MT1G

Gene Summary

Gene:MT1G; metallothionein 1G
Aliases: MT1, MT1K
Location:16q13
Summary:-
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:metallothionein-1G
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MT1G (cancer-related)

Yang J, Wang C, Zhang Z, et al.
Curcumin inhibits the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.
APMIS. 2017; 125(2):134-140 [PubMed] Related Publications
Prostate cancer is one of the most common malignancies in men, and it urgently demands precise interventions that target the signaling pathways implicated in its initiation, progression, and metastasis. The Notch-1 signaling pathway is closely associated with the pathophysiology of prostate cancer. This study investigated the antitumor effects and mechanisms of curcumin, which is a well-known natural compound from curcuminoids, in prostate cancer cells. Viability, proliferation, and migration were analyzed in two prostate cancer cell lines, DU145 and PC3, after curcumin treatment. Whether the Notch-1 signaling pathway is involved in the antitumor effects of curcumin was examined. Curcumin inhibited the survival and proliferation of PC3 and DU145 cells in a dose- and time-dependent manner and inhibited DU145 migration. Curcumin did not affect the expression of Notch-1 or its active product NICD, but it did inhibit the expression of MT1-MMP and MMP2 proteins in DU145 cells. We found that curcumin inhibited the DNA-binding ability of NICD in DU145 cells. In conclusion, curcumin inhibited the survival and metastasis of prostate cancer cells via the Notch-1 signaling pathway.

Ezzoukhry Z, Henriet E, Piquet L, et al.
TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking.
Eur J Cell Biol. 2016; 95(11):503-512 [PubMed] Related Publications
Transforming growth factor-β1 (TGF-β1) is an important player in chronic liver diseases inducing fibrogenesis and hepatocellular carcinoma (HCC) development. TGF-β1 promotes pleiotropic modifications at the cellular and matrix microenvironment levels. TGF-β1 was described to enhance production of type I collagen and its associated cross-linking enzyme, the lysyl oxidase-like2 (LOXL2). In addition, TGF-β1 and type I collagen are potent inducers of invadosomes. Indeed, type I collagen fibers induce the formation of active linear invadosomes through the discoidin domain receptor 1 (DDR1). The goal of our study was to address the role of TGF-β1 in collagen cross-linking and its impact on the formation of linear invadosomes in liver cancer cells. We first report a significant correlation between expressions of TGF-β1, and type I collagen, LOXL2, DDR1 and MT1-MMP in human HCCs. We demonstrate that TGF-β1 promotes a Smad4-dependent up-regulation of DDR1, together with LOXL2, in cultured HCC cells. Moreover, we show that LOXL2-induced collagen cross-linking enhances linear invadosome formation. Altogether, our data demonstrate that TGF-β1 favors linear invadosome formation through the expressions of both the inducers, such as collagen and LOXL2, and the components such as DDR1 and MT1-MMP of linear invadosomes in cancer cells. Meanwhile, our data uncover a new TGF-β1-dependent regulation of DDR1 expression.

Sakr M, Takino T, Sabit H, et al.
miR-150-5p and miR-133a suppress glioma cell proliferation and migration through targeting membrane-type-1 matrix metalloproteinase.
Gene. 2016; 587(2):155-62 [PubMed] Related Publications
Gliomas are the most frequent primary tumors of the brain, and there is no successful treatment for highly malignant gliomas. MicroRNAs (miRNAs) are involved in a variety of biological processes. Recent studies showed that miR-150-5p and miR-133a are downregulated in various human malignancies, and one of target mRNAs was shown to be membrane-type 1 matrix metalloproteinase (MT1-MMP) mRNA. However, their detailed role in the processes of cancer remains to be determined. Here we found that miR-150-5p and miR-133a expression was significantly downregulated in glioma tissues compared with normal tissues, and that MT1-MMP expression was inversely upregulated in glioma tissues. Knockdown of MT1-MMP by specific siRNAs in U87 and U251 glioma cells induced suppression of cell proliferation and invasion/migration. Transfection of miR-150-5p or miR-133a mimics into glioma cell lines reduced MT1-MMP expression and MMP-2 activation by these cells, and cell proliferation and invasion/migration were also suppressed by it. Co-transfection of specific inhibitor oligo DNA for miR-150-5p or miR-133a abrogated miR-150-5p or miR-133a mimic's actions, respectively. These results suggest that miR-150-5p and miR-133a may suppress malignancy of gliomas by targeting MT1-MMP, and could be used as an anti-metastatic therapy for glioma patients.

Kim D, Jung J, You E, et al.
mDia1 regulates breast cancer invasion by controlling membrane type 1-matrix metalloproteinase localization.
Oncotarget. 2016; 7(14):17829-43 [PubMed] Free Access to Full Article Related Publications
Mammalian diaphanous-related formin 1 (mDia1) expression has been linked with progression of malignant cancers in various tissues. However, the precise molecular mechanism underlying mDia1-mediated invasion in cancer cells has not been fully elucidated. In this study, we found that mDia1 is upregulated in invasive breast cancer cells. Knockdown of mDia1 in invasive breast cancer profoundly reduced invasive activity by controlling cellular localization of membrane type 1-matrix metalloproteinase (MT1-MMP) through interaction with microtubule tracks. Gene silencing and ectopic expression of the active form of mDia1 showed that mDia1 plays a key role in the intracellular trafficking of MT1-MMP to the plasma membrane through microtubules. We also demonstrated that highly invasive breast cancer cells possessed invasive activity in a 3D culture system, which was significantly reduced upon silencing mDia1 or MT1-MMP. Furthermore, mDia1-deficient cells cultured in 3D matrix showed impaired expression of the cancer stem cell marker genes, CD44 and CD133. Collectively, our findings suggest that regulation of cellular trafficking and microtubule-mediated localization of MT1-MMP by mDia1 is likely important in breast cancer invasion through the expression of cancer stem cell genes.

Ziółko E, Kokot T, Skubis A, et al.
The profile of melatonin receptors gene expression and genes associated with their activity in colorectal cancer: a preliminary report.
J Biol Regul Homeost Agents. 2015 Oct-Dec; 29(4):823-8 [PubMed] Related Publications
The antiproliferative and immunomodulatory effects of melatonin (MLT) have been demonstrated in a variety of neoplasms including colorectal cancer (CRC). In humans and other mammals, MLT acts on target tissues through membrane and retinoid nuclear receptors. The aim of this study was to evaluate transcription activity of melatonin receptors and genes associated with regulation of their activity in colorectal adenocarcinoma tissues in relation to clinical stage of cancer. A total of 24 pairs of surgically removed tumoral and healthy (marginal) tissue samples from colorectal cancer patients at clinical stages I-II and III-IV were collected. As an additional control, twenty normal samples were tak¬en from people whose large intestine tissues were reported as non-tumoral after colonoscopy. Expression of mRNA genes was studied by microarray HG-U133A analysis. The analysis of gene expression profile was performed using commercially available oligonucleotide microarrays of HG-U133A. High increase of MT1 mRNA expression levels in all cancerous samples vs non-cancerous tissues was observed. The MT2 mRNA expression levels increased slightly in marginal and malignant samples. Among the genes participating in the cascade of signal transfer in cells activated by MLT via melatonin receptors, we found encoding genes (GNA11, OXTR, TPH1) only for differentiating stage III - IV of CRC. Monitoring the expression levels of genes that are related to melatonin receptors may offer a strategy to anticipate tumour development and estimate the molecular changes that occur during carcinogenesis. The mechanism behind this association needs further elucidation.

Goertzen CG, Dragan M, Turley E, et al.
KISS1R signaling promotes invadopodia formation in human breast cancer cell via β-arrestin2/ERK.
Cell Signal. 2016; 28(3):165-76 [PubMed] Related Publications
Kisspeptins (KPs), peptide products of the KISS1 gene are endogenous ligands for the kisspeptin receptor (KISS1R), a G protein-coupled receptor. In numerous cancers, KISS1R signaling plays anti-metastatic roles. However, we have previously shown that in breast cancer cells lacking the estrogen receptor (ERα), kisspeptin-10 stimulates cell migration and invasion by cross-talking with the epidermal growth factor receptor (EGFR), via a β-arrestin-2-dependent mechanism. To further define the mechanisms by which KISS1R stimulates invasion, we determined the effect of down-regulating KISS1R expression in triple negative breast cancer cells. We found that depletion of KISS1R reduced their mesenchymal phenotype and invasiveness. We show for the first time that KISS1R signaling induces invadopodia formation and activation of key invadopodia proteins, cortactin, cofilin and membrane type I matrix metalloproteases (MT1-MMP). Moreover, KISS1R stimulated invadopodia formation occurs via a new pathway involving a β-arrestin2 and ERK1/2-dependent mechanism, independent of Src. Taken together, our findings suggest that targeting the KISS1R signaling axis might be a promising strategy to inhibit invasiveness and metastasis.

Heo SH, Lee JY, Yang KM, Park KS
ELK3 Expression Correlates With Cell Migration, Invasion, and Membrane Type 1-Matrix Metalloproteinase Expression in MDA-MB-231 Breast Cancer Cells.
Gene Expr. 2015; 16(4):197-203 [PubMed] Related Publications
ELK3 is a member of the Ets family of transcription factors. Its expression is associated with angiogenesis, vasculogenesis, and chondrogenesis. ELK3 inhibits endothelial migration and tube formation through the regulation of MT1-MMP transcription. This study assessed the function of ELK3 in breast cancer (BC) cells by comparing its expression between basal and luminal cells in silico and in vitro. In silico analysis showed that ELK3 expression was higher in the more aggressive basal BC cells than in luminal BC cells. Similarly, in vitro analysis showed that ELK3 mRNA and protein expression was higher in basal BC cells than in normal cells and luminal BC cells. To investigate whether ELK3 regulates basal cell migration or invasion, knockdown was achieved by siRNA in the basal BC cell line MDA-MB-231. Inhibition of ELK3 expression decreased cell migration and invasion and downregulated MT1-MMP, the expression of which is positively correlated with tumor cell invasion. In silico analysis revealed that ELK3 expression was associated with that of MT1-MMP in several BC cell lines (0.98 Pearson correlation coefficient). Though MT1-MMP expression was upregulated upon ELK3 nuclear translocation, ELK3 did not directly bind to the 1.3-kb promoter region of the MT1-MMP gene. These results suggest that ELK3 plays a positive role in the metastasis of BC cells by indirectly regulating MT1-MMP expression.

Song X, Sun X, Ma G, et al.
Family association study between melatonin receptor gene polymorphisms and polycystic ovary syndrome in Han Chinese.
Eur J Obstet Gynecol Reprod Biol. 2015; 195:108-12 [PubMed] Related Publications
OBJECTIVE: The melatonin receptor (MTNR) gene, reported to be associated with insulin sensitivity, diabetes and metabolic syndrome, could be a plausible candidate gene for polycystic ovary syndrome (PCOS). This study was designed to investigate whether an association exists between two single nucleotide polymorphism (SNP) variants (rs2119882 and rs10830963) of the MTNR gene and PCOS in Han Chinese.
STUDY DESIGN: In total, 263 family trios (789 participants) were enrolled in this family-based transmission disequilibrium test (TDT). Genotypes were obtained by sequencing. In total, 135 trios of rs2119882 and 127 trios of rs10830963 were tested.
RESULTS: An association was detected between rs2119882 (p=0.0209) and PCOS, suggesting that the MTNR gene may indicate increased susceptibility to PCOS in Chinese. No significant association was found for rs10830963 (transmitted:non-transmitted=76:51, p=0.1573). The association between the MTNR gene variants and clinical characteristics of women with PCOS was investigated. CC genotype carriers had higher levels of clinical and metabolic features than the TC and TT genotypes. A significant difference in transmission of allele C of rs2119882 was found between obese and non-obese women with PCOS (Chi-squared=5.5983, p=0.018).
CONCLUSION: This study may provide a basis for further studies of the MTNR gene in the aetiology of PCOS.

Takino T, Nakada M, Li Z, et al.
Tip60 regulates MT1-MMP transcription and invasion of glioblastoma cells through NF-κB pathway.
Clin Exp Metastasis. 2016; 33(1):45-52 [PubMed] Related Publications
A histone acetyltransferase Tat-interacting protein 60 kDa (Tip60) regulates the DNA damage response by acetylating histone and remodeling chromatin. In addition to histone acetyltransferase activity, Tip60 is known to regulate a variety of cellular functions, including gene expression, DNA damage response, cell migration and apoptosis. Lower expression of Tip60 is observed in lymphomas, melanomas, breast, colon, and lung cancer. It is widely accepted that Tip60 functions as a tumor suppressor. However, a role of Tip60 in gliomas still remains unclear. In this study, we investigated the role of Tip60 in the malignant behavior of human gliomas. By quantitative RT-PCR analysis using fresh human brain tumor tissues from 55 patients, we found that lower Tip60 expression and higher membrane-type 1 matrix metalloproteinase (MT1-MMP) expression are associated with advanced tumor grade in glioma tissues. Knockdown of Tip60 in glioblastoma cells promoted cell adhesion, spreading and MT1-MMP transcription and thereby invasion, which was suppressed by inhibition of MT1-MMP and nuclear factor-kappa B (NF-κB) activity. We demonstrate for the first time that tumor suppressor Tip60 down-regulates cell adhesion and MT1-MMP expression and thereby invasion of glioblastoma cells by suppressing NF-κB pathway.

Trombetta-Lima M, Winnischofer SM, Demasi MA, et al.
Isolation and characterization of novel RECK tumor suppressor gene splice variants.
Oncotarget. 2015; 6(32):33120-33 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme is the most common and lethal of the central nervous system glial-derived tumors. RECK suppresses tumor invasion by negatively regulating at least three members of the matrix metalloproteinase family: MMP-9, MMP-2, and MT1-MMP. A positive correlation has been observed between the abundance of RECK expression in tumor samples and a more favorable prognosis for patients with several types of tumors. In the present study, novel alternatively spliced variants of the RECK gene: RECK-B and RECK-I were isolated by RT-PCR and sequenced. The expression levels and profiles of these alternative RECK transcripts, as well as canonical RECK were determined in tissue samples of malignant astrocytomas of different grades and in a normal tissue RNA panel by qRT-PCR. Our results show that higher canonical RECK expression, accompanied by a higher canonical to alternative transcript expression ratio, positively correlates with higher overall survival rate after chemotherapeutic treatment of GBM patients. U87MG and T98G cells over-expressing the RECK-B alternative variant display higher anchorage-independent clonal growth and do not display modulation of, respectively, MMP-2 and MMP-9 expression. Our findings suggest that RECK transcript variants might have opposite roles in GBM biology and the ratio of their expression levels may be informative for the prognostic outcome of GBM patients.

Shaverdashvili K, Zhang K, Osman I, et al.
MT1-MMP dependent repression of the tumor suppressor SPRY4 contributes to MT1-MMP driven melanoma cell motility.
Oncotarget. 2015; 6(32):33512-22 [PubMed] Free Access to Full Article Related Publications
Metastatic melanoma is the deadliest of all skin cancers. Despite progress in diagnostics and treatment of melanoma, the prognosis for metastatic patients remains poor. We previously showed that Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) is one of the drivers of melanoma metastasis. Classically, MT1-MMP regulates a verity of cellular functions including cell-to-cell interaction and cell-to-matrix communication. Recently, MT1-MMP has been found to also modulate gene expression. To specifically assess MT1-MMP dependent gene regulation in melanoma, microarray gene expression analysis was performed in a melanoma cell line whose metastatic properties depend on the activity of MT1-MMP. We identified the tumor suppressor gene SPRY4 as a new transcriptional target of MT1-MMP that is negatively regulated by the protease. Knockdown of MT1-MMP enhances SPRY4 expression at the mRNA and protein level. SPRY4 expression inversely correlates with that of MT1-MMP in melanoma samples and importantly, correlates with melanoma patient survival. SPRY4 modulates MT1-MMP dependent cell migration such that inhibition of SPRY4 rescues cell migration that has been impaired by MT1-MMP knock down. MT1-MMP decreases SPRY4 in part through an MMP2/RAC1 axis we previously show promotes cell motility downstream of MT1-MMP. These results identify the tumor suppressor SPRY4 as a novel molecular effector of MT1-MMP affecting melanoma cell motility.

Qiu H, Tang X, Ma J, et al.
Notch1 Autoactivation via Transcriptional Regulation of Furin, Which Sustains Notch1 Signaling by Processing Notch1-Activating Proteases ADAM10 and Membrane Type 1 Matrix Metalloproteinase.
Mol Cell Biol. 2015; 35(21):3622-32 [PubMed] Free Access to Full Article Related Publications
Notch1 is an evolutionarily conserved transmembrane receptor involved in melanoma growth. Notch1 is first cleaved by furin in the Golgi apparatus to produce the biologically active heterodimer. Following ligand binding, Notch1 is cleaved at the cell membrane by proteases such as ADAM10 and -17 and membrane type 1 matrix metalloproteinase (MT1-MMP), the latter of which we recently identified as a novel protease involved in Notch1 processing. The final cleavage is γ-secretase dependent and releases the active Notch intracellular domain (NIC). We now demonstrate that Notch1 directly regulates furin expression. Aside from activating Notch1, furin cleaves and activates several proteases, including MT1-MMP, ADAM10, and ADAM17. By chromatin immunoprecipitation and a reporter assay, we demonstrate that Notch1 binds at position -1236 of the furin promoter and drives furin expression. The Notch1-dependent enhancement of furin expression increases the activities of MT1-MMP and ADAM10 but not that of ADAM17, as demonstrated by short hairpin RNA (shRNA) knockdown of furin, and promotes the cleavage of Notch1 itself. These data highlight a novel positive-feedback loop whereby Notch1-dependent furin expression can induce Notch1 signaling by increasing Notch1 processing and by potentiating the activity of the proteases responsible for Notch1 activation. This leads to Notch1 signal amplification, which can promote melanoma tumor growth and progression, as demonstrated by the inhibition of cell migration and invasion upon furin inhibition downstream of Notch1. Disruption of such feedback signaling might represent an avenue for the treatment of melanoma.

Wongprayoon P, Govitrapong P
Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line.
Neurotoxicology. 2015; 50:122-30 [PubMed] Related Publications
Methamphetamine is a well-known psychostimulant drug, the abuse of which is a serious worldwide public health issue. In addition to its addictive effect, methamphetamine exposure has been shown to be associated with neuroinflammation in several brain areas. Several lines of evidence indicate that TNFα plays an important role in the methamphetamine-induced neuroinflammatory processes that result in apoptotic cell death. Many investigators have demonstrated the anti-neuroinflammatory effects of melatonin, but the mechanism by which this occurs still needs to be explored. In this study, we investigated the effect of methamphetamine on TNFα expression and NFκB activation in the neuroblastoma cell line SH-SY5Y. We demonstrated the time-dependent effect of methamphetamine on the induction of TNFα expression as well as IκB degradation and NFκB nuclear translocation. Furthermore, we investigated the effect of melatonin on methamphetamine-induced TNFα overexpression and NFκB activation. The results showed that pretreatment with 100nM melatonin could prevent the TNFα overexpression caused by methamphetamine exposure. This attenuating effect was prevented by pre-incubation with luzindole, an antagonist of the melatonin MT1/MT2 receptors. Furthermore, methamphetamine-induced IκB degradation and NFκB nuclear translocation were also suppressed by pretreatment with melatonin, and pretreatment with luzindole diminished these protective effects. MT2 knockdown by siRNA abrogated the anti-inflammatory effect exerted by melatonin. From these findings, we propose that melatonin exerts its protective effects on methamphetamine-induced neuroinflammation through the membrane receptor, at least in part MT2 subtype, in the SH-SY5Y neuroblastoma cell line.

Mulens-Arias V, Rojas JM, Pérez-Yagüe S, et al.
Polyethylenimine-coated SPION exhibits potential intrinsic anti-metastatic properties inhibiting migration and invasion of pancreatic tumor cells.
J Control Release. 2015; 216:78-92 [PubMed] Related Publications
Due to its aggressive behavior, pancreatic cancer is one of the principal causes of cancer-related deaths. The highly metastatic potential of pancreatic tumor cells demands the development of more effective anti-metastatic approaches for this disease. Although polyethylenimine-coated superparamagnetic iron oxide nanoparticles (PEI-coated SPIONs) have been studied for their utility as transfection agents, little is known of their effect on tumor cell biology. Here we demonstrated that PEI-coated SPIONs have potent inhibitory effects on pancreatic tumor cell migration/invasion, through inhibition of Src kinase and decreased expression of MT1-MMP and MMP2 metalloproteinases. When treated with PEI-coated SPIONs, the pancreatic tumor cell line Pan02 showed reduced invadosome density and thus, a decrease in their ability to invade through basement membrane. These nanoparticles temporarily downmodulated microRNA-21, thereby upregulating the cell migration inhibitors PTEN, PDCD4 and Sprouty-1. PEI-coated SPIONs thus show intrinsic, possibly anti-metastatic properties for modulating pancreatic tumor cell migration machinery, which indicates their potential as anti-metastatic agents for treatment of pancreatic cancer.

Li YY, Zhou CX, Gao Y
Moesin regulates the motility of oral cancer cells via MT1-MMP and E-cadherin/p120-catenin adhesion complex.
Oral Oncol. 2015; 51(10):935-43 [PubMed] Related Publications
OBJECTIVE: The present study aimed to clarify the role of Moesin in oral squamous cell carcinoma (OSCC) progression, especially in regulation of cell motility.
MATERIALS AND METHODS: Immunohistochemistry and western blotting were used to investigate the expression of Moesin, E-cadherin, p120-catenin and MT1-MMP in normal epithelia, dysplasia and OSCCs. Then, Moesin was knockdown by siRNA in OSCC cell lines, WSU-HN6 and CAL27, and the biological role of Moesin in cell adhesion and motility was evaluated by transwell system, cell spreading and aggregation assays. The interactions between Moesin, MT1-MMP and E-cadherin/p120-catenin complex were determined by co-immunoprecipitation and immunofluorescence.
RESULTS: Moesin expression was found decreased in the membrane and increased in cytoplasm during the malignant transformation of oral epithelia, and cytoplasmic overexpression of Moesin correlated with nodal metastasis and poor prognosis of OSCCs. Furthermore, Moesin-silencing induced an increased cell-cell adhesion but decreased invasiveness, which was subsequently demonstrated might due to Moesin-mediated E-cadherin and p120-catenin interaction. Meantime, Moesin-silencing significantly down-regulated MT1-MMP expression, accompanied by reduced cell motility and impaired filopodia formation, which was also observed when MT1-MMP knockdown by RNAi or tissue inhibitor (TIMP2), indicating the involvement of MT1-MMP in Moesin-mediated cell motility. Finally, the relationship between Moesin, E-cadherin and MT1-MMP was confirmed in OSCC tissue samples.
CONCLUSION: Taken together, our results indicate Moesin may regulate cell motility through its interactions with MT1-MMP and E-cadherin/p120-catenin adhesion complex and cytoplasmic expression of Moesin correlates with nodal metastasis and poor prognosis of OSCCs, indicating Moesin may be a potential candidate for targeted gene therapy for OSCCs.

Zhu D, Ye M, Zhang W
E6/E7 oncoproteins of high risk HPV-16 upregulate MT1-MMP, MMP-2 and MMP-9 and promote the migration of cervical cancer cells.
Int J Clin Exp Pathol. 2015; 8(5):4981-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: E6 and E7 of high risk human papillomavirus 16 (HPV16) were reported to correlate with the cervical cancer (CC). And the presence of matrix metalloproteinases (MMPs) has also been indicated to be associated with CC.
METHODS: The present study investigated the expression of MMPs (MT1-MMP, MMP-2 and MMP-9) in CC cells with HPV16-E6/E7 oncoprotein(s) negative or positive, and then determined the regulation of HPV16-E6/E7 oncoproteins on the expression of MMPs (MT1-MMP, MMP-2 and MMP-9) and the migration of cervical cancer Caski and SiHa cells with RNAi technology.
RESULTS: It was demonstrated that the overexpression or the knockdown of HPV16-E6/E7 promoted or reduced MT1-MMP, MMP-2 and MMP-9 in CC cells. And the HPV16-E6, -E7 or -E6E7 influenced the migration of CC cells. The overexpression or the knockdown of them promoted or inhibited the migration of C33A or Caski/SiHa cells. Moreover, the chemical inhibition of MMP-2 or MMP-9 significantly reduced the migration of CC Caski or SiHa cells.
CONCLUSIONS: Our results demonstrated that the E6-HPV16 or E7-HPV16 promoted the activity of MMP-2/9, and contributed to the migration of cervical cells.

Shigemura T, Shiohara M, Kato M, et al.
Superoxide-Generating Nox5α Is Functionally Required for the Human T-Cell Leukemia Virus Type 1-Induced Cell Transformation Phenotype.
J Virol. 2015; 89(17):9080-9 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Human T-cell leukemia virus type 1 (HTLV-1) is associated with adult T-cell leukemia (ATL) and transforms T cells in vitro. To our knowledge, the functional role of reactive oxygen species (ROS)-generating NADPH oxidase 5 (Nox5) in HTLV-1 transformation remains undefined. Here, we found that Nox5α expression was upregulated in 88% of 17 ATL patient samples but not in normal peripheral blood T cells. Upregulation of the Nox5α variant was transcriptionally sustained by the constitutive Janus family tyrosine kinase (Jak)-STAT5 signaling pathway in interleukin-2 (IL-2)-independent HTLV-1-transformed cell lines, including MT1 and MT2, whereas it was transiently induced by the IL-2-triggered Jak-STAT5 axis in uninfected T cells. A Nox inhibitor, diphenylene iodonium, and antioxidants such as N-acetyl cysteine blocked proliferation of MT1 and MT2 cells. Ablation of Nox5α by small interfering RNAs abrogated ROS production, inhibited cellular activities, including proliferation, migration, and survival, and suppressed tumorigenicity in immunodeficient NOG mice. The findings suggest that Nox5α is a key molecule for redox-signal-mediated maintenance of the HTLV-1 transformation phenotype and could be a potential molecular target for therapeutic intervention in cancer development.
IMPORTANCE: HTLV-1 is the first human oncogenic retrovirus shown to be associated with ATL. Despite the extensive study over the years, the mechanism underlying HTLV-1-induced cell transformation is not fully understood. In this study, we addressed the expression and function of ROS-generating Nox family genes in HTLV-1-transformed cells. Our report provides the first evidence that the upregulated expression of Nox5α is associated with the pathological state of ATL peripheral blood mononuclear cells and that Nox5α is an integral component of the Jak-STAT5 signaling pathway in HTLV-1-transformed T cells. Nox5α-derived ROS are critically involved in the regulation of cellular activities, including proliferation, migration, survival, and tumorigenicity, in HTLV-1-transformed cells. These results indicate that Nox5α-derived ROS are functionally required for maintenance of the HTLV-1 transformation phenotype. The finding provides new insight into the redox-dependent mechanism of HTLV-1 transformation and raises an intriguing possibility that Nox5α serves as a potential molecular target to treat HTLV-1-related leukemia.

Arndt A, Kraft K, Wardelmann E, Steinestel K
Lack of Association between Membrane-Type 1 Matrix Metalloproteinase Expression and Clinically Relevant Molecular or Morphologic Tumor Characteristics at the Leading Edge of Invasive Colorectal Carcinoma.
Biomed Res Int. 2015; 2015:185404 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is one of the leading causes of death from cancer in the western world, but tumor biology and clinical course show great interindividual variation. Molecular and morphologic tumor characteristics, such as KRAS/BRAF mutation status, mismatch repair (MMR) protein expression, tumor growth pattern, and tumor cell budding, have been shown to be of key therapeutic and/or prognostic relevance in CRC. Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a membrane-anchored zinc-binding endopeptidase that is expressed at the leading edge of various invasive carcinomas and promotes tumor cell invasion through degradation of the extracellular matrix. The aim of this study was to investigate possible associations between MT1-MMP expression and molecular tumor characteristics as well as morphologic features of tumor aggressiveness in a consecutive series of 79 CRC tissue samples. However, although MT1-MMP was expressed in 41/79 samples (52%), there was no significant association between MT1-MMP expression and KRAS/BRAF mutation status, MMR protein expression, presence of lymphovascular invasion, tumor growth pattern, tumor-infiltrating lymphocytes, or tumor cell budding in our sample cohort (P > 0.05). Thus, we conclude that although MT1-MMP may play a role in CRC invasion, it is not of key relevance to the current models of CRC invasion and aggressiveness.

Ulasov I, Borovjagin AV, Kaverina N, et al.
MT1-MMP silencing by an shRNA-armed glioma-targeted conditionally replicative adenovirus (CRAd) improves its anti-glioma efficacy in vitro and in vivo.
Cancer Lett. 2015; 365(2):240-50 [PubMed] Related Publications
MMP14 (MT1-MMP) is a cell membrane-associated proteinase of the extracellular matrix, whose biological roles vary from angiogenesis to cell proliferation and survival. We recently found a direct correlation between MMP14 expression levels in brain tumors of glioma patients and the disease progression. By using gene silencing as an experimental approach we found that MMP14 knockdown decreases production of pro-angiogenic factors such as VEGF and IL8 and thereby suppresses angiogenesis in glioma tumors. Although the clinical relevance of MMP14 down-regulation and its possible implications for glioma therapy in humans remain unclear, we observed a significant improvement in animal survival upon down-regulation of MMP14 in murine intracranial glioma xenografts infected with MMP14 shRNA-expressing CRAd. We further found that down-regulation of MMP14 in gliomas by combinational treatment with CRAd-S-5/3 and Marimastat, a chemical inhibitor of metalloproteinases, augments suppression of pro-angiogenic factors, caused by the replication-competent adenovirus. We also demonstrated that delivery of MMP14-targeting shRNA by a fiber-modified adenoviral vector to the glioma cells effectively suppresses their proliferation in vitro and in vivo. Thus our data indicate that inhibition of MMP14 expression in tumors in combination with glioma virotherapy could be effectively utilized to suppress angiogenesis and neovascularization of glioma tumors by decreasing production of pro-angiogenic factors.

Li Y, Kuscu C, Banach A, et al.
miR-181a-5p Inhibits Cancer Cell Migration and Angiogenesis via Downregulation of Matrix Metalloproteinase-14.
Cancer Res. 2015; 75(13):2674-85 [PubMed] Free Access to Full Article Related Publications
Upregulation of matrix metalloproteinase MMP-14 (MT1-MMP) is associated with poor prognosis in cancer patients, but it is unclear how MMP-14 becomes elevated in tumors. Here, we show that miR-181a-5p is downregulated in aggressive human breast and colon cancers where its levels correlate inversely with MMP-14 expression. In clinical specimens, enhanced expression of MMP-14 was observed in cancer cells located at the invasive front of tumors where miR-181a-5p was downregulated relative to adjacent normal cells. Bioinformatics analyses defined a potential miR-181a-5p response element within the 3'-untranslated region of MMP-14 that was validated in reporter gene experiments. Ectopic miR-181a-5p reduced MMP-14 expression, whereas miR-181a-5p attenuation elevated MMP-14 expression. In support of a critical relationship between these two genes, miR-181a-5p-mediated reduction of MMP-14 levels was sufficient to decrease cancer cell migration, invasion, and activation of pro-MMP-2. Furthermore, this reduction in MMP-14 levels was sufficient to reduce in vivo invasion and angiogenesis in chick chorioallantoic membrane assays. Taken together, our results establish the regulation of MMP-14 in cancers by miR-181a-5p through a posttranscriptional mechanism, and they further suggest strategies to elevate miR-181a-5p to prevent cancer metastasis.

Clancy JW, Sedgwick A, Rosse C, et al.
Regulated delivery of molecular cargo to invasive tumour-derived microvesicles.
Nat Commun. 2015; 6:6919 [PubMed] Free Access to Full Article Related Publications
Cells release multiple, distinct forms of extracellular vesicles including structures known as microvesicles, which are known to alter the extracellular environment. Despite growing understanding of microvesicle biogenesis, function and contents, mechanisms regulating cargo delivery and enrichment remain largely unknown. Here we demonstrate that in amoeboid-like invasive tumour cell lines, the v-SNARE, VAMP3, regulates delivery of microvesicle cargo such as the membrane-type 1 matrix metalloprotease (MT1-MMP) to shedding microvesicles. MT1-MMP delivery to nascent microvesicles depends on the association of VAMP3 with the tetraspanin CD9 and facilitates the maintenance of amoeboid cell invasion. VAMP3-shRNA expression depletes shed vesicles of MT1-MMP and decreases cell invasiveness when embedded in cross-linked collagen matrices. Finally, we describe functionally similar microvesicles isolated from bodily fluids of ovarian cancer patients. Together these studies demonstrate the importance of microvesicle cargo sorting in matrix degradation and disease progression.

Lodillinsky C, Infante E, Guichard A, et al.
p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer.
Oncogene. 2016; 35(3):344-57 [PubMed] Related Publications
The transition of ductal carcinoma in situ (DCIS) to invasive breast carcinoma requires tumor cells to cross the basement membrane (BM). However, mechanisms underlying BM transmigration are poorly understood. Here, we report that expression of membrane-type 1 (MT1)-matrix metalloproteinase (MMP), a key component of the BM invasion program, increases during breast cancer progression at the in situ to invasive breast carcinoma transition. In the intraductal xenograft model, MT1-MMP is required for BM transmigration of MCF10DCIS.com breast adenocarcinoma cells and is overexpressed in cell clusters overlying focal BM disruptions and at the invasive tumor front. Mirrored upregulation of p63 and MT1-MMP is observed at the edge of MCF10DCIS.com xenograft tumors and p63 is required for induction of MT1-MMP-dependent invasive program in response to microenvironmental signals. Immunohistochemistry and analysis of public database reveal that p63 and MT1-MMP are upregulated in human basal-like breast tumors suggesting that p63/MT1-MMP axis contributes to progression of basal-like breast cancers with elevated p63 and MT1-MMP levels.

Zhang H, Teng X, Liu Z, et al.
Gene expression profile analyze the molecular mechanism of CXCR7 regulating papillary thyroid carcinoma growth and metastasis.
J Exp Clin Cancer Res. 2015; 34:16 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: To detect genetic expression profile alterations after papillary thyroid carcinoma (PTC) cells transfected with chemokine receptor CXCR7 gene by gene microarray, and gain insights into molecular mechanisms of how CXCR7 regulating PTC growth and metastasis.
METHODS: The Human OneArray microarray was used for a complete genome-wide transcript profiling of CXCR7 transfected PTCs (K1-CXCR7 cells), defined as experimental group. Non CXCR7 transfected PTCs (K1 cells) were used as control group. Differential analysis for per gene was performed with a random variance model and t test, p values were adjusted to control the false discovery rate. Gene ontology (GO) on differentially expressed genes to identify the biological processes in modulating the progression of papillary thyroid carcinoma. Pathway analysis was used to evaluate the signaling pathway that differentially expressed genes were involved in. In addition, quantitative real-time polymerase chain reaction (q-PCR) and Western blot were used to verify the top differentially expression genes.
RESULTS: Comparative analysis revealed that the expression level of 1149 genes was changed in response to CXCR7 transfection. After unsupervised hierarchical clustering analysis, 270 differentially expressed genes were filtered, of them 156 genes were up-regulated whereas 114 genes were down-regulated in K1-CXCR7 cells. GO enrichment analysis revealed the differentially expressed genes were mainly involved in biopolymer metabolic process, signal transduction and protein metabolism. Pathway enrichment analysis revealed differentially expressed genes were mainly involved in ECM-receptor interaction, Focal adhesion, MAPK signaling pathway and Cytokine-cytokine receptor interaction pathway. More importantly, the expression level of genes closely associated with tumor growth and metastasis was altered significantly in K1-CXCR7 cells, including up-regulated genes FN1, COL1A1, COL4A1, PDGFRB, LTB, CXCL12, MMP-11, MT1-MMP and down-regulated genes ITGA7, and Notch-1.
CONCLUSIONS: Gene expression profiling analysis of papillary thyroid carcinoma can further delineate the mechanistic insights on how CXCR7 regulating papillary thyroid carcinoma growth and metastasis. CXCR7 may regulate growth and metastasis of papillary thyroid carcinoma via the activation of PI3K/AKT pathway and its downstream NF-κB signaling, as well as the down-regulation of Notch signaling.

Hill SM, Belancio VP, Dauchy RT, et al.
Melatonin: an inhibitor of breast cancer.
Endocr Relat Cancer. 2015; 22(3):R183-204 [PubMed] Free Access to Full Article Related Publications
The present review discusses recent work on melatonin-mediated circadian regulation, the metabolic and molecular signaling mechanisms that are involved in human breast cancer growth, and the associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin suppresses ERα mRNA expression and ERα transcriptional activity via the MT1 receptor. Melatonin also regulates the transactivation of other members of the nuclear receptor superfamily, estrogen-metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (the Warburg effect) and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type-specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways, including inhibition of p38 MAPK and repression of epithelial-mesenchymal transition (EMT). Studies have demonstrated that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models has indicated that LEN-induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer and drives breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms that underpin the epidemiologic demonstration of elevated breast cancer risk in night-shift workers and other individuals who are increasingly exposed to LEN.

Li W, Li S, Deng L, et al.
Decreased MT1-MMP in gastric cancer suppressed cell migration and invasion via regulating MMPs and EMT.
Tumour Biol. 2015; 36(9):6883-9 [PubMed] Related Publications
Membrane type 1-matrix metalloproteinase (MT1-MMP) has been identified to play a significant role in several types of cancers, but little is known about the significance of MT1-MMP in gastric cancer patients. The purpose of this study is to investigate the involvement of MT1-MMP in tumor progression of gastric cancer. MT1-MMP expression levels were examined in gastric cancer tissues and cells, and normal gastric tissues and cells. The effects and molecular mechanisms of MT1-MMP expression on cell proliferation, migration, and invasion were also explored. In our results, MT1-MMP messenger RNA (mRNA) and protein expression levels were significantly increased in gastric cancer tissue. Moreover, the overexpression of MT1-MMP was positively associated with the status of clinical stage and lymph node metastasis through real-time PCR. Furthermore, knocking down MT1-MMP expression significantly suppressed the cell migration and invasion in vitro and regulated the expression of MMPs and epithelial-mesenchymal transition (EMT)-associated genes. In conclusions, our study demonstrates that MT1-MMP was overexpressed in gastric cancer tissue, and reduced expression of MT1-MMP suppressed cell migration, invasion, and through regulating the expression of MMPs and the process of EMT in gastric cancer.

Itoh Y
Membrane-type matrix metalloproteinases: Their functions and regulations.
Matrix Biol. 2015 May-Jul; 44-46:207-23 [PubMed] Related Publications
Membrane-type matrix metalloproteinases (MT-MMPs) form a subgroup of the matrix metalloproteinase (MMP) family, and there are 6 MT-MMPs in humans. MT-MMPs are further sub-classified into type I transmembrane-type (MT1, -MT2-, MT3- and MT5-MMPs) and glycosylphosphatidylinositol (GPI)-anchored type (MT4- and MT6-MMPs). In either case MT-MMPs are tethered to the plasma membrane, and this cell surface expression provides those enzymes with unique functionalities affecting various cellular behaviours. Among the 6 MT-MMPs, MT1-MMP is the most investigated enzyme and many of its roles and regulations have been revealed to date, but the potential roles and regulatory mechanisms of other MT-MMPs are gradually getting clearer as well. Further investigations of MT-MMPs are likely to reveal novel pathophysiological mechanisms and potential therapeutic strategies for different diseases in the future.

Baldassarre T, Watt K, Truesdell P, et al.
Endophilin A2 Promotes TNBC Cell Invasion and Tumor Metastasis.
Mol Cancer Res. 2015; 13(6):1044-55 [PubMed] Related Publications
UNLABELLED: Triple-negative breast cancers (TNBCs) are highly aggressive cancers that lack targeted therapies. However, EGFR is frequently activated in a subset of TNBCs and represents a viable clinical target. Because the endocytic adaptor protein Endophilin A2 (SH3GL1/Endo II) has been implicated in EGFR internalization, we investigated Endo II expression and function in human TNBCs. Endo II expression was high in several TNBC cells compared with normal breast epithelial cells. Stable knockdown (KD) of Endo II was achieved in two TNBC cell lines, and although cell viability was unaffected, defects in receptor-mediated endocytosis were observed. EGFR signaling to Erk and Akt kinases was impaired in Endo II KD cells, and this correlated with reduced rates of EGFR internalization and cell motility. Endo II KD cells also displayed defects in three dimensional (3D) cell invasion, and this correlated with impaired extracellular matrix degradation and internalization of MT1-MMP. Endo II silencing also caused a significant reduction in TNBC tumor growth and lung metastasis in mammary orthotopic tumor xenograft assays. In human breast tumor specimens, Endo II expression was highest in TNBC tumors compared with other subtypes, and at the level of gene expression, high Endo II was associated with reduced relapse-free survival in patients with basal-like breast cancers. Together, these results identify a positive role for Endo II in TNBC tumor metastasis and a potential link with poor prognosis.
IMPLICATIONS: Endophilin A2 and related adaptor proteins represent important signaling hubs to target in metastatic cancers.

Assent D, Bourgot I, Hennuy B, et al.
A membrane-type-1 matrix metalloproteinase (MT1-MMP)-discoidin domain receptor 1 axis regulates collagen-induced apoptosis in breast cancer cells.
PLoS One. 2015; 10(3):e0116006 [PubMed] Free Access to Full Article Related Publications
During tumour dissemination, invading breast carcinoma cells become confronted with a reactive stroma, a type I collagen-rich environment endowed with anti-proliferative and pro-apoptotic properties. To develop metastatic capabilities, tumour cells must acquire the capacity to cope with this novel microenvironment. How cells interact with and respond to their microenvironment during cancer dissemination remains poorly understood. To address the impact of type I collagen on the fate of tumour cells, human breast carcinoma MCF-7 cells were cultured within three-dimensional type I collagen gels (3D COL1). Using this experimental model, we have previously demonstrated that membrane type-1 matrix metalloproteinase (MT1-MMP), a proteinase overexpressed in many aggressive tumours, promotes tumour progression by circumventing the collagen-induced up-regulation of BIK, a pro-apoptotic tumour suppressor, and hence apoptosis. Here we performed a transcriptomic analysis to decipher the molecular mechanisms regulating 3D COL1-induced apoptosis in human breast cancer cells. Control and MT1-MMP expressing MCF-7 cells were cultured on two-dimensional plastic plates or within 3D COL1 and a global transcriptional time-course analysis was performed. Shifting the cells from plastic plates to 3D COL1 activated a complex reprogramming of genes implicated in various biological processes. Bioinformatic analysis revealed a 3D COL1-mediated alteration of key cellular functions including apoptosis, cell proliferation, RNA processing and cytoskeleton remodelling. By using a panel of pharmacological inhibitors, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase specifically activated by collagen, as the initiator of 3D COL1-induced apoptosis. Our data support the concept that MT1-MMP contributes to the inactivation of the DDR1-BIK signalling axis through the cleavage of collagen fibres and/or the alteration of DDR1 receptor signalling unit, without triggering a drastic remodelling of the transcriptome of MCF-7 cells.

Bouris P, Skandalis SS, Piperigkou Z, et al.
Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells.
Matrix Biol. 2015; 43:42-60 [PubMed] Related Publications
The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10+ cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10+ cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR-ERK signaling pathway. In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.

Oshima H, Nakayama M, Han TS, et al.
Suppressing TGFβ signaling in regenerating epithelia in an inflammatory microenvironment is sufficient to cause invasive intestinal cancer.
Cancer Res. 2015; 75(4):766-76 [PubMed] Related Publications
Genetic alterations in the TGFβ signaling pathway in combination with oncogenic alterations lead to cancer development in the intestines. However, the mechanisms of TGFβ signaling suppression in malignant progression of intestinal tumors have not yet been fully understood. We have examined Apc(Δ716) Tgfbr2(ΔIEC) compound mutant mice that carry mutations in Apc and Tgfbr2 genes in the intestinal epithelial cells. We found inflammatory microenvironment only in the invasive intestinal adenocarcinomas but not in noninvasive benign polyps of the same mice. We thus treated simple Tgfbr2(ΔIEC) mice with dextran sodium sulfate (DSS) that causes ulcerative colitis. Importantly, these Tgfbr2(ΔIEC) mice developed invasive colon cancer associated with chronic inflammation. We also found that TGFβ signaling is suppressed in human colitis-associated colon cancer cells. In the mouse invasive tumors, macrophages infiltrated and expressed MT1-MMP, causing MMP2 activation. These results suggest that inflammatory microenvironment contributes to submucosal invasion of TGFβ signaling-repressed epithelial cells through activation of MMP2. We further found that regeneration was impaired in Tgfbr2(ΔIEC) mice for intestinal mucosa damaged by DSS treatment or X-ray irradiation, resulting in the expansion of undifferentiated epithelial cell population. Moreover, organoids of intestinal epithelial cells cultured from irradiated Tgfbr2(ΔIEC) mice formed "long crypts" in Matrigel, suggesting acquisition of an invasive phenotype into the extracellular matrix. These results, taken together, indicate that a simple genetic alteration in the TGFβ signaling pathway in the inflamed and regenerating intestinal mucosa can cause invasive intestinal tumors. Such a mechanism may play a role in the colon carcinogenesis associated with inflammatory bowel disease in humans.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MT1G, Cancer Genetics Web: http://www.cancer-genetics.org/MT1G.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999