Gene Summary

Gene:NEDD4; neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase
Aliases: RPF1, NEDD4-1
Summary:This gene is the founding member of the NEDD4 family of HECT ubiquitin ligases that function in the ubiquitin proteasome system of protein degradation. The encoded protein contains an N-terminal calcium and phospholipid binding C2 domain followed by multiple tryptophan-rich WW domains and, a C-terminal HECT ubiquitin ligase catalytic domain. It plays critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumor suppressor PTEN. [provided by RefSeq, Jul 2016]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:E3 ubiquitin-protein ligase NEDD4
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (47)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Gene Expression Profiling
  • siRNA
  • Protein Binding
  • Neoplasm Proteins
  • Carrier Proteins
  • Neoplastic Cell Transformation
  • Messenger RNA
  • Protein-Serine-Threonine Kinases
  • Protein Structure, Tertiary
  • Prostate Cancer
  • Disease Progression
  • Immunohistochemistry
  • Breast Cancer
  • Biomarkers, Tumor
  • Cancer Gene Expression Regulation
  • Phosphorylation
  • Transforming Growth Factor beta
  • Neoplasm Invasiveness
  • Systems Biology
  • Stomach Cancer
  • Signal Transduction
  • HEK293 Cells
  • Staging
  • PTEN
  • Neoplasm Metastasis
  • Endosomal Sorting Complexes Required for Transport
  • Tumor Suppressor Proteins
  • Ubiquitin
  • Apoptosis
  • Cell Movement
  • Adenocarcinoma
  • Immediate-Early Proteins
  • Western Blotting
  • Pancreatic Cancer
  • Chromosome 15
  • RT-PCR
  • Down-Regulation
  • Mutation
  • Cell Proliferation
  • p53 Protein
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NEDD4 (cancer-related)

Hang X, Zhu S, Di H, et al.
NEDD4 Depletion Inhibits Hepatocellular Carcinoma Growth via Targeting PTEN.
Cell Physiol Biochem. 2016; 39(2):768-79 [PubMed] Related Publications
BACKGROUND/AIMS: Neural precursor cell-expressed developmentally down-regulated gene 4 (NEDD4) plays an important role in tumor cell growth, yet its role in hepatocellular carcinoma (HCC) remains unclear. This study is to establish NEDD4 as a prognostic biomarker by which the survival of HCC patients can be predicted and to reveal the role of NEDD4 in hepatocellular carcinoma cell growth.
METHODS: The expression of NEDD4 in 219 HCC specimens was assessed by immunohistochemistry. Postoperative overall survival and time to recurrence were evaluated by univariate and multivariate analyses. The roles of NEDD4 in hepatocellular carcinoma cell proliferation and invasion were determined.
RESULTS: The patients with low NEDD4 expression tumors had an average cumulative survival of 64.9 ± 6.5 months during follow-up while the patients with high NEDD4 expression tumors had an average cumulative survival of 20.3 ± 15.8 months. NEDD4 silencing inhibited Huh7 cell proliferation and altered cell cytoskeletal assembly, and NEDD4 depletion furthermore seemed to suppress cell migration and invasion. A possible molecular mechanism for the observed effects might be that NEDD4 silence led to an increase in PTEN (phosphatase and tensin homologue) expression, which in turn resulted in the inactivation of STAT3, AKT, and ERK1/2.
CONCLUSION: Our findings indicate that NEDD4 may participate in the HCC progression and may therefore be a potential target for HCC therapy.

Qu Z, Li D, Xu H, et al.
 CUL4B, NEDD4, and UGT1As involve in the TGF-β signalling in hepatocellular carcinoma.
Ann Hepatol. 2016 Jul-Aug; 15(4):568-76 [PubMed] Related Publications
UNLABELLED:  Introduction and Aim. TGF-β signalling is involved in pathogenesis and progress of hepatocellular carcinoma (HCC). This bioinformatics study consequently aims to determine the underlying molecular mechanism of TGF- β activation in HCC cells.
MATERIAL AND METHODS: Dataset GSE10393 was downloaded from Gene Expression Omnibus, including 2 Huh-7 (HCC cell line) samples treated by TGF- β (100 pmol/L, 48 h) and 2 untreated samples. Differentially expressed genes (DEGs) were screened using Limma package (false discovery rate < 0.05 and |log2 fold change| > 1.5), and then enrichment analyses of function, pathway, and disease were performed. In addition, protein-protein interaction (PPI) network was constructed based on the PPI data from multiple databases including INACT, MINT, BioGRID, UniProt, BIND, BindingDB, and SPIKE databases. Transcription factor (TF)-DEG pairs (Bonferroni adjusted p-value < 0.01) from ChEA database and DEG-DEG pairs were used to construct TF-DEG regulatory network. Furthermore, TF-pathway-DEG complex network was constructed by integrating DEG-DEG pairs, TF-DEG pairs, and DEG-pathway pairs.
RESULTS: Totally, 209 DEGs and 30 TFs were identified. The DEGs were significantly enriched in adhesion-related functions. PPI network indicted hub genes such as CUL4B and NEDD4. According to the TF-DEG regulatory network, the two hub genes were targeted by SMAD2, SMAD3, and HNF4A. Besides, the 11 pathways in TF-pathway-DEG network were mainly enriched by UGT1A family and CYP3A7, which were predicted to be regulated by SMAD2, SMAD3, SOX2, TP63, and HNF4A.
CONCLUSIONS: TGF- β might influence biological processes of HCC cells via SMAD2/SMAD3-NEDD4, HNF4A-CUL4B/NEDD4, SOX2/TP63/HNF4A-CYP3A7, and SMAD2/SMAD3/SOX2/TP63/HNF4A-UGT1As regulatory pathways.

Qu MH, Han C, Srivastava AK, et al.
miR-93 promotes TGF-β-induced epithelial-to-mesenchymal transition through downregulation of NEDD4L in lung cancer cells.
Tumour Biol. 2016; 37(4):5645-51 [PubMed] Related Publications
The level of microRNA-93 (miR-93) in tumors has been recently reported to be negatively correlated with survival of lung cancer patients. Considering that the most devastating aspect of lung cancer is metastasis, which can be promoted by transforming growth factor-β (TGF-β)-induced epithelial-to-mesenchymal transition (EMT), we sought to determine whether miR-93 is involved in this process. Here, we report that a previously unidentified target of miR-93, neural precursor cell expressed developmentally downregulated gene 4-like (NEDD4L), is able to mediate TGF-β-mediated EMT in lung cancer cells. miR-93 binds directly to the 3'-UTR of the NEDD4L messenger RNA (mRNA), leading to a downregulation of NEDD4L expression at the protein level. We next demonstrated that the downregulation of NEDD4L enhanced, while overexpression of NEDD4L reduced TGF-β signaling, reflected by increased phosphorylation of SMAD2 in the lung cancer cell line after TGF-β treatment. Furthermore, overexpression of miR-93 in lung cancer cells promoted TGF-β-induced EMT through downregulation of NEDD4L. The analysis of publicly available gene expression array datasets indicates that low NEDD4L expression correlates with poor outcomes among patients with lung cancer, further supporting the oncogenic role of miR-93 in lung tumorigenesis and metastasis.

Yang Q, Zhao J, Cui M, et al.
Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.
J Obstet Gynaecol Res. 2015; 41(12):1959-64 [PubMed] Related Publications
AIM: Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited.
MATERIAL AND METHODS: A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry.
RESULTS: Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05).
CONCLUSION: Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development.

Li D, Xu CY, Cui RJ, et al.
DNA methylation inhibitor, decitabine, promotes MGC803 gastric cancer cell migration and invasion via the upregulation of NEDD4‑1.
Mol Med Rep. 2015; 12(6):8201-8 [PubMed] Related Publications
Gastric cancer is the fourth most common cancer type and the second leading cause of cancer‑associated mortality worldwide. Metastasis is a crucial feature of its progression. DNA methylation provides a key epigenetic signature in the epigenetic regulation pathway, and is implicated in transcriptional regulation. CpG sites, which are associated with gene transcriptional activity, are underrepresented in the mammalian genome and tend to be clustered within CpG islands (CGIs) located in the vicinity of the transcription start sites of the majority of the protein‑coding genes in humans. The DNA methylation inhibitor, decitabine (DAC), has been demonstrated to be active in hematological disorders. The majority of previous studies in cancer cells demonstrated that DAC inhibits cell proliferation and the motility of the cells. However, since demethylation across the entire genome alters the expression of a large number of genes, the effects of DAC in different tumor cell types are difficult to accurately predict. Neural precursor cell‑expressed, developmentally downregulated (NEDD)4‑1, a member of the NEDD4 family, which belongs to the E3‑ubiquitin ligase family, was reported to be highly expressed in a wide range of tumor types, and it activates the phosphoinositide 3‑kinase/Akt pathway by degrading phosphatase and tensin homolog. NEDD4‑1 promotes the migration and invasion of glioma cells via the ubiquitination and subsequent degradation of cyclic nucleotide‑Ras guanine nucleotide exchange factors (CNrasGEFs). In gastric cardia adenocarcinoma, NEDD4‑1 acts as an exceptional prognostic biomarker. In the present study, DAC was revealed to promote the invasive properties of MGC803 gastric cancer cells. NEDD4‑1 targeted the CNrasGEF‑mediated DAC invasion‑promoting activity in MGC803 cells, and CGI methylation in neither the NEDD4 promoter nor the first intron was demonstrated to be associated with this effect. The results of the present study revealed that DAC exerts variable effects in different gastric cancer cell lines and may provide a reference for DAC administration in the clinic.

Chen Y, van de Vijver MJ, Hibshoosh H, et al.
PTEN and NEDD4 in Human Breast Carcinoma.
Pathol Oncol Res. 2016; 22(1):41-7 [PubMed] Free Access to Full Article Related Publications
PTEN is an important tumor suppressor gene that antagonizes the oncogenic PI3K/AKT signaling pathway and has functions in the nucleus for maintaining genome integrity. Although PTEN inactivation by mutation is infrequent in breast cancer, transcript and protein levels are deficient in >25 % of cases. The E3 ubiquitin ligase NEDD4 (also known as NEDD4-1) has been reported to negatively regulate PTEN protein levels through poly-ubiquitination and proteolysis in carcinomas of the prostate, lung, and bladder, but its effect on PTEN in the breast has not been studied extensively. To investigate whether NEDD4 contributes to low PTEN levels in human breast cancer, we analyzed the expression of these proteins by immunohistochemistry across a large Swedish cohort of breast tumor specimens, and their transcript expression levels by microarrays. For both NEDD4 and PTEN, their transcript expression was significantly correlated to their protein expression. However, comparing NEDD4 expression to PTEN expression, either no association or a positive correlation was observed at the protein and transcript levels. This unexpected observation was further corroborated in two independent breast cancer cohorts from The Netherlands Cancer Institute and The Cancer Genome Atlas. Our results suggest that NEDD4 is not responsible for the frequent down-regulation of the PTEN protein in human breast carcinoma.

Zhang Y, Goodfellow R, Li Y, et al.
NEDD4 ubiquitin ligase is a putative oncogene in endometrial cancer that activates IGF-1R/PI3K/Akt signaling.
Gynecol Oncol. 2015; 139(1):127-33 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: The PI3K/Akt pathway is frequently dysregulated in endometrial cancer, the most common gynecologic malignancy. Emerging evidence identifies the ubiquitin ligase NEDD4 as a key regulator of the PI3K/Akt pathway via activation of insulin-like growth factor-1 receptor (IGF-1R). Our objective was to understand the role of NEDD4 in endometrial cancer.
METHODS: NEDD4 expression was assessed by immunohistochemistry in a tissue microarray with 77 endometrial lesions ranging from normal benign endometrium to tumor specimens of varying stage and grade. Studies were extended to a panel of eight endometrial cancer cell lines phenotypically representing the most common endometrial patient tumors.
RESULTS: Immunohistochemistry demonstrated robust staining of NEDD4 in endometrial tumor specimens, with greater NEDD4 expression in the most aggressive tumors. Expression of NEDD4 was detected in a majority of endometrial cancer cell lines surveyed. Exogenous overexpression of murine Nedd4 in endometrial cancer cell lines with modest endogenous NEDD4 expression resulted in a significant increase in the rate of proliferation. Nedd4 overexpression also promoted an increase in cell surface localization of IGF-1R and activation of Akt. Inhibition of PI3K/Akt signaling reversed the enhanced cell growth in Nedd4-overexpressing endometrial cancer cells. In addition, the expression of NEDD4 in endometrial tumors positively correlated with the Akt downstream effector FoxM1.
CONCLUSIONS: This study identifies NEDD4 as a putative oncogene in endometrial cancer that may augment activation of the IGF-1R/PI3K/Akt signaling pathway.

Morrison MM, Williams MM, Vaught DB, et al.
Decreased LRIG1 in fulvestrant-treated luminal breast cancer cells permits ErbB3 upregulation and increased growth.
Oncogene. 2016; 35(9):1143-52 [PubMed] Free Access to Full Article Related Publications
ErbB3, a member of the ErbB family of receptor tyrosine kinases, is a potent activator of phosphatidyl inositol-3 kinase (PI3K) and mammalian target of rapamycin (mTOR) signaling, driving tumor cell survival and therapeutic resistance in breast cancers. In luminal breast cancers, ErbB3 upregulation following treatment with the antiestrogen fulvestrant enhances PI3K/mTOR-mediated cell survival. However, the mechanism by which ErbB3 is upregulated in fulvestrant-treated cells is unknown. We found that ErbB3 protein levels and cell surface presentation were increased following fulvestrant treatment, focusing our attention on proteins that regulate ErbB3 at the cell surface, including Nrdp1, NEDD4 and LRIG1. Among these, only LRIG1 correlated positively with ERα, but inversely with ErbB3 in clinical breast cancer data sets. LRIG1, an estrogen-inducible ErbB downregulator, was decreased in a panel of fulvestrant-treated luminal breast cancer cells. Ectopic LRIG1 expression from an estrogen-independent promoter uncoupled LRIG1 from estrogen regulation, thus sustaining LRIG1 and maintaining low ErbB3 levels in fulvestrant-treated cells. An LRIG1 mutant lacking the ErbB3 interaction motif was insufficient to downregulate ErbB3. Importantly, LRIG1 overexpression improved fulvestrant-mediated growth inhibition, whereas cells expressing the LRIG1 mutant were poorly sensitive to fulvestrant, despite effective ERα downregulation. Consistent with these results, LRIG1 expression correlated positively with increased disease-free survival in antiestrogen-treated breast cancer patients. These data suggest that ERα-dependent expression of LRIG1 dampens ErbB3 signaling in luminal breast cancer cells, and by blocking ERα activity with fulvestrant, LRIG1 is decreased thus permitting ErbB3 accumulation, enhanced ErbB3 signaling to cell survival pathways and blunting therapeutic response to fulvestrant.

Zhao R, Cui T, Han C, et al.
DDB2 modulates TGF-β signal transduction in human ovarian cancer cells by downregulating NEDD4L.
Nucleic Acids Res. 2015; 43(16):7838-49 [PubMed] Free Access to Full Article Related Publications
The expression of DNA damage-binding protein 2 (DDB2) has been linked to the prognosis of ovarian cancer and its underlying transcription regulatory function was proposed to contribute to the favorable treatment outcome. By applying gene microarray analysis, we discovered neural precursor cell expressed, developmentally downregulated 4-Like (NEDD4L) as a previously unidentified downstream gene regulated by DDB2. Mechanistic investigation demonstrated that DDB2 can bind to the promoter region of NEDD4L and recruit enhancer of zeste homolog 2 histone methyltransferase to repress NEDD4L transcription by enhancing histone H3 lysine 27 trimethylation (H3K27me3) at the NEDD4L promoter. Given that NEDD4L plays an important role in constraining transforming growth factor β signaling by targeting activated Smad2/Smad3 for degradation, we investigated the role of DDB2 in the regulation of TGF-β signaling in ovarian cancer cells. Our data indicate that DDB2 enhances TGF-β signal transduction and increases the responsiveness of ovarian cancer cells to TGF-β-induced growth inhibition. The study has uncovered an unappreciated regulatory mode that hinges on the interaction between DDB2 and NEDD4L in human ovarian cancer cells. The novel mechanism proposes the DDB2-mediated fine-tuning of TGF-β signaling and its downstream effects that impinge upon tumor growth in ovarian cancers.

Zou X, Levy-Cohen G, Blank M
Molecular functions of NEDD4 E3 ubiquitin ligases in cancer.
Biochim Biophys Acta. 2015; 1856(1):91-106 [PubMed] Related Publications
The initiation, progression and cure of cancer rely heavily on altered gene expression and posttranslational functions. Protein ubiquitination is a major mechanism for posttranslational reorganization of the genome. This evolutionary conserved cascade, through regulation of protein stability, distribution, and function, governs nearly every biological process in the cell. E3 ubiquitin ligases are pivotal components of the ubiquitination pathway. Genetic alterations, abnormal expression, and dysfunctions of E3s have been implicated in the pathogenesis of a wide spectrum of human malignancies. In this review, we summarize and discuss recent discoveries on the roles of NEDD4 E3s in cancer. Over the past decade, members of this family have increasingly surfaced as fundamental components and critical regulators of molecular pathways central to the pathogenesis and cure of the disease.

Liao CJ, Chi HC, Tsai CY, et al.
A novel small-form NEDD4 regulates cell invasiveness and apoptosis to promote tumor metastasis.
Oncotarget. 2015; 6(11):9341-54 [PubMed] Free Access to Full Article Related Publications
Despite numerous investigations on metastasis, the determinants of metastatic processes remain unclear. We aimed to identify the metastasis-associated genes in hepatocellular carcinoma (HCC). Potent metastatic SK-hep-1 (SK) cells, designated 'SKM', were generated using Transwell assay followed by selection in a mouse model. Genes expressed differentially in SKM and SK cells were identified via microarray analyses. A small form of Neural precursor cell-expressed developmentally downregulated 4 (sNEDD4) was identified to be overexpressed in SKM cells, which was confirmed as a novel transcript using liquid chromatography-mass spectrometry. In clinical specimens, sNEDD4 was significantly overexpressed in tumors and serves as a poor prognostic factor for male patients with HCC (P = 0.035). Upon subcutaneous introduction of sNEDD4-overexpressing SK cells into flanks of nude mice, tumors grew faster than those of the control group. Furthermore, sNEDD4-mediated promotion of tumor metastasis was demonstrated in the orthotopic mouse model. Overexpression of sNEDD4 increased the invasive ability of SK cells through upregulation of matrix metalloproteinase 9 and inhibited serum deprivation-induced apoptosis via upregulation of myeloid cell leukemia 1. In conclusion, sNEDD4 is a novel metastasis-associated gene, which prevents apoptosis under nutrient restriction conditions. The present findings clearly support the prognostic potential of sNEDD4 for HCC.

Boase NA, Kumar S
NEDD4: The founding member of a family of ubiquitin-protein ligases.
Gene. 2015; 557(2):113-22 [PubMed] Related Publications
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.

Goel P, Manning JA, Kumar S
NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins.
Gene. 2015; 557(1):1-10 [PubMed] Related Publications
NEDD4-2 (also known as NEDD4L, neural precursor cell expressed developmentally down-regulated 4-like) is a ubiquitin protein ligase of the Nedd4 family which is known to bind and regulate a number of membrane proteins to aid in their internalization and turnover. Several of the NEDD4-2 substrates include ion channels, such as the epithelial and voltage-gated sodium channels. Given the critical function of NEDD4-2 in regulating membrane proteins, this ligase is essential for the maintenance of cellular homeostasis. In this article we review the biology and function of this important ubiquitin-protein ligase and discuss its pathophysiological significance.

Nourashrafeddin S, Aarabi M, Modarressi MH, et al.
The Evaluation of WBP2NL-Related Genes Expression in Breast Cancer.
Pathol Oncol Res. 2015; 21(2):293-300 [PubMed] Related Publications
Breast cancer is the most frequent cause of mortality in women all around the world; therefore, study on molecular aspects of breast cancer is necessary for finding new biomarkers. Recent studies have shown that WW Binding Protein 2 (WBP2) is an important protein for the oncogenic property of cancer. We have previously evaluated the WW Binding Protein 2 N-Terminal Like (WBP2NL) gene expression in cancerous cell line and breast tumor tissues, and reported changes in expression, which could increase tumorigenic cell growth. However, the molecular mechanisms of WBP2NL and its clinical relevance have not been investigated. In this study, the expression of WBP2NL-related genes in the invasive breast carcinoma and normal breast tissues was evaluated for the first time. Analysis of WBP2NL-related genes expression was performed with reverse transcription-PCR and real time-PCR detection method. The target genes studied were as follow: WW domain containing E3 ubiquitin protein ligase 1(WWP1), membrane associated guanylatekinase containing WW and PDZ domain-1 (MAGI1), neural precursor cell expressed developmentally down-regulated 4 (NEDD4), formin binding protein-4 (FNBP4), BCL2-associated athanogene-3 (BAG3), WW domain-containing oxidoreductase (WWOX), yes-associated protein-1 (YAP1), WW domain containing transcription regulator (WWTR1), member RAS oncogene family (RAB2A), and small G protein signaling modulator 3 (SGSM3). The expression of WWP1, BAG3, and WWTR1 was significantly increased in breast cancer. In contrast, the expression of WWOX, YAP1, RAB2A, and SGSM3 was significantly decreased. The MAGI1 and NEDD4 expression was increased, while the expression of FNBP4 was unchanged. These findings lead us to suggest that WBP2NL might play roles as an anti-apoptotic factor or co-activator to promote breast cancer cell survival and proliferation.

Mujoo K, Choi BK, Huang Z, et al.
Regulation of ERBB3/HER3 signaling in cancer.
Oncotarget. 2014; 5(21):10222-36 [PubMed] Free Access to Full Article Related Publications
ERBB3/HER3 is emerging as a molecular target for various cancers. HER3 is overexpressed and activated in a number of cancer types under the conditions of acquired resistance to other HER family therapeutic interventions such as tyrosine kinase inhibitors and antibody therapies. Regulation of the HER3 expression and signaling involves numerous HER3 interacting proteins. These proteins include PI3K, Shc, and E3 ubiquitin ligases NEDD4 and Nrdp1. Furthermore, recent identification of a number of HER3 oncogenic mutations in colon and gastric cancers elucidate the role of HER3 in cancer development. Despite the strong evidence regarding the role of HER3 in cancer, the current understanding of the regulation of HER3 expression and activation requires additional research. Moreover, the lack of biomarkers for HER3-driven cancer poses a big challenge for the clinical development of HER3 targeting antibodies. Therefore, a better understanding of HER3 regulation should improve the strategies to therapeutically target HER3 for cancer therapy.

Li Z, Li J, Bi P, et al.
Plk1 phosphorylation of PTEN causes a tumor-promoting metabolic state.
Mol Cell Biol. 2014; 34(19):3642-61 [PubMed] Free Access to Full Article Related Publications
One outcome of activation of the phosphatidylinositol 3-kinase (PI3K) pathway is increased aerobic glycolysis, but the upstream signaling events that regulate the PI3K pathway, and thus the Warburg effect, are elusive. Increasing evidence suggests that Plk1, a cell cycle regulator, is also involved in cellular events in addition to mitosis. To test whether Plk1 contributes to activation of the PI3K pathway, and thus aerobic glycolysis, we examined potential targets of Plk1 and identified PTEN as a Plk1 substrate. We hypothesize that Plk1 phosphorylation of PTEN leads to its inactivation, activation of the PI3K pathway, and the Warburg effect. Our data show that overexpression of Plk1 leads to activation of the PI3K pathway and enhanced aerobic glycolysis. In contrast, inhibition of Plk1 causes markedly reduced glucose metabolism in mice. Mechanistically, we show that Plk1 phosphorylation of PTEN and Nedd4-1, an E3 ubiquitin ligase of PTEN, results in PTEN inactivation. Finally, we show that Plk1 phosphorylation of PTEN promotes tumorigenesis in both its phosphatase-dependent and -independent pathways, revealing potentially new drug targets to arrest tumor cell growth.

Rivlin N, Katz S, Doody M, et al.
Rescue of embryonic stem cells from cellular transformation by proteomic stabilization of mutant p53 and conversion into WT conformation.
Proc Natl Acad Sci U S A. 2014; 111(19):7006-11 [PubMed] Free Access to Full Article Related Publications
p53 is a well-known tumor suppressor that is mutated in over 50% of human cancers. These mutations were shown to exhibit gain of oncogenic function compared with the deletion of the gene. Additionally, p53 has fundamental roles in differentiation and development; nevertheless, mutant p53 mice are viable and develop malignant tumors only on adulthood. We set out to reveal the mechanisms by which embryos are protected from mutant p53-induced transformation using ES cells (ESCs) that express a conformational mutant of p53. We found that, despite harboring mutant p53, the ESCs remain pluripotent and benign and have relatively normal karyotype compared with ESCs knocked out for p53. Additionally, using high-content RNA sequencing, we show that p53 is transcriptionally active in response to DNA damage in mutant ESCs and elevates p53 target genes, such as p21 and btg2. We also show that the conformation of mutant p53 protein in ESCs is stabilized to a WT conformation. Through MS-based interactome analyses, we identified a network of proteins, including the CCT complex, USP7, Aurora kinase, Nedd4, and Trim24, that bind mutant p53 and may shift its conformation to a WT form. We propose this conformational shift as a novel mechanism of maintenance of genomic integrity, despite p53 mutation. Harnessing the ability of these protein interactors to transform the oncogenic mutant p53 to the tumor suppressor WT form can be the basis for future development of p53-targeted cancer therapy.

Zeng T, Wang Q, Fu J, et al.
Impeded Nedd4-1-mediated Ras degradation underlies Ras-driven tumorigenesis.
Cell Rep. 2014; 7(3):871-82 [PubMed] Related Publications
RAS genes are among the most frequently mutated proto-oncogenes in cancer. However, how Ras stability is regulated remains largely unknown. Here, we report a regulatory loop involving the E3 ligase Nedd4-1, Ras, and PTEN. We found that Ras signaling stimulates the expression of Nedd4-1, which in turn acts as an E3 ubiquitin ligase that regulates Ras levels. Importantly, Ras activation, either by oncogenic mutations or by epidermal growth factor (EGF) signaling, prevents Nedd4-1-mediated Ras ubiquitination. This leads to Ras-induced Nedd4-1 overexpression, and subsequent degradation of the tumor suppressor PTEN in both human cancer samples and cancer cells. Our study thus unravels the molecular mechanisms underlying the interplay of Ras, Nedd4-1, and PTEN and suggests a basis for the high prevalence of Ras-activating mutations and EGF hypersignaling in cancer.

Bellet MM, Piobbico D, Bartoli D, et al.
NEDD4 controls the expression of GUCD1, a protein upregulated in proliferating liver cells.
Cell Cycle. 2014; 13(12):1902-11 [PubMed] Free Access to Full Article Related Publications
Liver regeneration is a unique means of studying cell proliferation in vivo. Screening of a large cDNA library from regenerating liver has previously allowed us to identify and characterize a cluster of genes encoding proteins with important roles in proliferative processes. Here, by examining different rat and human tissues as well as cell lines, we characterized a highly conserved gene, guanylyl cyclase domain containing 1 (GUCD1), whose modulation occurs in liver regeneration and cell cycle progression in vitro. High-level expression of GUCD1 transcripts was observed in livers from patients with hepatocellular carcinoma. A yeast two-hybrid interaction assay, aimed at identifying any relevant interaction partners of GUCD1, revealed direct interactions with NEDD4-1 (E3 ubiquitin protein ligase neural precursor cell expressed, developmentally downregulated gene 4), resulting in control of GUCD1 stability. Thus, we have characterized expression and function of a ubiquitous protein, GUCD1, which might have a role in regulating normal and abnormal cell growth in the liver.

Sharad S, Ravindranath L, Haffner MC, et al.
Methylation of the PMEPA1 gene, a negative regulator of the androgen receptor in prostate cancer.
Epigenetics. 2014; 9(6):918-27 [PubMed] Free Access to Full Article Related Publications
The prostate transmembrane protein androgen induced 1 (PMEPA1) gene is highly expressed in prostate epithelial cells and is a direct transcriptional target for the androgen receptor (AR). AR protein levels are controlled by the AR-PMEPA1 negative feedback loop through NEDD4-E3 ligase. Reduced expression of PMEPA1 observed in prostate tumors, suggests that loss of PMEPA1 may play critical roles in prostate tumorigenesis. This study focuses on epigenetic mechanisms of reduced PMEPA1 expression in the cancer of the prostate (CaP). Benign (n = 77) and matched malignant (n = 77) prostate epithelial cells were laser capture micro-dissected from optimum cutting temperature embedded frozen prostate sections from 42 Caucasian American (CA) and 35 African American (AA) cases. Purified DNA specimens were analyzed for CpG methylation of the PMEPA1 gene. PMEPA1 mRNA expression levels were evaluated by qRT-PCR. Analysis of PMEPA1 methylation and mRNA expression in the same tumor cell populations indicated a significant inverse correlation between mRNA expression and methylation in CaP (P = 0.0115). We noted higher frequency of CpG methylation within the evaluated first intronic region of the PMEPA1 gene in prostate tumors of CA men as compared with AA. In CaP cell lines, PMEPA1 expression was induced and AR protein levels were diminished in response to treatment with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (decitabine). Cell culture-based studies demonstrated that decitabine restores PMEPA1 expression in AR-positive CaP cell lines. This report reveals the potential role of PMEPA1 gene methylation in the regulation of AR stability. Thus, downregulation of PMEPA1 may result in increased AR protein levels and function in CaP cells, contributing to prostate tumorigenesis.

Huang Z, Choi BK, Mujoo K, et al.
The E3 ubiquitin ligase NEDD4 negatively regulates HER3/ErbB3 level and signaling.
Oncogene. 2015; 34(9):1105-15 [PubMed] Related Publications
HER3/ErbB3, a member of the epidermal growth factor receptor (EGFR) family, has a pivotal role in cancer and is emerging as a therapeutic antibody target. In this study, we identified NEDD4 (neural precursor cell expressed, developmentally downregulated 4) as a novel interaction partner and ubiquitin E3 ligase of human HER3. Using molecular and biochemical approaches, we demonstrated that the C-terminal tail of HER3 interacted with the WW domains of NEDD4 and the interaction was independent of neuregulin-1. Short hairpin RNA knockdown of NEDD4 elevated HER3 levels and resulted in increased HER3 signaling and cancer cell proliferation in vitro and in vivo. A similar inverse relationship between HER3 and NEDD4 levels was observed in prostate cancer tumor tissues. More importantly, the upregulated HER3 expression by NEDD4 knockdown sensitized cancer cells for growth inhibition by an anti-HER3 antibody. Taken together, our results suggest that low NEDD4 levels may predict activation of HER3 signaling and efficacies of anti-HER3 antibody therapies.

Kito Y, Bai J, Goto N, et al.
Pathobiological properties of the ubiquitin ligase Nedd4L in melanoma.
Int J Exp Pathol. 2014; 95(1):24-8 [PubMed] Free Access to Full Article Related Publications
A recent global gene expression profiling study unexpectedly showed that activated oncogenic NRAS may recruit neural precursor cell expressed, developmentally downregulated 4L (Nedd4L; a human homologue of Nedd4-2) in cultured melanoma cells. However, whether Nedd4L was expressed in melanoma tissues or participated in melanoma carcinogenesis remains to be clarified. Here, we investigated the expression status of Nedd4L in human melanocytes, benign nevi and melanoma tissue specimens and subsequently attempted to determine the role of Nedd4L in melanoma cell growth. Immunohistochemical staining revealed that Nedd4L was not present in any non-tumorous melanocytes or in 18 benign nevi tissues, but it was detected in 34 of 79 cutaneous melanomas and 9 of 32 nodal metastatic melanomas. Downregulation of Nedd4L significantly reduced the growth of cultured G361 melanoma cells in vitro. Moreover, exogenous Nedd4L expression significantly promoted the growth of A2058 melanoma cells in vivo in a xenograft assay. The present findings indicate that Nedd4L expression may be increased to facilitate tumour growth in many melanomas.

Zhang H, Nie W, Zhang X, et al.
NEDD4-1 regulates migration and invasion of glioma cells through CNrasGEF ubiquitination in vitro.
PLoS One. 2013; 8(12):e82789 [PubMed] Free Access to Full Article Related Publications
Neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) plays a great role in tumor cell growth, but its function and mechanism in cell invasive behavior are totally unknown. Here we report that NEDD4-1 regulates migration and invasion of malignant glioma cells via triggering ubiquitination of cyclic nucleotide Ras guanine nucleotide exchange factor (CNrasGEF) using cultured glioma cells. NEDD4-1 overexpression promoted cell migration and invasion, while its downregulation specifically inhibited them. However, NEDD4-1 did not affect the proliferation and apoptosis of glioma cells. NEDD4-1 physically interacted with CNrasGEF and promoted its poly-ubiquitination and degradation. Contrary to the effect of NEDD4-1, CNrasGEF downregulation promoted cell migration and invasion, while its overexpression inhibited them. Importantly, downregulation of CNrasGEF facilitated the effect of NEDD4-1-induced cell migration and invasion. Interestingly, aberrant up-regulated NEDD4-1 showed reverse correlation with CNrasGEF protein level but not with its mRNA level in glioma tissues. Combined with the in vitro results, the result of glioma tissues indicated post-translationally modification effect of NEDD4-1 on CNrasGEF. Our study suggests that NEDD4-1 regulates cell migration and invasion through ubiquitination of CNrasGEF in vitro.

Tanksley JP, Chen X, Coffey RJ
NEDD4L is downregulated in colorectal cancer and inhibits canonical WNT signaling.
PLoS One. 2013; 8(11):e81514 [PubMed] Free Access to Full Article Related Publications
The NEDD4 family of E3 ubiquitin ligases includes nine members. Each is a modular protein, containing an N-terminal C2 domain for cell localization, two-to-four central WW domains for substrate recognition, and a C-terminal, catalytic HECT domain, which is responsible for catalyzing the ubiquitylation reaction. Members of this family are known to affect pathways central to the pathogenesis of colorectal cancer, including the WNT, TGFβ, EGFR, and p53 pathways. Recently, NEDD4 mRNA was reported to be overexpressed in colorectal cancer, but tumor stage was not considered in the analysis. Expression of the other family members has not been studied in colorectal cancer. Herein, we determined the expression patterns of all nine NEDD4 family members in 256 patients who presented with disease ranging from premalignant adenoma to stage IV colorectal cancer. NEDD4 mRNA was significantly increased in all stages of colorectal cancer. In contrast, NEDD4L mRNA, the closest homolog to NEDD4, was the most highly downregulated family member, and was significantly downregulated in all tumor stages. We also found NEDD4L protein was significantly decreased by western blotting in colorectal cancer samples compared to adjacent normal mucosa. In addition, NEDD4L, but not catalytically inactive NEDD4L, inhibited canonical WNT signaling at or below the level of β-catenin in vitro. These findings suggest that NEDD4L may play a tumor suppressive role in colorectal cancer, possibly through inhibition of canonical WNT signaling.

Frampton AE, Castellano L, Colombo T, et al.
MicroRNAs cooperatively inhibit a network of tumor suppressor genes to promote pancreatic tumor growth and progression.
Gastroenterology. 2014; 146(1):268-77.e18 [PubMed] Related Publications
BACKGROUND & AIMS: There has not been a broad analysis of the combined effects of altered activities of microRNAs (miRNAs) in pancreatic ductal adenocarcinoma (PDAC) cells, and it is unclear how these might affect tumor progression or patient outcomes.
METHODS: We combined data from miRNA and messenger RNA (mRNA) expression profiles and bioinformatic analyses to identify an miRNA-mRNA regulatory network in PDAC cell lines (PANC-1 and MIA PaCa-2) and in PDAC samples from patients. We used this information to identify miRNAs that contribute most to tumorigenesis.
RESULTS: We identified 3 miRNAs (MIR21, MIR23A, and MIR27A) that acted as cooperative repressors of a network of tumor suppressor genes that included PDCD4, BTG2, and NEDD4L. Inhibition of MIR21, MIR23A, and MIR27A had synergistic effects in reducing proliferation of PDAC cells in culture and growth of xenograft tumors in mice. The level of inhibition was greater than that of inhibition of MIR21 alone. In 91 PDAC samples from patients, high levels of a combination of MIR21, MIR23A, and MIR27A were associated with shorter survival times after surgical resection.
CONCLUSIONS: In an integrated data analysis, we identified functional miRNA-mRNA interactions that contribute to growth of PDACs. These findings indicate that miRNAs act together to promote tumor progression; therapeutic strategies might require inhibition of several miRNAs.

Jung S, Li C, Jeong D, et al.
Oncogenic function of p34SEI-1 via NEDD4‑1‑mediated PTEN ubiquitination/degradation and activation of the PI3K/AKT pathway.
Int J Oncol. 2013; 43(5):1587-95 [PubMed] Related Publications
A 34-KD protein encoded by the SEI-1 gene (p34(SEI‑1)), is a relatively recently discovered oncoprotein that has multiple important biological functions. Our data show that p34(SEI-1) enhances cancer cell survival and promotes tumorigenesis by downregulating the tumor suppressor PTEN, a negative regulator of the PI3K/AKT signaling pathway, and therefore activating the PI3K/AKT signaling pathway. In this process, p34(SEI-1) positively affects NEDD4-1 gene expression both at the transcriptional and protein levels. Furthermore, the expression levels of p34(SEI-1) and NEDD4-1 were found to be coordinated in tumor tissues obtained from patients with breast cancer. We also show that p34(SEI-1) affects the subcellular localization of PTEN.

Sakashita H, Inoue H, Akamine S, et al.
Identification of the NEDD4L gene as a prognostic marker by integrated microarray analysis of copy number and gene expression profiling in non-small cell lung cancer.
Ann Surg Oncol. 2013; 20 Suppl 3:S590-8 [PubMed] Related Publications
PURPOSE: The purpose of this study was to identify prognostic genes by integrated microarray analysis between comparative genomic hybridization and gene expression with laser microdissection in non-small cell lung cancer (NSCLC).
METHODS: Integrated microarray analysis in 11 lung adenocarcinomas was performed, and several genes were identified. Among them, neural precursor cell-expressed developmentally down-regulated 4-like (NEDD4L) was chosen for further characterization. Quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was used to explore the clinicopathological significance of NEDD4L expression in 84 NSCLC patients.
RESULTS: 18q was more frequently lost in advanced lung cancer. Therefore, we selected the NEDD4L gene, located on chromosome 18q, for which reduced expression was significantly correlated with copy number loss. NEDD4L mRNA expression in paired tumor/normal samples from 79 cases of lung cancer was evaluated using real-time PCR analysis. NEDD4L mRNA expression was significantly lower in tumor tissues than in normal lung tissues (p < 0.0001). Clinicopathological factors, such as excessive smoking history, histological grade (moderately and poorly), T stage (T2-4), lymph node metastasis, and pathological stage (stage II-IV), were significantly associated with low NEDD4L expression (p < 0.05). In the low expression group, prognoses were significantly poorer than in the high expression group (p < 0.05).
CONCLUSIONS: Low NEDD4L expression may be a marker of prognosis. This is the first report to describe NEDD4L expression in NSCLC. NEDD4L may be considered a key gene in the progression of NSCLC, and its expression is likely affected by genomic alterations.

Sun Y, Liu PY, Scarlett CJ, et al.
Histone deacetylase 5 blocks neuroblastoma cell differentiation by interacting with N-Myc.
Oncogene. 2014; 33(23):2987-94 [PubMed] Related Publications
The N-Myc oncoprotein induces neuroblastoma, which arises from undifferentiated neuroblasts in the sympathetic nervous system, by modulating gene and protein expression and consequently causing cell differentiation block and cell proliferation. The class IIa histone deacetylase 5 (HDAC5) represses gene transcription, and blocks myoblast, osteoblast and leukemia cell differentiation. Here we showed that N-Myc upregulated HDAC5 expression in neuroblastoma cells. Conversely, HDAC5 repressed the ubiquitin-protein ligase NEDD4 gene expression, increased Aurora A gene expression and consequently upregulated N-Myc protein expression. Genome-wide gene expression analysis and protein co-immunoprecipitation assays revealed that HDAC5 and N-Myc repressed the expression of a common subset of genes by forming a protein complex, whereas HDAC5 and the class III HDAC SIRT2 independently repressed the expression of another common subset of genes without forming a protein complex. Moreover, HDAC5 blocked differentiation and induced proliferation in neuroblastoma cells. Taken together, our data identify HDAC5 as a novel co-factor in N-Myc oncogenesis, and provide the evidence for the potential application of HDAC5 inhibitors in the therapy of N-Myc-induced neuroblastoma and potentially other c-Myc-induced malignancies.

Yeung B, Ho KC, Yang X
WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells.
PLoS One. 2013; 8(4):e61027 [PubMed] Free Access to Full Article Related Publications
The Large Tumor Suppressor 1 (LATS1) is a serine/threonine kinase and tumor suppressor found down-regulated in various human cancers. LATS1 has recently been identified as a central player of the emerging Hippo signaling pathway, which plays important roles in organ size control, tumorigenesis, and stem cell differentiation and renewal, etc. Although mounting evidence supports a role of LATS1 in tumor suppression and tumorigenesis, how LATS1 is regulated at the molecular level is not fully understood. Recently several positive regulators of LATS1 (Mst1/2, MOB1, Kibra, etc) have been identified but how LATS1 is negatively regulated is still largely unknown. We have recently identified Itch, a member of the NEDD4-like family E3 ubiquitin ligases, as a novel negative regulator of LATS1. However, whether other ubiquitin ligases modulate LATS1 stability and function is unclear. By screening many E3 ligases of the NEDD4-like family using over-expression and short-interference RNA knockdown approaches, we have identified WWP1 E3 ligase as another novel negative regulator of LATS1. We have provided in vitro and in vivo evidence that WWP1 is essential for LATS1 stability and negatively regulate LATS1 by promoting LATS1 degradation through polyubiquitination and the 26S proteasome pathway. Importantly, we also showed that degradation of LATS1 is critical in mediating WWP1-induced increased cell proliferation in breast cancer cells. Since WWP1 is an oncogene and LATS1 is a tumor suppressor gene in breast cancer, our studies provide a promising therapeutic strategy in which developed drugs targeting WWP1 cause activation of LATS1 in suppressing breast cancer cell growth.

Yang Z, Yuan XG, Chen J, Lu NH
Is NEDD4-1 a negative regulator of phosphatase and tensin homolog in gastric carcinogenesis?
World J Gastroenterol. 2012; 18(43):6345-8 [PubMed] Free Access to Full Article Related Publications
The expression of phosphatase and tensin homolog (PTEN), a tumor suppressor gene, is frequently down-regulated in gastric carcinomas due to mutation, loss of heterozygosity, and promoter hypermethylation. However, it is unknown if additional mechanisms may account for the down-regulation of PTEN expression. While neuronal precursor cell-expressed developmentally down-regulated 4-1 (NEDD4-1) is believed to be a potential dual regulator of PTEN, there are conflicting reports regarding their interaction. To gain further insight into the role of NEDD4-1 and its association with PTEN in gastric carcinoma development, we measured the protein expression of NEDD4-1 and PTEN in gastric mucosae with various pathological lesions and found that NEDD4-1 increased from normal gastric mucosa to intestinal metaplasia and decreased from dysplasia to gastric carcinoma. These changes did not correlate with PTEN expression changes during gastric carcinogenesis. Moreover, we found similar results in protein levels in the primary tumors and adjacent non-tumorous tissues. These results differ from a previous report showing that expression of NEDD4-1 is up-regulated in gastric carcinomas, and show a more complex pattern of NEDD4-1 gene expression during gastric carcinogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NEDD4, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999