NFATC2

Gene Summary

Gene:NFATC2; nuclear factor of activated T-cells 2
Aliases: NFAT1, NFATP
Location:20q13.2
Summary:This gene is a member of the nuclear factor of activated T cells (NFAT) family. The product of this gene is a DNA-binding protein with a REL-homology region (RHR) and an NFAT-homology region (NHR). This protein is present in the cytosol and only translocates to the nucleus upon T cell receptor (TCR) stimulation, where it becomes a member of the nuclear factors of activated T cells transcription complex. This complex plays a central role in inducing gene transcription during the immune response. Alternate transcriptional splice variants encoding different isoforms have been characterized. [provided by RefSeq, Apr 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:nuclear factor of activated T-cells, cytoplasmic 2
Source:NCBIAccessed: 12 March, 2017

Ontology:

What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (18)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 12 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Survival
  • RNA-Binding Proteins
  • Bone Cancer
  • Cancer Gene Expression Regulation
  • Ewing's Sarcoma
  • Biomarkers, Tumor
  • Transcription Factors
  • Oncogene Fusion Proteins
  • Proto-Oncogene Proteins c-myc
  • Immunohistochemistry
  • Transcription
  • Phosphorylation
  • FISH
  • Mice, Inbred BALB C
  • Signal Transduction
  • Tacrolimus
  • Transfection
  • Apoptosis
  • Neoplasm Proteins
  • Translocation
  • Breast Cancer
  • Neutrophils
  • Tumor Suppressor Proteins
  • TGFB1
  • Gene Expression Profiling
  • Childhood Cancer
  • Gene Rearrangement
  • Chromosome 20
  • Cell Proliferation
  • Adenocarcinoma
  • Promoter Regions
  • Protein Binding
  • Pancreatic Cancer
  • Adolescents
  • Cell Nucleus
  • NFATC2
  • Transcriptional Regulator ERG
  • RTPCR
  • NFATC Transcription Factors
  • EWSR1
  • Young Adult
  • Calmodulin-Binding Proteins
Tag cloud generated 12 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NFATC2 (cancer-related)

Chen P, Shan Z, Zhao J, et al.
NFAT1 promotes cell motility through MMP-3 in esophageal squamous cell carcinoma.
Biomed Pharmacother. 2017; 86:541-546 [PubMed] Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors and the prognosis of patients remains poor. Increasing evidence suggests that nuclear factor of activated T cell (NFAT1) plays an important role in the development and progression of cancers. Herein, we show that NFAT1 was overexpressed in human ESCC, which was significantly associated with advanced tumor stage and lymph node metastasis. Functional studies found that NFAT1 silencing could suppress cell migration and invasion through MMP-3. The data therefore suggest that NFAT1 plays an important adverse role in the development and progression of ESCC, implicating possible application in clinics as a biomarker and a potential new therapeutic target.

Mognol GP, Carneiro FR, Robbs BK, et al.
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player.
Cell Death Dis. 2016; 7:e2199 [PubMed] Free Access to Full Article Related Publications
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca(2+)-regulated members (NFAT1-NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.

Yan L, Zhan C, Wu J, Wang S
Expression profile analysis of head and neck squamous cell carcinomas using data from The Cancer Genome Atlas.
Mol Med Rep. 2016; 13(5):4259-65 [PubMed] Free Access to Full Article Related Publications
Head and neck squamous cell carcinoma (HNSCC) is the major histological type of head and neck cancer and no curative treatments are currently available. Using advanced sequencing technologies, The Cancer Genome Atlas (TCGA) has produced large‑scale sequencing data, which provide unprecedented opportunities to reveal molecular mechanisms of cancer. The present study analyzed the mRNA and micro (mi)RNA expression data of HNSCC and normal control tissues released by the TCGA database using a bioinformatics approach to explore underlying molecular mechanisms. The mRNA and miRNA expression data were downloaded from the TCGA database and differentially expressed genes (DEGs) and miRNAs (DEMs) between HNSCC and normal head and neck tissues were identified using TwoClassDif. Subsequently, the gene functions and pathways which are significantly altered in HNSCC were identified using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Regulatory networks among DEGs and DEMs were then constructed, and transcription factors (TFs) potentially regulating the DEGs and DEMs were determined and a TF ‑ miRNA ‑ gene network was established. A total of 2,594 significant DEGs (1,087 upregulated and 1,507 downregulated), and 25 DEMs (8 upregulated and 17 downregulated) were identified in HNSCC compared with normal control samples. These DEGs were significantly enriched in GOs and KEGG pathways such as mitosis, cell cycle, Wnt, JAK/STAT and TLR signaling pathway. CPBP, NF‑AT1 and miR‑1 were situated in the central hub of the TF ‑ miRNA ‑ gene network, underlining their central roles in regulatory processes specific for HNSCC. The present study enhanced the current understanding of the molecular mechanisms underlying HNSCC and may offer novel strategies for its prevention, diagnosis and treatment.

Baumgart S, Chen NM, Zhang JS, et al.
GSK-3β Governs Inflammation-Induced NFATc2 Signaling Hubs to Promote Pancreatic Cancer Progression.
Mol Cancer Ther. 2016; 15(3):491-502 [PubMed] Related Publications
We aimed to investigate the mechanistic, functional, and therapeutic role of glycogen synthase kinase 3β (GSK-3β) in the regulation and activation of the proinflammatory oncogenic transcription factor nuclear factor of activated T cells (NFATc2) in pancreatic cancer. IHC, qPCR, immunoblotting, immunofluorescence microscopy, and proliferation assays were used to analyze mouse and human tissues and cell lines. Protein-protein interactions and promoter regulation were analyzed by coimmunoprecipitation, DNA pulldown, reporter, and ChIP assays. Preclinical assays were performed using a variety of pancreatic cancer cells lines, xenografts, and a genetically engineered mouse model (GEMM). GSK-3β-dependent SP2 phosphorylation mediates NFATc2 protein stability in the nucleus of pancreatic cancer cells stimulating pancreatic cancer growth. In addition to protein stabilization, GSK-3β also maintains NFATc2 activation through a distinct mechanism involving stabilization of NFATc2-STAT3 complexes independent of SP2 phosphorylation. For NFATc2-STAT3 complex formation, GSK-3β-mediated phosphorylation of STAT3 at Y705 is required to stimulate euchromatin formation of NFAT target promoters, such as cyclin-dependent kinase-6, which promotes tumor growth. Finally, preclinical experiments suggest that targeting the NFATc2-STAT3-GSK-3β module inhibits proliferation and tumor growth and interferes with inflammation-induced pancreatic cancer progression in Kras(G12D) mice. In conclusion, we describe a novel mechanism by which GSK-3β fine-tunes NFATc2 and STAT3 transcriptional networks to integrate upstream signaling events that govern pancreatic cancer progression and growth. Furthermore, the therapeutic potential of GSK-3β is demonstrated for the first time in a relevant Kras and inflammation-induced GEMM for pancreatic cancer.

Ding W, Tong Y, Zhang X, et al.
Study of Arsenic Sulfide in Solid Tumor Cells Reveals Regulation of Nuclear Factors of Activated T-cells by PML and p53.
Sci Rep. 2016; 6:19793 [PubMed] Free Access to Full Article Related Publications
Arsenic sulfide (AS) has excellent cytotoxic activity in acute promyelocytic leukemia (APL) but its activity in solid tumors remains to be explored. Here we show that AS and cyclosporine A (CsA) exerted synergistic inhibitory effect on cell growth and c-Myc expression in HCT116 cells. AS inhibited the expression of PML, c-Myc, NFATc1, NFATc3, and NFATc4, while stimulating the expression of p53 and NFATc2. Knockdown of PML reduced NFATc1, NFATc2, NFATc3 and NFATc4 expression while overexpression of p53 stimulated NFATc2-luciferase activity that was further augmented by AS by binding to a set of p53 responsive elements (PREs) on the NFATc2 promoter. Additionally, overexpression of p53 suppressed NFATc3 and NFATc4. Reciprocally, NFATc3 knockdown enhanced p53 while reducing MDM2 expression indicating that NFATc3 is a negative regulator of p53 while a positive regulator of MDM2, consistent with its tumor-promoting property as knockdown of NFATc3 retarded cell growth in vitro and tumor growth in xenograft. In patients with colon cancer, tumor expression of NFATc2 correlated with superior survival, while nuclear NFATc1 with inferior survival. These results indicate that AS differentially regulates NFAT pathway through PML and p53 and reveal an intricate reciprocal regulatory relationship between NFAT proteins and p53 pathway.

Lucena PI, Faget DV, Pachulec E, et al.
NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains.
Mol Cell Biol. 2016; 36(1):119-31 [PubMed] Free Access to Full Article Related Publications
The NFAT (nuclear factor of activated T cells) family of transcription factors is composed of four calcium-responsive proteins (NFAT1 to -4). The NFAT2 (also called NFATc1) gene encodes the isoforms NFAT2α and NFAT2β that result mainly from alternative initiation exons that provide two different N-terminal transactivation domains. However, the specific roles of the NFAT2 isoforms in cell physiology remain unclear. Because previous studies have shown oncogenic potential for NFAT2, this study emphasized the role of the NFAT2 isoforms in cell transformation. Here, we show that a constitutively active form of NFAT2α (CA-NFAT2α) and CA-NFAT2β distinctly control death and transformation in NIH 3T3 cells. While CA-NFAT2α strongly induces cell transformation, CA-NFAT2β leads to reduced cell proliferation and intense cell death through the upregulation of tumor necrosis factor alpha (TNF-α). CA-NFAT2β also increases cell death and upregulates Fas ligand (FasL) and TNF-α in CD4(+) T cells. Furthermore, we demonstrate that differential roles of NFAT2 isoforms in NIH 3T3 cells depend on the N-terminal domain, where the NFAT2β-specific N-terminal acidic motif is necessary to induce cell death. Interestingly, the NFAT2α isoform is upregulated in Burkitt lymphomas, suggesting an isoform-specific involvement of NFAT2 in cancer development. Finally, our data suggest that alternative N-terminal domains of NFAT2 could provide differential mechanisms for the control of cellular functions.

Fernandez CA, Smith C, Yang W, et al.
Genome-wide analysis links NFATC2 with asparaginase hypersensitivity.
Blood. 2015; 126(1):69-75 [PubMed] Free Access to Full Article Related Publications
Asparaginase is used to treat acute lymphoblastic leukemia (ALL); however, hypersensitivity reactions can lead to suboptimal asparaginase exposure. Our objective was to use a genome-wide approach to identify loci associated with asparaginase hypersensitivity in children with ALL enrolled on St. Jude Children's Research Hospital (SJCRH) protocols Total XIIIA (n = 154), Total XV (n = 498), and Total XVI (n = 271), or Children's Oncology Group protocols POG 9906 (n = 222) and AALL0232 (n = 2163). Germline DNA was genotyped using the Affymetrix 500K, Affymetrix 6.0, or the Illumina Exome BeadChip array. In multivariate logistic regression, the intronic rs6021191 variant in nuclear factor of activated T cells 2 (NFATC2) had the strongest association with hypersensitivity (P = 4.1 × 10(-8); odds ratio [OR] = 3.11). RNA-seq data available from 65 SJCRH ALL tumor samples and 52 Yoruba HapMap samples showed that samples carrying the rs6021191 variant had higher NFATC2 expression compared with noncarriers (P = 1.1 × 10(-3) and 0.03, respectively). The top ranked nonsynonymous polymorphism was rs17885382 in HLA-DRB1 (P = 3.2 × 10(-6); OR = 1.63), which is in near complete linkage disequilibrium with the HLA-DRB1*07:01 allele we previously observed in a candidate gene study. The strongest risk factors for asparaginase allergy are variants within genes regulating the immune response.

Chen X, Liu L, Mims J, et al.
Analysis of DNA methylation and gene expression in radiation-resistant head and neck tumors.
Epigenetics. 2015; 10(6):545-61 [PubMed] Free Access to Full Article Related Publications
Resistance to radiation therapy constitutes a significant challenge in the treatment of head and neck squamous cell cancer (HNSCC). Alteration in DNA methylation is thought to play a role in this resistance. Here, we analyzed DNA methylation changes in a matched model of radiation resistance for HNSCC using the Illumina HumanMethylation450 BeadChip. Our results show that compared to radiation-sensitive cells (SCC-61), radiation-resistant cells (rSCC-61) had a significant increase in DNA methylation. After combining these results with microarray gene expression data, we identified 84 differentially methylated and expressed genes between these 2 cell lines. Ingenuity Pathway Analysis revealed ILK signaling, glucocorticoid receptor signaling, fatty acid α-oxidation, and cell cycle regulation as top canonical pathways associated with radiation resistance. Validation studies focused on CCND2, a protein involved in cell cycle regulation, which was identified as hypermethylated in the promoter region and downregulated in rSCC-61 relative to SCC-61 cells. Treatment of rSCC-61 and SCC-61 with the DNA hypomethylating agent 5-aza-2'deoxycitidine increased CCND2 levels only in rSCC-61 cells, while treatment with the control reagent cytosine arabinoside did not influence the expression of this gene. Further analysis of HNSCC data from The Cancer Genome Atlas found increased methylation in radiation-resistant tumors, consistent with the cell culture data. Our findings point to global DNA methylation status as a biomarker of radiation resistance in HNSCC, and suggest a need for targeted manipulation of DNA methylation to increase radiation response in HNSCC.

Cao K, Wang G, Li W, et al.
Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity.
Oncogene. 2015; 34(49):5960-70 [PubMed] Free Access to Full Article Related Publications
The poor efficacy of the in vivo anti-tumor immune response has been partially attributed to ineffective T-cell responses mounted against the tumor. Fas-FasL-dependent activation-induced cell death (AICD) of T cells is believed to be a major contributor to compromised anti-tumor immunity. The molecular mechanisms of AICD are well-investigated, yet the possibility of regulating AICD for cancer therapy remains to be explored. In this study, we show that histone deacetylase inhibitors (HDACIs) can inhibit apoptosis of CD4(+) T cells within the tumor, thereby enhancing anti-tumor immune responses and suppressing melanoma growth. This inhibitory effect is specific for AICD through suppressing NFAT1-regulated FasL expression on activated CD4(+) T cells. In gld/gld mice with mutation in FasL, the beneficial effect of HDACIs on AICD of infiltrating CD4(+) T cells is not seen, confirming the critical role of FasL regulation in the anti-tumor effect of HDACIs. Importantly, we found that the co-administration of HDACIs and anti-CTLA4 could further enhance the infiltration of CD4(+) T cells and achieve a synergistic therapeutic effect on tumor. Therefore, our study demonstrates that the modulation of AICD of tumor-infiltrating CD4(+) T cells using HDACIs can enhance anti-tumor immune responses, uncovering a novel mechanism underlying the anti-tumor effect of HDACIs.

Kaunisto A, Henry WS, Montaser-Kouhsari L, et al.
NFAT1 promotes intratumoral neutrophil infiltration by regulating IL8 expression in breast cancer.
Mol Oncol. 2015; 9(6):1140-54 [PubMed] Free Access to Full Article Related Publications
NFAT transcription factors are key regulators of gene expression in immune cells. In addition, NFAT1-induced genes play diverse roles in mediating the progression of various solid tumors. Here we show that NFAT1 induces the expression of the IL8 gene by binding to its promoter and leading to IL8 secretion. Thapsigargin stimulation of breast cancer cells induces IL8 expression in an NFAT-dependent manner. Moreover, we show that NFAT1-mediated IL8 production promotes the migration of primary human neutrophils in vitro and also promotes neutrophil infiltration in tumor xenografts. Furthermore, expression of active NFAT1 effectively suppresses the growth of nascent and established tumors by a non cell-autonomous mechanism. Evaluation of breast tumor tissue reveals that while the levels of NFAT1 are similar in tumor cells and normal breast epithelium, cells in the tumor stroma express higher levels of NFAT1 compared to normal stroma. Elevated levels of NFAT1 also correlate with increased neutrophil infiltrate in breast tumors. These data point to a mechanism by which NFAT1 orchestrates the communication between breast cancer cells and host neutrophils during breast cancer progression.

Geismann C, Grohmann F, Sebens S, et al.
c-Rel is a critical mediator of NF-κB-dependent TRAIL resistance of pancreatic cancer cells.
Cell Death Dis. 2014; 5:e1455 [PubMed] Free Access to Full Article Related Publications
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies with an overall life expectancy of 6 months despite current therapies. NF-κB signalling has been shown to be critical for this profound cell-autonomous resistance against chemotherapeutic drugs and death receptor-induced apoptosis, but little is known about the role of the c-Rel subunit in solid cancer and PDAC apoptosis control. In the present study, by analysis of genome-wide patterns of c-Rel-dependent gene expression, we were able to establish c-Rel as a critical regulator of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in PDAC. TRAIL-resistant cells exhibited a strong TRAIL-inducible NF-κB activity, whereas TRAIL-sensitive cells displayed only a small increase in NF-κB-binding activity. Transfection with siRNA against c-Rel sensitized the TRAIL-resistant cells in a manner comparable to siRNA targeting the p65/RelA subunit. Gel-shift analysis revealed that c-Rel is part of the TRAIL-inducible NF-κB complex in PDAC. Array analysis identified NFATc2 as a c-Rel target gene among the 12 strongest TRAIL-inducible genes in apoptosis-resistant cells. In line, siRNA targeting c-Rel strongly reduced TRAIL-induced NFATc2 activity in TRAIL-resistant PDAC cells. Furthermore, siRNA targeting NFATc2 sensitized these PDAC cells against TRAIL-induced apoptosis. Finally, TRAIL-induced expression of COX-2 was diminished through siRNA targeting c-Rel or NFATc2 and pharmacologic inhibition of COX-2 with celecoxib or siRNA targeting COX-2, enhanced TRAIL apoptosis. In conclusion, we were able to delineate a novel c-Rel-, NFATc2- and COX-2-dependent antiapoptotic signalling pathway in PDAC with broad clinical implications for pharmaceutical intervention strategies.

Sadri N, Barroeta J, Pack SD, et al.
Malignant round cell tumor of bone with EWSR1-NFATC2 gene fusion.
Virchows Arch. 2014; 465(2):233-9 [PubMed] Related Publications
Gene rearrangements involving the Ewing sarcoma breakpoint region 1 (EWSR1) gene are seen in a broad range of sarcomas and some nonmesenchymal neoplasms. Ewing sarcoma is molecularly defined by a fusion of the EWSR1 gene (or rarely the related FUS gene) to a member of the E26 transformation-specific (ETS) family of transcription factors, frequently the EWSR1-FLI1 fusion. More recently, EWSR1 gene fusion to non-ETS family members, including the nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 2 (NFATC2) gene, has been reported in a histological variant of Ewing sarcoma. Here, we report a malignant round cell tumor of bone with an EWSR1-NFATC2 fusion gene. This report builds upon the unusual morphological and clinical presentation of bone neoplasms containing an EWSR1-NFATC2 fusion gene.

Mokrani M, Klibi J, Bluteau D, et al.
Smad and NFAT pathways cooperate to induce CD103 expression in human CD8 T lymphocytes.
J Immunol. 2014; 192(5):2471-9 [PubMed] Related Publications
The interaction of integrin αE(CD103)β7, often expressed on tumor-infiltrating T lymphocytes, with its cognate ligand, the epithelial cell marker E-cadherin on tumor cells, plays a major role in antitumor CTL responses. CD103 is induced on CD8 T cells upon TCR engagement and exposure to TGF-β1, abundant within the tumor microenvironment. However, the transcriptional mechanisms underlying the cooperative role of these two signaling pathways in inducing CD103 expression in CD8 T lymphocytes remain unknown. Using a human CTL system model based on a CD8(+)/CD103(-) T cell clone specific of a lung tumor-associated Ag, we demonstrated that the transcription factors Smad2/3 and NFAT-1 are two critical regulators of this process. We also identified promoter and enhancer elements of the human ITGAE gene, encoding CD103, involved in its induction by these transcriptional regulators. Overall, our results explain how TGF-β1 can participate in CD103 expression on locally TCR-engaged Ag-specific CD8 T cells, thus contributing to antitumor CTL responses and cancer cell destruction.

Choi JW, Schroeder MA, Sarkaria JN, Bram RJ
Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.
Cancer Res. 2014; 74(2):484-96 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

Dai W, Wang F, He L, et al.
Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial-mesenchymal transition: partial mediation by the transcription factor NFAT1.
Mol Carcinog. 2015; 54(4):301-11 [PubMed] Related Publications
To investigate the effects and mechanism of genistein on hepatocellular carcinoma. Cell counting kit-8 assays showed that genistein at 3, 6, and 9 µM had no significant cytotoxic effects on HepG2, SMMC-7721, and Bel-7402 cells. Cell scratch and Transwell assays identified that genistein inhibited migration of three cell lines. In three cell lines, genistein enhanced E-cadherin and α-catenin, but reduced N-cadherin and Vimentin at both mRNA and protein levels in a dose-dependent manner. Simultaneously, treatment with genistein suppressed epithelial-mesenchymal transition (EMT) induced by TGF-β. In HepG2 cells, genistein reduced mRNA, and protein expressions of nuclear factor of activated T cells 1 (NFAT1), Abca3, Autotaxin, CD154, and Cox-2. Phorbol 12-myristate 13-acetate (PMA) and ionomycin enhanced activity of NFAT1, reduced E-cadherin and α-catenin protein levels, and increased protein levels of N-cadherin and Vimentin. Transwell demonstrated that PMA and ionomycin reversed the migration inhibitory effects of genistein on HepG2 cells. In vivo, genistein inhibited the intrahepatic metastasis by reversing the EMT, which was correlated with reduced NFAT1 . Genistein inhibited hepatocellular carcinoma cell migration by reversing the EMT, which was partly mediated by NFAT1. The fact that EMT can be reversed by genistein may shed light on the possible mechanisms for its role in liver cancer therapy.

Han S, Tie X, Meng L, et al.
PMA and ionomycin induce glioblastoma cell death: activation-induced cell-death-like phenomena occur in glioma cells.
PLoS One. 2013; 8(10):e76717 [PubMed] Free Access to Full Article Related Publications
Phorbol myristate acetate (PMA) and ionomycin (Io) can induce T cell activation and proliferation. Furthermore, they stimulate activation-induced cell death (AICD) in mature lymphocytes via Fas/Fas ligand (FasL) up-regulation. In this study, we explored the influence of PMA/Io treatment on glioblastoma cells, and found that AICD-like phenomena may also occur in glioma. Using the MTT assay and cell counting, we demonstrated that treatment of PMA/Io significantly inhibited the proliferation of glioma cell lines, U87 and U251. TUNEL assays and transmission electron microscopy revealed that PMA/Io markedly induced U87 and U251 cell apoptosis. Propidium iodide staining and flow cytometry showed that treatment with PMA/Io resulted in an arrestment of cell cycle and an increase in cell death. Using real-time PCR and western blot, we found that PMA/Io up-regulated the expression of Fas and FasL at both mRNA and protein level, which confirmed that PMA/Io induced glioma cell death. Specific knockdown of NFAT1 expression by small hairpin RNA greatly reduced the PMA/Io induced cell death and apoptosis by inhibition of FasL expression. Microarray analysis showed that the expression of NFAT1 significantly correlated with the expression of Fas. The coexistence of Fas with NFAT1 in vivo provides the background for AICD-like phenomena to occur in glioma. These findings demonstrate that PMA/Io can induce glioblastoma cell death through the NFAT1-Fas/FasL pathway. Glioma-related AICD-like phenomena may provide a novel avenue for glioma treatment.

Mittal AK, Chaturvedi NK, Rohlfsen RA, et al.
Role of CTLA4 in the proliferation and survival of chronic lymphocytic leukemia.
PLoS One. 2013; 8(8):e70352 [PubMed] Free Access to Full Article Related Publications
Earlier, we reported that CTLA4 expression is inversely correlated with CD38 expression in chronic lymphocytic leukemia (CLL) cells. However, the specific role of CTLA4 in CLL pathogenesis remains unknown. Therefore, to elucidate the possible role of CTLA4 in CLL pathogenesis, CTLA4 was down-regulated in primary CLL cells. We then evaluated proliferation/survival in these cells using MTT, (3)H-thymidine uptake and Annexin-V apoptosis assays. We also measured expression levels of downstream molecules involved in B-cell proliferation/survival signaling including STAT1, NFATC2, c-Fos, c-Myc, and Bcl-2 using microarray, PCR, western blotting analyses, and a stromal cell culture system. CLL cells with CTLA4 down-regulation demonstrated a significant increase in proliferation and survival along with an increased expression of STAT1, STAT1 phosphorylation, NFATC2, c-Fos phosphorylation, c-Myc, Ki-67 and Bcl-2 molecules. In addition, compared to controls, the CTLA4-downregulated CLL cells showed a decreased frequency of apoptosis, which also correlated with increased expression of Bcl-2. Interestingly, CLL cells from lymph node and CLL cells co-cultured on stroma expressed lower levels of CTLA4 and higher levels of c-Fos, c-Myc, and Bcl-2 compared to CLL control cells. These results indicate that microenvironment-controlled-CTLA4 expression mediates proliferation/survival of CLL cells by regulating the expression/activation of STAT1, NFATC2, c-Fos, c-Myc, and/or Bcl-2.

Tie X, Han S, Meng L, et al.
NFAT1 is highly expressed in, and regulates the invasion of, glioblastoma multiforme cells.
PLoS One. 2013; 8(6):e66008 [PubMed] Free Access to Full Article Related Publications
Members of the nuclear factor of activated T cells (NFAT) family have been identified as regulators of oncogenic transformation in several human malignancies. A prominent member of this family, NFAT1, is associated with tumor cell survival, apoptosis, migration and invasion. Here, we investigated the role of NFAT1 in glioma cells. In 111 clinical samples, microarray analysis demonstrated that NFAT1 was over-expressed in glioblastoma multiforme (GBM), compared with low-grade gliomas, a result confirmed by RT-PCR in 24 clinical samples and in the U87 and U251 cell lines. Immunohistochemistry and immunofluorescence stain indicated that over-expressed NFAT1 was mainly located in the nucleus, where it acted as a transcription factor. After treatment with the NFAT antagonist cyclosporin A (CsA) and FK506, levels of NFAT1 in the nuclei of U87 GBM cells were dramatically reduced. The invasive potential of U87 cells was reduced by the same treatment, as well as by inhibition of NFAT1 expression using small hairpin RNA. Proliferation of U87 cells was unaffected by CsA, FK506 and NFAT1 shRNA transfection. Clustering analysis and Pearson correlation analysis of microarray data showed that the expression of NFAT1 correlated with the expression of the invasion-related genes cyclooxygenase-2 (COX-2), matrix metalloproteinase-7 (MMP-7) and MMP-9, a result confirmed by in vitro analysis. These findings demonstrate that NFAT1 contributes to the invasive potential but not the proliferation of GBM cells, and suggest that CsA may find application as an adjuvant in combined treatment strategies for GBM.

Bisig B, de Reyniès A, Bonnet C, et al.
CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features.
Haematologica. 2013; 98(8):1250-8 [PubMed] Free Access to Full Article Related Publications
Peripheral T-cell lymphoma, not otherwise specified is a heterogeneous group of aggressive neoplasms with indistinct borders. By gene expression profiling we previously reported unsupervised clusters of peripheral T-cell lymphomas, not otherwise specified correlating with CD30 expression. In this work we extended the analysis of peripheral T-cell lymphoma molecular profiles to prototypical CD30(+) peripheral T-cell lymphomas (anaplastic large cell lymphomas), and validated mRNA expression profiles at the protein level. Existing transcriptomic datasets from peripheral T-cell lymphomas, not otherwise specified and anaplastic large cell lymphomas were reanalyzed. Twenty-one markers were selected for immunohistochemical validation on 80 peripheral T-cell lymphoma samples (not otherwise specified, CD30(+) and CD30(-); anaplastic large cell lymphomas, ALK(+) and ALK(-)), and differences between subgroups were assessed. Clinical follow-up was recorded. Compared to CD30(-) tumors, CD30(+) peripheral T-cell lymphomas, not otherwise specified were significantly enriched in ALK(-) anaplastic large cell lymphoma-related genes. By immunohistochemistry, CD30(+) peripheral T-cell lymphomas, not otherwise specified differed significantly from CD30(-) samples [down-regulated expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/activation (CD69, ICOS, CD52, NFATc2); upregulation of JunB and MUM1], while overlapping with anaplastic large cell lymphomas. CD30(-) peripheral T-cell lymphomas, not otherwise specified tended to have an inferior clinical outcome compared to the CD30(+) subgroups. In conclusion, we show molecular and phenotypic features common to CD30(+) peripheral T-cell lymphomas, and significant differences between CD30(-) and CD30(+) peripheral T-cell lymphomas, not otherwise specified, suggesting that CD30 expression might delineate two biologically distinct subgroups.

Jo VY, Antonescu CR, Zhang L, et al.
Cutaneous syncytial myoepithelioma: clinicopathologic characterization in a series of 38 cases.
Am J Surg Pathol. 2013; 37(5):710-8 [PubMed] Free Access to Full Article Related Publications
Cutaneous myoepithelial tumors demonstrate heterogenous morphologic and immunophenotypic features. We previously described, in brief, 7 cases of cutaneous myoepithelioma showing solid syncytial growth of ovoid, spindled, or histiocytoid cells. We now present the clinicopathologic features in a series of 38 cases of this distinctive syncytial variant, which were diagnosed between 1997 and 2012 (mostly seen in consultation). There were 27 men and 11 women, with a median age of 39 years (range, 2 mo to 74 y). Primary anatomic sites were the upper extremity (11, including 2 on the hand), upper limb girdle (3), lower extremity (14; 3 on the foot), back (6), face (2), chest (1), and buttock (1); the typical presentation was as either a polypoid or papular lesion. Tumors were well circumscribed and centered in the dermis and ranged in size from 0.3 to 2.7 cm (median 0.8 cm). Microscopically all tumors showed a solid sheet-like growth of uniformly sized ovoid to spindled or histiocytoid cells with palely eosinophilic syncytial cytoplasm. Nuclei were vesicular with fine chromatin and small or inconspicuous nucleoli and exhibited minimal to no atypia. Mitoses ranged from 0 to 4 per 10 HPF; 28 tumors showed no mitoses. Necrosis and lymphovascular invasion were consistently absent. Adipocytic metaplasia, appearing as superficial fat entrapped within the tumor, was seen in 12 cases. Chondro-osseous differentiation was seen in 1 tumor. All tumors examined were diffusely positive for EMA, and the majority showed diffuse staining for S-100 protein (5 showing focal staining). Keratin staining was focal in 1 of 33 tumors and seen in rare cells in 3 other cases. There was also positivity for GFAP (14/33), SMA (9/13), and p63 (6/11). Most lesions were treated by local excision. The majority of tumors tested (14/17; 82%) were positive by fluorescence in situ hybridization for EWSR1 gene rearrangement; testing for potential fusion partners (PBX1, ZNF444, POU5F1, DUX4, ATF1, CREB1, NR4A3, DDIT3, and NFATc2) was negative in all EWSR1-rearranged tumors. No FUS gene rearrangement was detected in 2 tumors lacking EWSR1 rearrangement. Follow-up information is available for 21 patients (mean follow-up 15 mo). One patient with a positive deep margin developed a local recurrence 51 months after initial biopsy. All other patients with available follow-up information, including 11 who had positive deep margins, are alive with no evidence of disease and no reported metastases. In summary, cutaneous syncytial myoepithelioma is a morphologically distinct variant that more frequently affects men, occurs over a wide age range, and usually presents on the extremities. Tumors are positive for S-100 protein and EMA, and, unlike most myoepithelial neoplasms, keratin staining is infrequent. EWSR1 gene rearrangement is present in nearly all tumors tested and likely involves a novel fusion partner. Prior reports describe some risk of recurrence and metastasis for cutaneous myoepithelial tumors; however, the syncytial variant appears to behave in a benign manner and only rarely recurs locally.

Arbajian E, Magnusson L, Brosjö O, et al.
A benign vascular tumor with a new fusion gene: EWSR1-NFATC1 in hemangioma of the bone.
Am J Surg Pathol. 2013; 37(4):613-6 [PubMed] Related Publications
The EWSR1 gene in chromosome band 22q12 is a promiscuous fusion partner involved in a vast array of tumors characterized by gene fusions. In this study, we report the finding of a new fusion gene, EWSR1-NFATC1, in a hemangioma of the bone; genetic rearrangements have not previously been described in this tumor type. Chromosome banding analysis showed a t(18;22)(q23;q12) translocation as the sole change. Fluorescence in situ hybridization mapping suggested the involvement of each of the 2 partner genes, and reverse transcriptase polymerase chain reaction revealed an in-frame EWSR1-NFATC1 transcript. NFATC1 has not previously been shown to be involved in a fusion chimera. However, NFATC2, encoding another member of the same protein family, is known to be a fusion partner for EWSR1 in a subgroup of Ewing sarcoma. Thus, our findings further broaden the spectrum of neoplasms associated with EWSR1 fusion genes, add a new partner to the growing list of EWSR1 chimeras, and suggest that chromosomal rearrangements of pathogenetic, and possibly also diagnostic, significance can be present in benign vascular bone tumors.

Vázquez-Cedeira M, Lazo PA
Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2.
J Biol Chem. 2012; 287(51):42739-50 [PubMed] Free Access to Full Article Related Publications
Human VRK2 (vaccinia-related kinase 2), a kinase that emerged late in evolution, affects different signaling pathways, and some carcinomas express high levels of VRK2. Invasion by cancer cells has been associated with NFAT1 (nuclear factor of activated T cells) activation and expression of the COX-2 (cyclooxygenase 2) gene. We hypothesized that VRK proteins might play a regulatory role in NFAT1 activation in tumor cells. We demonstrate that VRK2 directly interacts and phosphorylates NFAT1 in Ser-32 within its N-terminal transactivation domain. VRK2 increases NFAT1-dependent transcription by phosphorylation, and this effect is only detected following cell phorbol 12-myristate 13-acetate and ionomycin stimulation and calcineurin activation. This NFAT1 hyperactivation by VRK2 increases COX-2 gene expression through the proximal NFAT1 binding site in the COX-2 gene promoter. Furthermore, VRK2A down-regulation by RNA interference reduces COX-2 expression at transcriptional and protein levels. Therefore, VRK2 down-regulation reduces cell invasion by tumor cells, such as MDA-MB-231 and MDA-MB-435, upon stimulation with phorbol 12-myristate 13-acetate plus ionomycin. These findings identify the first reported target and function of human VRK2 as an active kinase playing a role in regulation of cancer cell invasion through the NFAT pathway and COX-2 expression.

Bala K, Bosco R, Gramolelli S, et al.
Kaposi's sarcoma herpesvirus K15 protein contributes to virus-induced angiogenesis by recruiting PLCγ1 and activating NFAT1-dependent RCAN1 expression.
PLoS Pathog. 2012; 8(9):e1002927 [PubMed] Free Access to Full Article Related Publications
Kaposi's Sarcoma (KS), caused by Kaposi's Sarcoma Herpesvirus (KSHV), is a highly vascularised angiogenic tumor of endothelial cells, characterized by latently KSHV-infected spindle cells and a pronounced inflammatory infiltrate. Several KSHV proteins, including LANA-1 (ORF73), vCyclin (ORF72), vGPCR (ORF74), vIL6 (ORF-K2), vCCL-1 (ORF-K6), vCCL-2 (ORF-K4) and K1 have been shown to exert effects that can lead to the proliferation and atypical differentiation of endothelial cells and/or the secretion of cytokines with angiogenic and inflammatory properties (VEGF, bFGF, IL6, IL8, GROα, and TNFβ). To investigate a role of the KSHV K15 protein in KSHV-mediated angiogenesis, we carried out a genome wide gene expression analysis on primary endothelial cells infected with KSHV wildtype (KSHVwt) and a KSHV K15 deletion mutant (KSHVΔK15). We found RCAN1/DSCR1 (Regulator of Calcineurin 1/Down Syndrome critical region 1), a cellular gene involved in angiogenesis, to be differentially expressed in KSHVwt- vs KSHVΔK15-infected cells. During physiological angiogenesis, expression of RCAN1 in endothelial cells is regulated by VEGF (vascular endothelial growth factor) through a pathway involving the activation of PLCγ1, Calcineurin and NFAT1. We found that K15 directly recruits PLCγ1, and thereby activates Calcineurin/NFAT1-dependent RCAN1 expression which results in the formation of angiogenic tubes. Primary endothelial cells infected with KSHVwt form angiogenic tubes upon activation of the lytic replication cycle. This effect is abrogated when K15 is deleted (KSHVΔK15) or silenced by an siRNA targeting the K15 expression. Our study establishes K15 as one of the KSHV proteins that contribute to KSHV-induced angiogenesis.

Braeuer RR, Zigler M, Kamiya T, et al.
Galectin-3 contributes to melanoma growth and metastasis via regulation of NFAT1 and autotaxin.
Cancer Res. 2012; 72(22):5757-66 [PubMed] Free Access to Full Article Related Publications
Melanoma is the deadliest form of skin cancer in which patients with metastatic disease have a 5-year survival rate of less than 10%. Recently, the overexpression of a β-galactoside binding protein, galectin-3 (LGALS3), has been correlated with metastatic melanoma in patients. We have previously shown that silencing galectin-3 in metastatic melanoma cells reduces tumor growth and metastasis. Gene expression profiling identified the protumorigenic gene autotaxin (ENPP2) to be downregulated after silencing galectin-3. Here we report that galectin-3 regulates autotaxin expression at the transcriptional level by modulating the expression of the transcription factor NFAT1 (NFATC2). Silencing galectin-3 reduced NFAT1 protein expression, which resulted in decreased autotaxin expression and activity. Reexpression of autotaxin in galectin-3 silenced melanoma cells rescues angiogenesis, tumor growth, and metastasis in vivo. Silencing NFAT1 expression in metastatic melanoma cells inhibited tumor growth and metastatic capabilities in vivo. Our data elucidate a previously unidentified mechanism by which galectin-3 regulates autotaxin and assign a novel role for NFAT1 during melanoma progression.

Zhang X, Zhang Z, Cheng J, et al.
Transcription factor NFAT1 activates the mdm2 oncogene independent of p53.
J Biol Chem. 2012; 287(36):30468-76 [PubMed] Free Access to Full Article Related Publications
Although the MDM2-p53 interaction has been well documented, MDM2 overexpression is observed in human cancers with little or no functional p53, suggesting that mdm2 expression is regulated by mechanisms independent of p53. Dysregulation of NFAT signaling is associated with malignant transformation and cancer development and progression. In this study, we demonstrate that the human mdm2 P2 promoter contains a consensus binding site for the NFAT1 transcription factor. NFAT1 directly binds the mdm2 P2 promoter in vitro and in vivo, resulting in the up-regulation of mdm2 transcription. Enforced expression of NFAT1 results in an elevated MDM2 protein level and reduces p53 activation and function in response to DNA damage. Both NFAT1 and MDM2 are highly expressed in human hepatocellular carcinoma tissues, compared with adjacent normal liver tissues. There is a positive correlation between the NFAT1 and MDM2 levels in tumor tissues. The novel function of NFAT1 in the control of MDM2 expression provides a basis for future investigations of the role of NFAT1 in cancer development, progression, and therapy.

Gaudineau B, Fougère M, Guaddachi F, et al.
Lipocalin 2, the TNF-like receptor TWEAKR and its ligand TWEAK act downstream of NFAT1 to regulate breast cancer cell invasion.
J Cell Sci. 2012; 125(Pt 19):4475-86 [PubMed] Related Publications
NFAT1 is a transcription factor that elicits breast carcinoma cells to become invasive, thus contributing to metastasis. The molecular mechanisms by which NFAT1 operates in this respect are still poorly known. Here, we report that NFAT1 increases lipocalin 2 (LCN2) mRNA and protein expression by binding to specific sites in the LCN2 gene promoter region. We show that the LCN2 protein is required downstream of NFAT1 to increase breast cancer cell invasion. We demonstrate that the NFAT1-LCN2 axis is sufficient to regulate expression of the TNF-like receptor TWEAKR at the RNA level and of its ligand, TWEAK, at the protein level. We show, however, that TWEAKR mediates an anti-invasive effect in breast cancer cells whereas, depending on LCN2 expression, TWEAK has either anti- or pro-invasive capacities. Thus, we identify LCN2 and TWEAKR-TWEAK as crucial downstream effectors of NFAT1 that regulate breast cancer cell motility and invasive capacity.

Wang WL, Patel NR, Caragea M, et al.
Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma.
Mod Pathol. 2012; 25(10):1378-83 [PubMed] Related Publications
ERG gene encodes for an Ets family regulatory transcription factor and is involved in recurrent chromosomal translocations found in a subset of acute myeloid leukemias, prostate carcinomas and Ewing sarcomas. The purpose of this study was to examine the utility of an ERG antibody to detect EWSR1-ERG rearranged Ewing sarcomas. A formalin-fixed paraffin-embedded tissue microarray and whole-tissue sections from 32 genetically characterized Ewing sarcomas were examined: 22 with EWSR1-FLI1, 8 with EWSR1-ERG and 2 with EWSR1-NFATC2. Immunohistochemistry was performed using a rabbit anti-ERG monoclonal antibody directed against the C-terminus of the protein and a mouse anti-FLI1 monoclonal antibody against a FLI1 Ets domain (C-terminus) fusion protein. Immunoreactivity was graded for extent and intensity of positive tumor cell nuclei. ERG labeling was seen in 7/8 EWSR1-ERG cases (predominantly diffuse (5+), moderate to strong), while only 3/24 non-EWR1-ERG cases showed labeling (very weak). FLI1 labeling was observed in 29/31 cases regardless of fusion variant; 23 displayed diffuse (5+) strong/moderate labeling (5/7 EWSR1-ERG, 18/22 EWSR1-FLI1). Both EWSR1-NFATC2 cases had weak reactivity with FLI1 and weak or no reactivity for ERG. In conclusion, strong nuclear ERG immunoreactivity is specific for Ewing sarcomas with EWSR1-ERG rearrangement. In contrast, FLI1 was not specific to rearrangement type, likely because of cross reactivity with the highly homologous Ets DNA-binding domain present in the C-terminus of both ERG and FLI1.

Gerlach K, Daniel C, Lehr HA, et al.
Transcription factor NFATc2 controls the emergence of colon cancer associated with IL-6-dependent colitis.
Cancer Res. 2012; 72(17):4340-50 [PubMed] Related Publications
NFAT transcription factors control T-cell activation and function. Specifically, the transcription factor NFATc2 affects the regulation of cell differentiation and growth and plays a critical role in the development of colonic inflammation. Here, we used an experimental model of colitis-associated colorectal carcinoma to investigate the contribution of NFATc2 to the promotion of colonic tumors. Compared with wild-type animals that readily presented with multiple colon tumors, NFATc2-deficient mice were protected from tumor development. This observed decrease in colonic tumor progression was associated with reduced endoscopic inflammation, increased apoptosis of lamina propria T lymphocytes, and significantly reduced levels of the critical proinflammatory cytokines interleukin (IL)-21 and IL-6. Administration of hyper IL-6 abrogated protection from tumor progression in NFATc2-knockout mice and restored tumor incidence to control levels. Taken together, our findings highlight a pivotal role for NFATc2 in the establishment of inflammation-associated colorectal tumors mediated by control of IL-6 expression.

Schmidt A, Oberle N, Weiss EM, et al.
Human regulatory T cells rapidly suppress T cell receptor-induced Ca(2+), NF-κB, and NFAT signaling in conventional T cells.
Sci Signal. 2011; 4(204):ra90 [PubMed] Related Publications
CD4(+)CD25(hi)Foxp3(+) regulatory T cells (T(regs)) are critical mediators of self-tolerance, which is crucial for the prevention of autoimmune disease, but T(regs) can also inhibit antitumor immunity. T(regs) inhibit the proliferation of CD4(+)CD25(-) conventional T cells (T(cons)), as well as the ability of these cells to produce effector cytokines; however, the molecular mechanism of suppression remains unclear. Here, we showed that human T(regs) rapidly suppressed the release of calcium ions (Ca(2+)) from intracellular stores in response to T cell receptor (TCR) activation in T(cons). The inhibition of Ca(2+) signaling resulted in decreased dephosphorylation, and thus decreased activation, of the transcription factor nuclear factor of activated T cells 1 (NFAT1) and reduced the activation of nuclear factor κB (NF-κB). In contrast, Ca(2+)-independent events in T(cons), such as TCR-proximal signaling and activation of the transcription factor activator protein 1 (AP-1), were not affected during coculture with T(regs). Despite suppressing intracellular Ca(2+) mobilization, coculture with T(regs) did not block the generation of inositol 1,4,5-trisphosphate in TCR-stimulated T(cons). The T(reg)-induced suppression of the activity of NFAT and NF-κB and of the expression of the gene encoding the cytokine interleukin-2 was reversed in T(cons) by increasing the concentration of intracellular Ca(2+). Our results elucidate a previously unrecognized and rapid mechanism of T(reg)-mediated suppression. This increased understanding of T(reg) function may be exploited to generate possible therapies for the treatment of autoimmune diseases and cancer.

Baumgart S, Glesel E, Singh G, et al.
Restricted heterochromatin formation links NFATc2 repressor activity with growth promotion in pancreatic cancer.
Gastroenterology. 2012; 142(2):388-98.e1-7 [PubMed] Free Access to Full Article Related Publications
BACKGROUND & AIMS: Transcriptional silencing of the p15(INK4b) tumor suppressor pathway overcomes cellular protection against unrestrained proliferation in cancer. Here we show a novel pathway involving the oncogenic transcription factor nuclear factor of activated T cells (NFAT) c2 targeting a p15(INK4b)-mediated failsafe mechanism to promote pancreatic cancer tumor growth.
METHODS: Immunohistochemistry, real-time polymerase chain reaction, immunoblotting, and immunofluorescence microscopy were used for expression studies. Cancer growth was assessed in vitro by [(3)H]thymidine incorporation, colony formation assays, and in vivo using xenograft tumor models. Protein-protein interactions, promoter regulation, and local histone modifications were analyzed by immunoprecipitation, DNA pull-down, reporter, and chromatin immunoprecipitation assays.
RESULTS: Our study uncovered induction of NFATc2 in late-stage pancreatic intraepithelial neoplasia lesions with increased expression in tumor cell nuclei of advanced cancers. In the nucleus, NFATc2 targets the p15(INK4b) promoter for inducible heterochromatin formation and silencing. NFATc2 binding to its cognate promoter site induces stepwise recruitment of the histone methyltransferase Suv39H1, causes local H3K9 trimethylation, and allows docking of heterochromatin protein HP1γ to the repressor complex. Conversely, inactivation of NFATc2 disrupts this repressor complex assembly and local heterochromatin formation, resulting in restoration of p15(INK4b) expression and inhibition of pancreatic cancer growth in vitro and in vivo.
CONCLUSIONS: Here we describe a novel mechanism for NFATc2-mediated gene regulation and identify a functional link among its repressor activity, the silencing of the suppressor pathway p15(INK4b), and its pancreatic cancer growth regulatory functions. Thus, we provide evidence that inactivation of oncogenic NFATc2 might be an attractive strategy in treatment of pancreatic cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NFATC2, Cancer Genetics Web: http://www.cancer-genetics.org/NFATC2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 12 March, 2017     Cancer Genetics Web, Established 1999