in these processes.

Wojtczak B, Pula B, Gomulkiewicz A, et al.
Metallothionein Isoform Expression in Benign and Malignant Thyroid Lesions.
Anticancer Res. 2017; 37(9):5179-5185 [PubMed] Related Publications
BACKGROUND: Metallothioneins (MTs) are involved in numerous cell processes such as binding and transport of zinc and copper ions, differentiation, proliferation and apoptosis, therefore contributing to carcinogenesis. Scarce data exist on their expression in benign and malignant lesions of the thyroid.
MATERIALS AND METHODS: mRNA expression of functional isoforms of MT genes (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1X, MT2A, MT4) was studied in 17 nodular goiters (NG), 12 follicular adenomas (FA) and 26 papillary thyroid carcinomas (PTC).
RESULTS: One-way ANOVA revealed significant differences in mRNA expression levels of MT1A (p<0.05), MT1E (p<0.005), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.005) in the analyzed samples. Post hoc analysis confirmed a significantly lower expression of MT1A mRNA in PTC compared to NG (p<0.05). Significant down-regulation was also noted for other MT isoforms in PTC in comparison to NG: MT1E (p<0.05), MT1F (p<0.0001), MT1G (p<0.005), MT1X (p<0.0005) and MT2A (p<0.05). In addition, significant down-regulation of MT1F and MT1G in FA compared to NG was observed (p<0.005 and p<0.05, respectively).
CONCLUSION: Expression of functional MT isoforms may contribute to thyroid carcinogenesis and potentially serve as a diagnostic marker in distinguishing benign and malignant lesions.

Groba SR, Guttmann S, Niemietz C, et al.
Downregulation of hepatic multi-drug resistance protein 1 (MDR1) after copper exposure.
Metallomics. 2017; 9(9):1279-1287 [PubMed] Related Publications
Copper homeostasis is strictly regulated in mammalian cells. We investigated the adaptation of hepatocytes after long-term copper exposure. Copper-resistant hepatoma HepG2 cell lines lacking ATP7B were generated. Growth, copper accumulation, gene expression, and transport were determined. Hepatocyte-like cells derived from a Wilson disease (WD) patient and the liver of a WD animal model were also studied. The rapidly gained copper resistance was found to be stable, as subculturing of cells in the absence of added copper (weaning) did not restore copper sensitivity. Intracellular copper levels and the expression of MT1 and HSP70 were increased, whereas the expression of CTR1 was reduced. However, the values normalized after weaning. In contrast, downregulation of multi-drug resistance protein 1 (MDR1), encoding P-glycoprotein (P-gp), was shown to be permanent. Calcein assays confirmed the downregulation of MDR1 in the resistant cell lines. MDR1 knockdown by siRNA resulted in increased copper resistance and decreased intracellular copper. Treatment of the resistant cells with verapamil, a known inducer of MDR1, was followed by increased copper-induced toxicity. Downregulation of MDR1 was also observed in hepatocyte-like cells derived from a WD patient after copper exposure. In addition, MDR1 was downregulated in Long-Evans Cinnamon rats when the liver copper was elevated. The results indicate that downregulation of MDR1 is an adaptation of hepatic cells after sustained copper exposure when ATP7B is non-functional. Our data add to the versatile functions of MDR1 in the hepatocyte and may have an impact on the treatment of copper-related diseases, prominently WD.

Wang C, Li Z, Shao F, et al.
High expression of Collagen Triple Helix Repeat Containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation.
J Exp Clin Cancer Res. 2017; 36(1):84 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Oesophageal cancer is one of the most common malignancies worldwide,and oesophageal squamous cell carcinoma (ESCC) is the predominant histological type both globally and in China. Collagen triple helix repeat containing 1 (CTHRC1) has been found to be upregulated in ESCC. However, its role in tumourigenesis and progression of ESCC remains unclear.
METHODS: Using our previous ESCC mRNA profiling data, we screened upregulated genes to identify those required for proliferation. Immunohistochemistry was performed to determine the level of CTHRC1 protein expression in 204 ESCC patients. Correlations between CTHRC1 expression and clinicopathological characteristics were assessed. In addition, pyrosequencing and 5-aza-dC treatment were performed to evaluate methylation status of CTHRC1 promoter. In vitro and in vivo analyses were also conducted to determine the role of CTHRC1 in ESCC cell proliferation, migration and invasion, and RNA sequencing and molecular experiments were performed to study the underlying mechanisms.
RESULTS: Based on mRNA profiling data, CTHRC1 was identified as one of the most significantly upregulated genes in ESCC tissues (n = 119, fold change = 20.5, P = 2.12E-66). RNA interference screening also showed that CTHRC1 was required for cell proliferation. Immunohistochemistry confirmed markedly high CTHRC1 protein expression in tumour tissues, and high CTHRC1 expression was positively correlated with advanced T stage (P = 0.043), lymph node metastasis (P = 0.023), TNM stage (P = 0.024) and poor overall survival (P = 0.020). Promoter hypomethylation at cg07757887 may contribute to increased CTHRC1 expression in ESCC cells and tumours. Forced overexpression of CTHRC1 significantly enhanced cell proliferation, migration and invasion, whereas depletion of CTHRC1 suppressed these cellular functions in three ESCC cell lines and xenografts. CTHRC1 was found to activate FRA-1 (Fos-related antigen 1, also known as FOSL1) through the MAPK/MEK/ERK cascade, which led to upregulation of cyclin D1 and thus promoted cell proliferation. FRA-1 also induced snail1-mediated MMP14 (matrix metallopeptidase 14, also known as MT1-MMP) expression to facilitate ESCC cell invasion, migration, and metastasis.
CONCLUSIONS: Our data suggest that CTHRC1 may act as an oncogenic driver in progression and metastasis of ESCC, and may serve as a potential biomarker for prognosis and personalized therapy.

Klymenko Y, Kim O, Loughran E, et al.
Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis.
Oncogene. 2017; 36(42):5840-5851 [PubMed] Free Access to Full Article Related Publications
During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a 'leader-follower' mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad in preclinical models of EOC metastasis.

Casado J, Iñigo-Chaves A, Jiménez-Ruiz SM, et al.
AA-NAT, MT1 and MT2 Correlates with Cancer Stem-Like Cell Markers in Colorectal Cancer: Study of the Influence of Stage and p53 Status of Tumors.
Int J Mol Sci. 2017; 18(6) [PubMed] Free Access to Full Article Related Publications
The characterization of colon cancer stem cells (CSCs) may help to develop novel diagnostic and therapeutic procedures. p53 loss increases the pool of CSCs in colorectal cancer (CRC). Recent reports suggest that the oncostatic effects of melatonin could be related to its ability to kill CSCs. Although there are no data linking the loss of p53 function and melatonin synthesis or signaling in cancer, melatonin does activate the p53 tumor-suppressor pathway in this disease. In this work, we analyze whether the expression of melatonin synthesis and signaling genes are related to the expression of CSC markers and the implication of p53 status in samples from patients with CRC. Arylalkylamine N-acetyltransferase (AA-NAT), MT1, and MT2 expression decreased in tumor samples versus normal mucosa samples in mutated p53 (mtp53) tumors versus those with wild-type p53 (wtp53). Further, AA-NAT and MT2 expression were lower in advanced stages of the disease in wtp53 tumors. On the contrary, CD44 and CD66c expression was higher in tumor versus normal mucosa in wtp53 tumors. Additionally, CD44 expression was higher in advanced stages of the disease regardless of the p53 status. Patients with CD44

Osanai K, Kobayashi Y, Otsu M, et al.
Ramelteon, a selective MT1/MT2 receptor agonist, suppresses the proliferation and invasiveness of endometrial cancer cells.
Hum Cell. 2017; 30(3):209-215 [PubMed] Related Publications
The incidence of endometrial cancer is increasing, making it the fifth most common cancer worldwide. To date, however, there is no standard therapy for patients with recurrent endometrial cancer. Melatonin, a hormone secreted by the pineal gland, has been shown to have anti-tumor effects in various tumor types. Although melatonin is available as a supplement, it has not been approved for cancer treatment. Ramelteon, a selective melatonin receptor type 1 and 2 (MT1/MT2) receptor agonist, has been approved to treat sleep disorders, suggesting that ramelteon may be effective in the treatment of endometrial cancer. To determine whether this agent may be effective in the treatment of endometrial cancer, this study investigated the ability of ramelteon to suppress the proliferation and invasiveness of HHUA cells, an estrogen receptor-positive endometrial cancer cell line. Ramelteon at 10

Majkowska I, Shitomi Y, Ito N, et al.
Discoidin domain receptor 2 mediates collagen-induced activation of membrane-type 1 matrix metalloproteinase in human fibroblasts.
J Biol Chem. 2017; 292(16):6633-6643 [PubMed] Free Access to Full Article Related Publications
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity, including fibroblasts and invasive cancer cells. However, pathways of MT1-MMP up-regulation are not clearly understood. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it up-regulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation and its physiological relevance are not known. In this study, we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not the β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited the collagen-induced MT1-MMP-dependent activation of pro-MMP-2 and up-regulation of MT1-MMP at the gene and protein levels. Interestingly, DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited the MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell-surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signaling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without the non-helical telopeptide region compared with intact collagen fibrils. Furthermore, DDR2-dependent MT1-MMP activation by cartilage was found to be more efficient when the tissue was partially damaged. These data suggest that DDR2 is a microenvironment sensor that regulates fibroblast migration in a collagen-rich environment.

Sakamoto T, Seiki M
Integrated functions of membrane-type 1 matrix metalloproteinase in regulating cancer malignancy: Beyond a proteinase.
Cancer Sci. 2017; 108(6):1095-1100 [PubMed] Free Access to Full Article Related Publications
Membrane-type 1 matrix metalloproteinase (MT1-MMP) is expressed in different types of invasive and proliferative cells, including cancer cells and stromal cells. MT1-MMP cleaves extracellular matrix proteins, membrane proteins and other pericellular proteins, thereby changing the cellular microenvironment and regulating signal activation. Critical roles of protease activity in cancer cell proliferation, invasion and metastasis have been demonstrated by many groups. MT1-MMP also has a non-protease activity in that it inhibits the oxygen-dependent suppression of hypoxia-inducible factors (HIFs) via Munc18-1-interacting protein 3 (Mint3) and thereby enhances the expression of HIF target genes. Elevated HIF activity in MT1-MMP-expressing cancer cells is a fundamental mechanism underlying the Warburg effect, a well-known phenomenon where malignant cancer cells exhibit a higher rate of glucose metabolism. Because specific intervention of HIF activation by MT1-MMP suppresses tumor formation by cancer cells in mice, both the proteolytic and non-proteolytic activities of MT1-MMP are important for tumor malignancy and function in an integrated manner. In this review, we summarize recent findings relating to how MT1-MMP activates HIF and its effects on cancer cells and stromal cells.

Yang J, Wang C, Zhang Z, et al.
Curcumin inhibits the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.
APMIS. 2017; 125(2):134-140 [PubMed] Related Publications
Prostate cancer is one of the most common malignancies in men, and it urgently demands precise interventions that target the signaling pathways implicated in its initiation, progression, and metastasis. The Notch-1 signaling pathway is closely associated with the pathophysiology of prostate cancer. This study investigated the antitumor effects and mechanisms of curcumin, which is a well-known natural compound from curcuminoids, in prostate cancer cells. Viability, proliferation, and migration were analyzed in two prostate cancer cell lines, DU145 and PC3, after curcumin treatment. Whether the Notch-1 signaling pathway is involved in the antitumor effects of curcumin was examined. Curcumin inhibited the survival and proliferation of PC3 and DU145 cells in a dose- and time-dependent manner and inhibited DU145 migration. Curcumin did not affect the expression of Notch-1 or its active product NICD, but it did inhibit the expression of MT1-MMP and MMP2 proteins in DU145 cells. We found that curcumin inhibited the DNA-binding ability of NICD in DU145 cells. In conclusion, curcumin inhibited the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.

Li Z, Takino T, Endo Y, Sato H
Activation of MMP-9 by membrane type-1 MMP/MMP-2 axis stimulates tumor metastasis.
Cancer Sci. 2017; 108(3):347-353 [PubMed] Free Access to Full Article Related Publications
An artificial receptor for proMMP-9 was created by fusing tissue inhibitor of MMP-1 (TIMP-1) with type II transmembrane mosaic serine protease (MSP-T1). Expression of MSP-T1 in 293T cells induced binding of proMMP-9, which was processed by MMP-2 activated by membrane type 1 MMP (MT1-MMP). HT1080 cells transfected with the MSP-T1 gene produced activated MMP-9 in collagen gel, and addition of proMMP-2 to the culture augmented it, which resulted in intensive collagen digestion. These cells metastasized into chick embryonic liver more than control cells. Treatment of HT1080 cells with concanavalin A in the presence of exogenous proMMP-2 induced activation of not only proMMP-2 but also proMMP-9. Knockdown of MT1-MMP or TIMP-2 expression with siRNA suppressed activation of both proMMP-2 and proMMP-9. Transfection of TIMP-1 siRNA suppressed cell binding and activation of proMMP-9, but not proMMP-2 activation. Knockdown of a disintegrin and metalloproteinase 10 (ADAM10) expression reduced cell binding and processing of proMMP-9. These results suggest that proMMP-9, which binds to a receptor complex containing TIMP-1 and ADAM10, is activated by the MT1-MMP/MMP-2 axis, and MMP-9 thus activated stimulates cellular proteolysis and metastasis.

Iizuka S, Abdullah C, Buschman MD, et al.
The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma.
Oncotarget. 2016; 7(48):78473-78486 [PubMed] Free Access to Full Article Related Publications
Metastatic cancer cells are characterized by their ability to degrade and invade through extracellular matrix. We previously showed that the Tks adaptor proteins, Tks4 and Tks5, are required for invadopodia formation and/or function in Src-transformed fibroblasts and a number of human cancer cell types. In this study, we investigated the role of Tks adaptor proteins in melanoma cell invasion and metastasis. Knockdown of either Tks4 or Tks5 in both mouse and human melanoma cell lines resulted in a decreased ability to form invadopodia and degrade extracellular matrix. In addition, Tks-knockdown melanoma cells had decreased proliferation in a 3-dimensional type l collagen matrix, but not in 2-dimensional culture conditions. We also investigated the role of Tks proteins in melanoma progression in vivo using xenografts and experimental metastasis assays. Consistent with our in vitro results, reduction of Tks proteins markedly reduced subcutaneous melanoma growth as well as metastatic growth in the lung. We explored the clinical relevance of Tks protein expression in human melanoma specimens using a tissue microarray. Compared to non-malignant nevi, both Tks proteins were highly expressed in melanoma tissues. Moreover, metastatic melanoma cases showed higher expression of Tks5 than primary melanoma cases. Taken together, these findings suggest the importance of Tks adaptor proteins in melanoma growth and metastasis in vivo, likely via functional invadopodia formation.

Cepeda MA, Pelling JJ, Evered CL, et al.
Less is more: low expression of MT1-MMP is optimal to promote migration and tumourigenesis of breast cancer cells.
Mol Cancer. 2016; 15(1):65 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Membrane Type-1 Matrix Metalloproteinase (MT1-MMP) is a multifunctional protease implicated in metastatic progression ostensibly due to its ability to degrade extracellular matrix (ECM) components and allow migration of cells through the basement membrane. Despite in vitro studies demonstrating this principle, this knowledge has not translated into the use of MMP inhibitors (MMPi) as effective cancer therapeutics, or been corroborated by evidence of in vivo ECM degradation mediated by MT1-MMP, suggesting that our understanding of the role of MT1-MMP in cancer progression is incomplete.
METHODS: MCF-7 and MDA-MB 231 breast cancer cell lines were created that stably overexpress different levels of MT1-MMP. Using 2D culture, we analyzed proMMP-2 activation (gelatin zymography), ECM degradation (fluorescent gelatin), ERK signaling (immunoblot), cell migration (transwell/scratch closure/time-lapse imaging), and viability (colorimetric substrate) to assess how different MT1-MMP levels affect these cellular parameters. We also utilized Matrigel 3D cell culture and avian embryos to examine how different levels of MT1-MMP expression affect morphological changes in 3D culture, and tumourigenecity and extravasation efficiency in vivo.
RESULTS: In 2D culture, breast cancer cells expressing high levels of MT1-MMP were capable of widespread ECM degradation and TIMP-2-mediated proMMP-2 activation, but were not the most migratory. Instead, cells expressing low levels of MT1-MMP were the most migratory, and demonstrated increased viability and ERK activation. In 3D culture, MCF-7 breast cancer cells expressing low levels of MT1-MMP demonstrated an invasive protrusive phenotype, whereas cells expressing high levels of MT1-MMP demonstrated loss of colony structure and cell fragment release. Similarly, in vivo analysis demonstrated increased tumourigenecity and metastatic capability for cells expressing low levels of MT1-MMP, whereas cells expressing high levels were devoid of these qualities despite the production of functional MT1-MMP protein.
CONCLUSIONS: This study demonstrates that excessive ECM degradation mediated by high levels of MT1-MMP is not associated with cell migration and tumourigenesis, while low levels of MT1-MMP promote invasion and vascularization in vivo.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MT1G, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999