Gene Summary

Gene:MMP3; matrix metallopeptidase 3
Aliases: SL-1, STMY, STR1, CHDS6, MMP-3, STMY1
Summary:Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis. Most MMP's are secreted as inactive proproteins which are activated when cleaved by extracellular proteinases. This gene encodes an enzyme which degrades fibronectin, laminin, collagens III, IV, IX, and X, and cartilage proteoglycans. The enzyme is thought to be involved in wound repair, progression of atherosclerosis, and tumor initiation. The gene is part of a cluster of MMP genes which localize to chromosome 11q22.3. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (27)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 09 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MMP3 (cancer-related)

Chen P, Shan Z, Zhao J, et al.
NFAT1 promotes cell motility through MMP-3 in esophageal squamous cell carcinoma.
Biomed Pharmacother. 2017; 86:541-546 [PubMed] Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors and the prognosis of patients remains poor. Increasing evidence suggests that nuclear factor of activated T cell (NFAT1) plays an important role in the development and progression of cancers. Herein, we show that NFAT1 was overexpressed in human ESCC, which was significantly associated with advanced tumor stage and lymph node metastasis. Functional studies found that NFAT1 silencing could suppress cell migration and invasion through MMP-3. The data therefore suggest that NFAT1 plays an important adverse role in the development and progression of ESCC, implicating possible application in clinics as a biomarker and a potential new therapeutic target.

Yin H, Wang Y, Chen W, et al.
Drug-resistant CXCR4-positive cells have the molecular characteristics of EMT in NSCLC.
Gene. 2016; 594(1):23-29 [PubMed] Related Publications
High expression of Chemokine receptor 4 (CXCR4) is important in tumor invasion, metastasis, drug-resistance and maintenance of stemness in non-small cell lung cancer (NSCLC). We therefore studied the molecular characteristics of drug-resistant CXCR4-positive cells on epithelial-mesenchymal transition (EMT) for the future identification of the tumor cells with the properties of both EMT and stemness. EMT RT(2) Profier PCR Array was performed to determine the expression levels of mRNA genes in A549 with TGF-β1 induced EMT (A549/TGF-β1) and gefitinib-resistant CXCR4-positive cells (A549/GR). TCGA database on the cBio Cancer Genomics Portal website and Gene Network Central (GNC) Pro Tutorial were used to analyze their clinical relevance and pathway interactions. CXCR4 was up-regulated both in TGF-β induced EMT cells and in gefitinib-resistant cells. In 84 mRNA genes related to EMT, 17 mRNA genes were up-regulated in CXCR4-positive population of A549/GR when compared to those in CXCR4 negative fraction, while 66 mRNA genes were up-regulated during TGF-β induced EMT. ITGA5, BMP7, MMP3, VIM, RGS2, ZEB2, TCF3, SNAI2, VCAN, PLEK2, WNT5A, COL3A1, SPARC and FOXC2 were doubly up-regulated during the two biological processes. Kaplan-Meier analysis indicated that the doubly up-regulated ITGA5, RGS2, SNAI2 and PLEK2 mRNA genes were related to poor overall survival in lung adenocarcinoma patients (P=9.291e-6, 0.0090, 3.81e-7 and 0.0013, respectively). In GNC analysis, SNAI2 mRNA gene but not ITGA5, RGS2 and PLEK2 was dependent on the signaling pathway of CXCR4. The molecular characteristics of drug-resistant CXCR4-positive cells have a crosstalk with EMT, which has the potential to find the marker with prognostic value on multiple signaling pathways in NSCLC.

Shi Q, Shi X, Zuo G, et al.
Anticancer effect of 20(S)-ginsenoside Rh2 on HepG2 liver carcinoma cells: Activating GSK-3β and degrading β-catenin.
Oncol Rep. 2016; 36(4):2059-70 [PubMed] Related Publications
20(S)-ginsenoside Rh2 [(S)Rh2] possesses potential to prevent cancer in vitro as well as in vivo, but the underlying mechanism is still unknown. First, we infected HepG2 cells with lentivirus which carries β‑catenin. We detected the pharmacological effects of (S)Rh2 on HepG2 and HepG2‑β‑catenin cells and found that the IC50 of (S)Rh2 exposure on HepG2-β-catenin cells was higher than HepG2 cells. Flow cytometry (FCM) indicated that (S)Rh2 could be arrested in G0/G1 phase and induce early apoptosis in HepG2 and HepG2‑β‑catenin cells. Second, ELISA kit was used to check the activity of glycogen synthase kinase‑3β (GSK‑3β), which was upregulated by (S)Rh2. GSK‑3β inhibitor BIO, was used to verify that (S)Rh2 activated GSK‑3β. PCR and western blotting results indicated that (S)Rh2 could degrade the expression of β‑catenin, which combined with TCF in the nucleus and activate transcription of Wnt target genes, such as Bax, Bcl‑2, cyclin D1, MMP3, which were checked by chromatin immunoprecipitation (ChIP), PCR and western blotting. The results showed that the expression of Bax mRNA and proteins increased, while the cyclin D1, Bcl‑2, MMP3 mRNA and proteins were downregulated in HepG2 and HepG2‑β‑catenin cells which was induced by (S)Rh2. By contrast, with the HepG2-β-catenin + (S)Rh2 group, the expression of other mRNA and proteins in HepG2 + (S)Rh2 group changed significantly. In vivo, experiments were performed using a nude mouse xenograft model to investigate the (S)Rh2 effect. So these results suggested that (S)Rh2 could suppress proliferation, promote apoptosis and inhibit metastasis of HepG2, decrease weight of tumor by downregulating β‑catenin through activating GSK‑3β and the pharmacological effect of (S)Rh2 on HepG2 cells might be weakened by overexpression of β‑catenin.

Pohlig F, Ulrich J, Lenze U, et al.
Glucosamine sulfate suppresses the expression of matrix metalloproteinase-3 in osteosarcoma cells in vitro.
BMC Complement Altern Med. 2016; 16(1):313 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glucosamine, a common dietary supplement, has a possible anti-sarcoma effect. However, an understanding of the underlying mechanism of such an effect is limited. For this study we hypothesized that glucosamine suppresses the basal level of matrix metalloproteinase expression in human osteosarcoma cell lines.
METHODS: We examined the osteosarcoma cell lines, MG-63 and SaOS-2. Cells were exposed to 0, 10, 50 and 100 μg/ml glucosamine sulfate for 48 h and treatment toxicity was determined through measurement of cell viability and proliferation. Relative gene expression of matrix metalloproteinase (MMP)-2, -3 and -9 was quantified by real-time polymerase chain reaction. Protein levels of MMP-2 and -9 were assessed by ELISA.
RESULTS: Administration of 10, 50 or 100 μg/ml glucosamine sulfate had no effect on the cell viability of MG-63 and SaOS-2 cells. A significant reduction of MMP expression in both cell lines was observed only for MMP-3, while a decrease in MMP-9 was seen in SaOS-2 cells. The expression of MMP-2 was not significantly affected in either cell line. Protein level of MMP-3 was reduced in both cell lines upon stimulation with 10 μg/ml glucosamine sulfate whereas for MMP-9 a decrease could only be observed in SaOS-2 cells.
CONCLUSION: In this study, we found a pronounced suppressive effect of glucosamine sulfate particularly on MMP-3 and also MMP-9 mRNA and protein levels in osteosarcoma cell lines in vitro. The data warrants further investigations into the potential anti-tumor efficacy of glucosamine sulfate in osteosarcoma.

Jagadish N, Gupta N, Agarwal S, et al.
Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells.
Tumour Biol. 2016; 37(10):13101-13110 [PubMed] Related Publications
Recently, we demonstrated the association of sperm-associated antigen 9 (SPAG9) expression with breast cancer. Among breast cancer, 15 % of the cancers are diagnosed as triple-negative breast cancers (TNBC) based on hormone receptor status and represent an important clinical challenge because of lack of effective available targeted therapy. Therefore, in the present investigation, plasmid-based small hairpin (small hairpin RNA (shRNA)) approach was used to ablate SPAG9 in aggressive breast cancer cell line model (MDA-MB-231) in order to understand the role of SPAG9 at molecular level in apoptosis, cell cycle, and epithelial-to-mesenchymal transition (EMT) signaling. Our data in MDA-MB-231 cells showed that ablation of SPAG9 resulted in membrane blebbing, increased mitochondrial membrane potential, DNA fragmentation, phosphatidyl serine surface expression, and caspase activation. SPAG9 depletion also resulted in cell cycle arrest in G0-G1 phase and induced cellular senescence. In addition, in in vitro and in vivo xenograft studies, ablation of SPAG9 resulted in upregulation of p21 along with pro-apoptotic molecules such as BAK, BAX, BIM, BID, NOXA, AIF, Cyto-C, PARP1, APAF1, Caspase 3, and Caspase 9 and epithelial marker, E-cadherin. Also, SPAG9-depleted cells showed downregulation of cyclin B1, cyclin D1, cyclin E, CDK1, CDK4, CDK6, BCL2, Bcl-xL, XIAP, cIAP2, MCL1, GRP78, SLUG, SNAIL, TWIST, vimentin, N-cadherin, MMP2, MMP3, MMP9, SMA, and β-catenin. Collectively, our data suggests that SPAG9 promotes tumor growth by inhibiting apoptosis, altering cell cycle, and enhancing EMT signaling in in vitro cells and in vivo mouse model. Hence, SPAG9 may be a potential novel target for therapeutic use in TNBC treatment.

Adiguzel M, Horozoglu C, Kilicoglu O, et al.
MMP-3 gene polymorphisms and Osteosarcoma.
Indian J Exp Biol. 2016; 54(3):175-9 [PubMed] Related Publications
Osteosarcoma (OSA) is the most common adolescence cancer among all primary bone tumors next only to multiplemyeloma. It has a substantially worse prognosis and ability to metastasize to lung. MMPs (matrix metalloproteinases) are among the major proteases that take part in regulation of ECM (extracellular matrix). MMPs play an active role in the formation of the osteoid tissue, rich in collagens and other ECM proteoglycans. They also take part in pro-osteoclast, osteoclast, osteoblast, and osteoid formation. Many members of the MMP gene family have been linked to human cancers. It has been shown that MMPs particularly play a role in the tumor's acquisition of an invasive and metastatic character. In our study, the E45K and T102T polymorphisms of MMP-3 were studied using the PCR-RFLP method in 135 Turkish subjects (54 subjects with osteosarcoma and 81 healthy controls). We found that frequencies of E45K G allele (p:0,010, χ²:6,710, OR:1,429, 95% Cl: 1,019-1,858) and AG genotype (p:0,001, χ²:14,753, OR:2,32, 95% Cl: 1,491-3,626) were elevated in patients compared to controls. Besides, there was a significant difference in.E45K AA genotype between study groups (p:0,004, χ²:8,182, OR: 2,929, 95% Cl: 1,38-6,19). There were no significant differences between any genotypes or allele in the control and patient groups for MMP-3 T102T polymorphism. Our findings indicate that the G allele and AG genotype of MMP-3 E45K polymorphism is associated with increased risk of osteosarcoma in adolescent population of Turkey.

Yang H, Liang J, Zhou J, et al.
Knockdown of RHOC by shRNA suppresses invasion and migration of cholangiocellular carcinoma cells via inhibition of MMP2, MMP3, MMP9 and epithelial-mesenchymal transition.
Mol Med Rep. 2016; 13(6):5255-61 [PubMed] Related Publications
Ras homolog family member C (RHOC) is important during the progression of several types of cancer, including prostate, breast and hepatocellular carcinoma. However, the function of RHOC in cholangiocellular carcinoma (CCC), a highly recurrent and metastatic carcinoma with poor prognosis, remains unclear. The aim of the present study was to investigate the involvement of RHOC in CCC tumor progression. RHOC expression levels were examined in CCC tissues and cells, and adjacent nontumorous bile duct tissues. The effects and molecular mechanisms of RHOC expression on cell migration and invasion were also investigated. The current study demonstrated that RHOC protein was frequently overexpressed in human CCC specimens and CCC cell lines. Downregulation of RHOC inhibited CCC cell invasion and migration partially via inhibition of matrix metalloproteinase 2, 3 and 9 expression. RHOC also modulated the expression of several epithelial-mesenchymal transition (EMT)-associated proteins, including E‑cadherin, vimentin, Slug and Snail, to promote to EMT progression. The present results demonstrated that RHOC is important for the invasion and migration of CCC through simultaneous regulation of MMPs and EMT‑associated protein, suggesting that RHOC is a potential molecular target for CCC treatment.

Riwaldt S, Bauer J, Wehland M, et al.
Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach.
Int J Mol Sci. 2016; 17(4):528 [PubMed] Free Access to Full Article Related Publications
Microgravity induces three-dimensional (3D) growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS) and spheroid non-forming (AD) thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line) after a 24 h-exposure on the Random Positioning Machine (RPM) and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis) and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

Bradbury R, Jiang WG, Cui YX
MDM2 and PSMA Play Inhibitory Roles in Metastatic Breast Cancer Cells Through Regulation of Matrix Metalloproteinases.
Anticancer Res. 2016; 36(3):1143-51 [PubMed] Related Publications
BACKGROUND/AIM: Mouse double minute 2 (MDM2) and prostate-specific membrane antigen (PSMA) are currently under investigation as individual therapeutic targets due to their overexpression in many cancer types, as well as their pro-tumorigenic effect on cells. Recently, knockdown of PSMA was linked to a decrease in MDM2 and matrix metalloproteinase 2 (MMP2) and an increase in MMP3 and MMP13 expression. We aimed to assess the link between PSMA, MDM2 and the MMPs in metastatic breast cancer cell lines.
MATERIALS AND METHODS: Real-time quantitative polymerase chain reaction (PCR) and western blotting were used to assess siRNA-mediated knockdown of MDM2 and PSMA in MDA-MB-231 and ZR-75.1 breast cancer cells. Assays to assess the growth, adhesion, migration and invasion of the cells following siRNA treatment were undertaken. MMP and tissue inhibitor of matrix metalloproteinases (TIMP) levels were assessed via quantitative PCR.
RESULTS: Knockdown of MDM2 resulted in a decrease in PSMA expression levels and vice versa; although this trend was not replicated at the protein level. Knockdown of each of the molecules resulted in a decrease in growth, adhesion, migration and invasive ability of breast cancer cells. Both knockdowns led to a decrease in MMP2 and an increase in MMP3, -10 and -13 gene expression.
CONCLUSION: MDM2 and PSMA may co-regulate the expression of certain MMPs and, thus, the functionality of cells in metastatic breast cancer.

Krishnaveni D, Bhayal AC, Shravan KP, et al.
Heterozygosity of stromelysin-1 (rs3025058) promoter polymorphism is associated with gastric cancer.
Indian J Cancer. 2015 Apr-Jun; 52(2):251-4 [PubMed] Related Publications
BACKGROUND: Gastric cancer (GC) is the third most common cancer in India and is mediated by multiple genetic, epigenetic and environmental risk factors. A single nucleotide polymorphism rs3025058 at -1171 of the stromelysin-1 (matrix metalloproteinase [MMP]-3) promoter is resulting due to insertion/deletion of adenine thought to have an impact on increasing the risk for tumor formation.
AIM: This study is aimed to understand the role of stromelysin-1 rs3025058 (-1171, 5A/6A) promoter polymorphism in the etiology of GC in Indian population.
MATERIALS AND METHODS: Genomic DNA was isolated from blood samples of the GC patients and controls. The genotyping of stromelysin-1 rs3025058 (-1171, 5A/6A) promoter polymorphism was carried out by amplification refractory mutation system-polymerase chain reaction method followed by agarose gel electrophoresis.
RESULTS: The frequency of 5A/5A, 5A/6A, and 6A/6A genotypes in GC patients were 7.69%, 76.92%, and 15.38%, while in controls were 5.31%, 86.73%, and 7.96%, respectively. There was a significant difference in the distribution of 5A/6A genotype in patients compared to the controls (P < 0.05).
CONCLUSION: This study showed an increased frequency of heterozygotes for stromelysin-1 rs3025058 and thought to be involved in the etiology of GC.

Lei X, Chang L, Ye W, et al.
Raf kinase inhibitor protein (RKIP) inhibits the cell migration and invasion in human glioma cell lines in vitro.
Int J Clin Exp Pathol. 2015; 8(11):14214-20 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: To investigate the effects and the potential mechanisms of RKIP on cell migration, invasion and proliferation in human glioma cell lines in vitro.
METHODS: The RKIP over-expressing and RKIP knockdown human U87 glioma cells were used to reveal the effects of RKIP on human glioma cells migration, invasion and proliferation. After the recombinant plasmid pcDNA3.0-RKIP or RKIP-shRNA was transfected into the cell lines U87 by the means of liposome assay, the cells migration, invasion and proliferation were detected by wound healing, Transwell and MTT assay. Then, the levels of RKIP, MMP-3, MMP-9 and HMGA2 mRNA transcription were measured by means of RT-qPCR and levels of proteins expressions were determined using Western blot.
RESULTS: The results of MTT assay suggested that the PKIP have little inhibitive effects on glioma cells proliferation (P>0.05). The present paper showed that the migration distances in the group of RKIP-shRNA were markedly increased compared to the pcDNA3.0-RKIP and control. Similarly, the results showed that the numbers of invasion cells in RKIP-shRNA were remarkably increased than the pcDNA3.0-RKIP group and control group. Western blot and RT-qPCR suggested that over-expressions of RKIP lessened the MMP-2, MMP-9 and HMGA2 expression, however, turning down the RKIP expression showed the inverse effects.
CONCLUSION: RKIP inhibits the cells migrations and invasions. Meanwhile, RKIP might inhibit the glioma cells through inhibiting MMPs and HMAG2 expression. Therefore, we demonstrated that RKIP is an underlying target for the treatment of glioma.

Meng F, Liu W
Knockdown of Legumain Suppresses Cervical Cancer Cell Migration and Invasion.
Oncol Res. 2016; 23(1-2):7-12 [PubMed] Related Publications
Cervical cancer is the second leading type of cancer in women living in less developed countries. The pathological and molecular mechanisms of cervical cancer are not comprehensively known. Though legumain has been found to be highly expressed in various types of solid tumors, its expression and biological function in cervical cancer remain unknown. In this study, we aimed to investigate legumain expression and functions in cervical cancer. We found that legumain was highly expressed in cervical cancer cells. When knocked down, legumain expression in HeLa and SiHa cells significantly reduced its migration and invasion abilities compared with control cells. Furthermore, legumain silencing suppressed the activation of matrix metalloproteases (MMP2 and MMP3) in cervical cancer cells. This study indicates that legumain might play an important role in cervical cancer cell migration and invasion. Legumain might be a potential therapeutic target for cervical cancer therapy.

Choquet H, Trapani E, Goitre L, et al.
Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1.
Free Radic Biol Med. 2016; 92:100-9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease.
METHODS: Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually.
RESULTS: The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity.
CONCLUSIONS: Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.

Cui Y, Zhu JJ, Ma CB, et al.
Genetic polymorphisms in MMP 2, 3 and 9 genes and the susceptibility of osteosarcoma in a Chinese Han population.
Biomarkers. 2016; 21(2):160-3 [PubMed] Related Publications
BACKGROUND: There are no data about the role of MMPs polymorphism in development of osteosarcoma.
PATIENTS AND METHODS: Two-hundred fifty-one patients with osteosarcoma and 251 healthy controls were included to investigate the association between the MMP2, 3, 9 polymorphisms and the risk of osteosarcoma.
RESULTS: Compared with the MMP2 SNP rs243865 homozygote CC, The heterozygous CT genotype was associated with significantly increased risk for osteosarcoma (OR = 1.86, 95% CI = 1.18-4.22, p = 0.014); the TT genotype was associated with increased risk for osteosarcoma (OR = 1.92, 95% CI = 1.21-3.52, p = 0.028). However, the genotype and allele frequencies of MMP3 rs3025058 and MMP9 rs3918242 polymorphisms were not significantly different.
CONCLUSION: MMP2 rs243865 genotype was associated with increased risk for development of osteosarcoma in Chinese Han population.

Li N, Dhar SS, Chen TY, et al.
JARID1D Is a Suppressor and Prognostic Marker of Prostate Cancer Invasion and Metastasis.
Cancer Res. 2016; 76(4):831-43 [PubMed] Free Access to Full Article Related Publications
Entire or partial deletions of the male-specific Y chromosome are associated with tumorigenesis, but whether any male-specific genes located on this chromosome play a tumor-suppressive role is unknown. Here, we report that the histone H3 lysine 4 (H3K4) demethylase JARID1D (also called KDM5D and SMCY), a male-specific protein, represses gene expression programs associated with cell invasiveness and suppresses the invasion of prostate cancer cells in vitro and in vivo. We found that JARID1D specifically repressed the invasion-associated genes MMP1, MMP2, MMP3, MMP7, and Slug by demethylating trimethyl H3K4, a gene-activating mark, at their promoters. Our additional results demonstrated that JARID1D levels were highly downregulated in metastatic prostate tumors compared with normal prostate tissues and primary prostate tumors. Furthermore, the JARID1D gene was frequently deleted in metastatic prostate tumors, and low JARID1D levels were associated with poor prognosis in prostate cancer patients. Taken together, these findings provide the first evidence that an epigenetic modifier expressed on the Y chromosome functions as an anti-invasion factor to suppress the progression of prostate cancer. Our results also highlight a preclinical rationale for using JARID1D as a prognostic marker in advanced prostate cancer.

Gao Q, Chen CF, Dong Q, et al.
Establishment of a neuroblastoma mouse model by subcutaneous xenograft transplantation and its use to study metastatic neuroblastoma.
Genet Mol Res. 2015; 14(4):16297-307 [PubMed] Related Publications
The aim of this study was to establish a metastatic human neuroblastoma (NB) mouse model by xenograft in order to study the metastatic mechanisms of NB. A human NB cell line was obtained from a 5-year-old patient and cultured in vitro. A suspension of these cells was subcutaneously inoculated into nude mice at the right flank next to the forelimb. The biological characteristics of the developed subcutaneous and metastatic tumors were analyzed by hematoxylin and eosin staining. The expression of the tumor marker neuron-specific enolase was determined by immunohistochemistry, and the invasive ability of metastatic tumors was examined by a Matrigel invasion assay. DNA microarray analyses were performed to examine the metastasis-related gene expression. Our results showed that tumors grew in 75% of the mice injected with NB cells and the rate of metastasis was 21%. The xenograft tumors retained the morphological and biological characteristics of the NB specimen from the pediatric patient. Neuron-specific enolase was highly expressed in both subcutaneous and metastatic tumors. The metastatic tumor cells possessed a higher invasive capability than the primary NB cells. The expression of 25 metastasis-related genes was found to be significantly altered in metastatic tumors compared to primary tumors, including RECK, MMP2, VEGF, MMP3, and CXCL12. In conclusion, we successfully established a human NB xenograft model with high tumor-bearing and metastatic rates in nude mice, providing an ideal animal model for the in vivo study of NB.

Warnecke-Eberz U, Metzger R, Hölscher AH, et al.
Diagnostic marker signature for esophageal cancer from transcriptome analysis.
Tumour Biol. 2016; 37(5):6349-58 [PubMed] Related Publications
Esophageal cancer is often diagnosed at an advanced stage. Diagnostic markers are needed for achieving a cure in esophageal cancer detecting and treating tumor cells earlier. In patients with locally advanced squamous cell carcinoma of the esophagus (ESCC), we profiled the gene expression of ESCC compared to corresponding normal biopsies for diagnostic markers by genome microarrays. Profiling of gene expression identified 4844 genes differentially expressed, 2122 upregulated and 2722 downregulated in ESCC. Twenty-three overexpressed candidates with best scores from significance analysis have been selected for further analysis by TaqMan low-density array-technique using a validation cohort of 40 patients. The verification rate was 100 % for ESCC. Twenty-two markers were additionally overexpressed in adenocarcinoma of the esophagus (EAC). The markers significantly overexpressed already in earlier tumor stages (pT1-2) of both histological subtypes (n = 19) have been clustered in a "diagnostic signature": PLA2G7, PRAME, MMP1, MMP3, MMP12, LIlRB2, TREM2, CHST2, IGFBP2, IGFBP7, KCNJ8, EMILIN2, CTHRC1, EMR2, WDR72, LPCAT1, COL4A2, CCL4, and SNX10. The marker signature will be translated to clinical practice to prove its diagnostic impact. This diagnostic signature may contribute to the earlier detection of tumor cells, with the aim to complement clinical techniques resulting in the development of better detection of concepts of esophageal cancer for earlier therapy and more favorite prognosis.

Jagadish N, Parashar D, Gupta N, et al.
A-kinase anchor protein 4 (AKAP4) a promising therapeutic target of colorectal cancer.
J Exp Clin Cancer Res. 2015; 34:142 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) ranks third among the estimated cancer cases and cancer related mortalities in the Western world. Early detection and efficient therapy of CRC remains a major health challenge. Therefore, there is a need to identify novel tumor markers for early diagnosis and treatment of CRC.
METHODS: A-kinase anchor protein 4 (AKAP4) gene and protein expression was monitored by quantitative polymerase chain reaction (qPCR), reverse transcription (RT)-PCR and Western blotting in normal colon tissue lysate, normal colon epithelial cells and in colon cancer cell lines viz., Caco-2, COLO205, COLO320DM, HCT-15, HCT116, HT-29, SW480, and SW620. The effect of AKAP4 on cellular growth, migration and invasion abilities was studied using gene silencing approach. The role of AKAP4 in various pathways involved in cell cycle, apoptosis, senescence was investigated in in vitro and in human xenograft mouse model.
RESULTS: Our studies showed that AKAP4 gene and protein expression was expressed in all colon cancer cells while no expression was detectable in normal colon cells. Ablation of AKAP4 led to reduced cellular growth, migration, invasion and increased apoptosis and senescence of CRC cells in in vitro assays and tumor growth in human xenograft mouse. Human colon xenograft studies showed a significant decrease in the levels of cyclins B1, D and E and cyclin dependent kinases such as CDK1, CDK2, CDK4 and CDK6. Interestingly, an up-regulation in the levels of p16 and p21 was also observed. Besides, an increase in the levels of pro-apoptotic molecules AIF, APAF1, BAD, BID, BAK, BAX, PARP1, NOXA, PUMA and cyt-C and Caspase 3, 7, 8 and 9 was also found in cancer cells as well as in xenograft tissue sections. However, anti-apoptotic molecules BCL2, Bcl-xL, cIAP2, XIAP, Axin2 and Survivin were down regulated in these samples. Our data also revealed elevated expression of epithelial marker E-cadherin and down regulation of EMT markers N-cadherin, P-cadherin, SLUG, α-SMA, SNAIL, TWIST and Vimentin. Further ablation of AKAP4 resulted in the down regulation of invasion molecules matrix metalloproteinase MMP2, MMP3 and MMP9.
CONCLUSION: AKAP4 appears to be a novel CRC-associated antigen with a potential for developing as a new clinical therapeutic target.

Zhao LC, Li J, Liao K, et al.
Evodiamine Induces Apoptosis and Inhibits Migration of HCT-116 Human Colorectal Cancer Cells.
Int J Mol Sci. 2015; 16(11):27411-21 [PubMed] Free Access to Full Article Related Publications
Evodiamine (EVO) exhibits strong anti-cancer effects. However, the effect of EVO on the human colorectal cancer cell line HCT-116 has not been explored in detail, and its underlying molecular mechanisms remain unknown. In the present study, cell viability was assessed by Cell Counting Kit-8 (CCK-8). Cell cycle and apoptosis were measured by flow cytometry, and morphological changes in the nucleus were examined by fluorescence microscopy and Hoechst staining. Cell motility was detected by Transwell assay. ELISA was used to assess the protein levels of autocrine motility factor (AMF) in the cell supernatant, and protein expression was determined by Western blotting. Our results showed that EVO inhibited the proliferation of HCT-116 cells, caused accumulation of cells in S and G2/M phases, and reduced the levels of the secreted form of AMF. The protein levels of tumor suppressor protein (p53), Bcl-2 Associated X protein (Bax), B cell CLL/lymphoma-2 (Bcl-2), phosphoglucose isomerase (PGI), phosphorylated signal transducers and activators of transcription 3 (p-STAT3) and matrix metalloproteinase 3 (MMP3) were altered in cells treated with EVO. Taken together, our results suggest that EVO modulates the activity of the p53 signaling pathway to induce apoptosis and downregulate MMP3 expression by inactivating the JAK2/STAT3 pathway through the downregulation of PGI to inhibit migration of HCT-116 human colorectal cancer cells.

Jiang YN, Yan HQ, Huang XB, et al.
Interleukin 6 trigged ataxia-telangiectasia mutated activation facilitates lung cancer metastasis via MMP-3/MMP-13 up-regulation.
Oncotarget. 2015; 6(38):40719-33 [PubMed] Free Access to Full Article Related Publications
Our previous studies show that the phosphorylation of ataxia-telangiectasia mutated (ATM) induced by interleukin 6 (IL-6) treatment contributes to multidrug resistance formation in lung cancer cells, but the exact role of ATM activation in IL-6 increased metastasis is still elusive. In the present study, matrix metalloproteinase-3 (MMP-3) and MMP-13 were firstly demonstrated to be involved in IL-6 correlated cell migration. Secondly, IL-6 treatment not only increased MMP-3/MMP-13 expression but also augmented its activities. Thirdly, the inhibition of ATM phosphorylation efficiently abolished IL-6 up-regulating MMP-3/MMP-13 expression and increasing abilities of cell migration. Most importantly, the in vivo test showed that the inhibition of ATM abrogate the effect of IL-6 on lung cancer metastasis via MMP-3/MMP-13 down-regulation. Taken together, these findings demonstrate that IL-6 inducing ATM phosphorylation increases the expression of MMP-3/MMP-13, augments the abilities of cell migration, and promotes lung cancer metastasis, indicating that ATM is a potential target molecule to overcome IL-6 correlated lung cancer metastasis.

Xie B, Zhang Z, Wang H, et al.
Genetic polymorphisms in MMP 2, 3, 7, and 9 genes and the susceptibility and clinical outcome of cervical cancer in a Chinese Han population.
Tumour Biol. 2016; 37(4):4883-8 [PubMed] Related Publications
Matrix metalloproteases (MMPs) are proteolytic enzymes that contribute to all stages of tumor progression, including the invasion and metastasis. However, there are no data about the role of MMP polymorphism in the development of cervical cancer. A hospital-based case-control study was conducted in 230 patients with cervical cancer and 230 healthy controls to investigate the possible association between the MMP2 rs243865, MMP3 rs3025058, MMP7 rs11568818, and MMP9 rs3918242 polymorphisms, respectively, and the risk of cervical cancer. Our results suggested that the MMP2 rs243865-1306 C/T was significantly associated with an increased risk of cervical cancer (CT vs. CC, OR = 1.46; 95 % CI 1.18-3.55; P = 0.032; TT vs. CC, OR = 1.72; 95 % CI 1.28-4.02; P = 0.031; CT + TT vs. CC, OR = 1.43; 95 % CI 1.21-3.44; P = 0.029). Similarly, the MMP7 rs11568818-181A/G genotypes can also elevate the risk of cervical cancer in all genetic models. However, the genotype and allele frequencies of MMP3 rs3025058 and MMP9 rs3918242 polymorphisms in cervical cancer patients were not significantly different from controls. Further analysis showed MMP2 rs243865 and MMP7 rs11568818 genotypes were associated with advanced tumor stages of cervical cancer patients. More interestingly, the MMP2 rs243865 and MMP7 rs11568818 genotype was statistically significantly associated with a poor survival in cervical cancer patients. Our results showed that the MMP2 rs243865 and MMP7 rs11568818 genotypes e were associated with increased susceptibility and development of cervical cancer in Chinese Han population.

Shen D, Cao X
Potential role of CXCR3 in proliferation and invasion of prostate cancer cells.
Int J Clin Exp Pathol. 2015; 8(7):8091-8 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate the potential role of CXCR3 expression on prostate cancer cell proliferation and invasion and to illustrate its mechanism.
METHODS: Human PC-3 cells were transfected with siRNA-CXCR3A and siRNA-CXCR3B plasmids respectively. The mRNA expressions of CXCR3A and CXCR3B in PC-3 cells from each group were analyzed using RT-PCR. Besides, cell proliferation ability and cell invasion ability of PC-3 cells in each group were analyzed using MTT assay and Matrige assay respectively. Additionally, expressions of CXCR3 downstream proteins were detected using Western blotting.
RESULTS: mRNA level of CXCR3A was decreased while CXCR3B mRNA level was increased in PC-3 cells (P<0.05). Compared with the controls, down-regulation of CXCR3A but up-regulation of CXCR3B significantly inhibited PC-3 cell proliferation and cell invasion ability (P<0.05). Besides, aberrant CXCR3 expression significantly increased expressions of phospholipase C (PLCβ), matrix metallo proteinase (MMP-1), and MMP-3 except MMP-7 in PC-3 cells (P<0.05).
CONCLUSION: The data presented in our study suggested that aberrant CXCR3 expression may play crucial roles in suppressing PC metastasis via inhibiting cell proliferation and invasion ability through the PCLβ signaling pathway.

Hui L, Yang N, Yang H, et al.
Identification of biomarkers with a tumor stage-dependent expression and exploration of the mechanism involved in laryngeal squamous cell carcinoma.
Oncol Rep. 2015; 34(5):2627-35 [PubMed] Related Publications
The aim of this study was to identify biomarkers with a tumor stage-dependent expression manner and explore the regulatory mechanisms of laryngeal squamous cell carcinoma (LSCC) progression. Microarray data GSE59102 was used for differential analysis using a limma package. Enrichment analyses were performed for the differentially expressed genes (DEGs) between tumor tissues and normal tissues at different stages. A co-expressed network involving the overlapped DEGs in two stages was established based on Pearson's correlation coefficients. Furthermore, for the tumor stage‑dependent expressed DEGs, a protein‑protein interaction (PPI) network was constructed by mapping the genes using the STRING database. Transcription factors (TFs), oncogenes and tumor‑associated genes (TSGs) among the DEGs were predicted, following a search of the TRANSFAC, tumor-associated gene (TAG) and TSG databases. The CDT database was used to identify LSCC‑associated genes. In total, 696 DEGs from early stage and control samples and 622 DEGs from advanced sttage and control samples were selected, which were mainly enriched in the cell cycle pathway. In the co-expressed network, BUB1, TTK, E2F1 and CEP55 were prominent, with E2F1 being predicted as a TSG and CEP55 as an oncogene. The HOX family members were predicted as TFs. MMP1, MMP9, MMP3 and PLAU were the most evident nodes in the PPI network, where MMP3 was connected with MMP1. The ADH family was correlated with LSCC. Several biomarkers with tumor stage-dependent expression were identified including MMP1, MMP3, MMP9, PLAU and ADHs. Additionally, the dysregulated cell cycle pathway involving BUB1, TTK, E2F1 and CEP55, and the mediation of MMP1 by MMP3 as well as the predicted TF HOX, may all play significant roles in LSCC progression.

Datar I, Feng J, Qiu X, et al.
RKIP Inhibits Local Breast Cancer Invasion by Antagonizing the Transcriptional Activation of MMP13.
PLoS One. 2015; 10(8):e0134494 [PubMed] Free Access to Full Article Related Publications
Raf Kinase Inhibitory Protein or RKIP was initially identified as a Raf-1 binding protein using the yeast 2-hybrid screen. RKIP inhibits the activation phosphorylation of MEK by Raf-1 by competitively inhibiting the binding of MEK to Raf-1 and thus exerting an inhibitory effect on the Raf-MEK-Erk pathway. RKIP has been identified as a metastasis suppressor gene. Expression of RKIP is low in cancer metastases. Although primary tumor growth remains unaffected, re- expression of RKIP inhibits cancer metastasis. Mechanistically, RKIP constrains metastasis by inhibiting angiogenesis, local invasion, intravasation, and colonization. The molecular mechanism of how RKIP inhibits these individual steps remains undefined. In our present study, using an unbiased PCR based screening and by analyzing DNA microarray expression datasets we observe that the expression of multiple metalloproteases (MMPs) including MMP1, MMP3, MMP10 and MMP13 are negatively correlated with RKIP expression in breast cancer cell lines and clinical samples. Since expression of MMPs by cancer cells is important for cancer metastasis, we hypothesize that RKIP may mediate suppression of breast cancer metastasis by inhibiting multiple MMPs. We show that the expression signature of RKIP and MMPs is better at predicting high metastatic risk than the individual gene. Using a combination of loss- and gain-of-function approaches, we find that MMP13 is the cause of RKIP-mediated inhibition of local cancer invasion. Interestingly expression of MMP13 alone is not sufficient to reverse the inhibition of breast cancer cell metastasis to the lung due to the expression of RKIP. We find that RKIP negatively regulates MMP13 through the Erk2 signaling pathway and the repression of MMP13 by RKIP is transcription factor AP-1 independent. Together, our findings indicate that RKIP inhibits cancer cell invasion, in part, via MMP13 inhibition. These data also implicate RKIP in the regulation of MMP transcription, suggesting a potential mechanism by which RKIP inhibits tumor progression and metastasis.

Thakur S, Nabbi A, Klimowicz A, Riabowol K
Stromal ING1 expression induces a secretory phenotype and correlates with breast cancer patient survival.
Mol Cancer. 2015; 14:164 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Previous studies have established that levels of the Inhibitor of Growth 1(ING1) tumor suppressor are reduced in a significant proportion of different cancer types. Here we analyzed levels of ING1 in breast cancer patients to determine its prognostic significance as a biomarker for breast cancer prognosis.
METHODS: We used automated quantitative analysis (AQUA) to determine the levels of ING1 in the tumor associated stromal cells of 462 breast cancer samples. To better understand how high ING1 levels affect nearby epithelium, we measured the levels of cytokines and secreted matrix metalloproteases (MMPs), using an ELISA based assay in mammary fibroblasts overexpressing ING1. These cells were also used in a 3-dimensional co-culture with MCF7 cells to determine the effect of released MMPs and other cytokines on growing colonies.
RESULTS: We find that high levels of ING1 in stroma are associated with tumor grade (p = 0.001) and size (p = 0.02), and inversely associated with patient survival (p = 0.0001) in luminal, but not in non-luminal cancers, suggesting that high stromal ING1 promotes cancer development. In this group of patients ING1 could also predict patient survival and act as a biomarker (HR = 2.125). While ING1 increased or decreased the expression of different cytokines, ING1 also increased the levels of MMP1, MMP3 and MMP10 by 5-8 fold, and concomitantly decreased levels of the tissue inhibitors of metalloproteases TIMP2, TIMP3 and TIMP4 by 1.5-3.3 fold, resulting in significant increases in MMP activity as determined by zymography. Co-culturing of MCF7 cells with stromal cells expressing ING1 in 3-dimensional organoid cultures suggested that MCF7 colonies were less well defined, suggesting that secreted MMPs might promote migration.
CONCLUSION: These data indicate that stromal ING1 expression can predict the survival of patients with luminal breast cancer. High levels of ING1 in stromal cells can promote the development of breast cancer through increased expression and release of MMPs and down regulation of TIMPs, which may be an underlying mechanism of reduced patient survival.

Tao L, Li Z, Lin L, et al.
MMP1, 2, 3, 7, and 9 gene polymorphisms and urinary cancer risk: a meta-analysis.
Genet Test Mol Biomarkers. 2015; 19(10):548-55 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The matrix metalloproteinases (MMPs) are a family of highly conserved, metal-dependent proteolytic enzymes that play an important role in tumor invasion and metastasis. Many studies have been carried out on the association between polymorphisms in the MMP1, MMP2, MMP3, MMP7, and MMP9 genes and urinary cancer risk. However, the data from these published studies are conflicting and have low statistical power.
METHODS: In this study, we performed a meta-analysis of 12 different publications from the PubMed and WanFang databases, published up to May 2015, to better assess the purported associations. Odds ratios (OR) and 95% confidence intervals (CI) were determined to reveal association strengths.
RESULTS: Some significant associations were found. For the MMP1 -1607 1G/2G polymorphism, a negative association was identified for the 2G allele in bladder cancer (2G2G+2G1G vs. 1G1G: OR = 0.57, 95% CI = 0.36-0.93, pheterogeneity = 0.001) and renal cell carcinoma (2G1G vs. 1G1G: OR = 0.57, 95% CI = 0.39-0.82, pheterogeneity = 0.567). For the MMP2 -1306 C/T polymorphism, there was a negative association with the T allele for bladder cancer in the Asian population (TT+TC vs. CC: OR = 0.41, 95% CI = 0.18-0.94, pheterogeneity = 0.195). For the MMP7 -181 A/G polymorphism, a decreased bladder cancer risk was found (G-allele vs. A-allele: OR = 0.81, 95% CI = 0.66-0.98, pheterogeneity =0.325).
CONCLUSION: In summary, our study showed evidence that genetic polymorphisms in MMP1 for all populations, but only in the Asian population for MMP2 and MMP7, may protect against bladder cancer risk. Future studies with larger sample sizes are warranted to further evaluate these associations in more detail.

Kalra RS, Cheung CT, Chaudhary A, et al.
CARF (Collaborator of ARF) overexpression in p53-deficient cells promotes carcinogenesis.
Mol Oncol. 2015; 9(9):1877-89 [PubMed] Related Publications
Collaborator of ARF (CARF), initially identified as a binding partner of ARF (Alternate Reading Frame), has been shown to activate ARF-p53 pathway by multiple ways including stabilization of ARF and p53 tumor suppressor proteins, and transcriptional repression of a p53 antagonist, HDM2. Level of CARF expression was shown to determine fate of cells. Whereas its knockdown caused apoptosis, its over- and super-expressions caused senescence and increase in malignant properties of cancer cells, respectively, and were closely linked to increase and decrease in p53 activity. Using p53-compromised cancer cells, we demonstrate that CARF induces growth arrest when wild type p53 is present and in p53-absence, it promotes carcinogenesis. Biochemical analyses on CARF-induced molecular signaling revealed that in p53-null cells, it caused transcriptional repression of p21(WAF1) leading to increase in CDK4, CDK6, pRb and E2F1 resulting in continued cell cycle progression. Furthermore, it instigated increase in migration and invasion of cancer cells that was marked by upregulation of MMP2, MMP3, MMP9, uPA, several interleukins and VEGF expression. Consistent with these findings, we found that human clinical samples of epithelial and glial cancers (frequently marked by loss of p53 function) possessed high level of CARF expression showing a relationship with cancer aggressiveness. The data demonstrated that CARF could be considered as a diagnostic marker and a therapeutic target in p53-compromised malignancies.

Zhang S, Tian L, Ma P, et al.
Potential role of differentially expressed lncRNAs in the pathogenesis of oral squamous cell carcinoma.
Arch Oral Biol. 2015; 60(10):1581-7 [PubMed] Related Publications
Long non-coding RNAs (lncRNAs) have recently attracted more attention about the role in a broad range of biological processes and complex cancers. We aimed to identify differentially expressed lncRNAs that play an important role in the pathogenesis of oral squamous cell carcinoma (OSCC). Microarray data GSE25099 consisting of 57 samples from patients with OSCC and 22 normal samples were downloaded from Gene Expression Omnibus database. Differentially expressed genes (DEGs) and lncRNAs were identified between OSCC samples and control using samr package in R and noncoder software. Co-expression network was constructed for lncRNAs and candidate target DEGs, followed by functional and pathway enrichment analysis using the Database for Annotation, Visualization and Integrated Discovery online tool. OSCC-related genes were screened by Genetic-Association-DB-Database analysis, and then protein-protein interaction (PPI) network construction of OSCC-related and co-expressed genes. Bioinformatic analysis revealed that there were 998 DEGs and 160 differentially expressed lncRNAs between OSCC and normal control. We found LOC100130547, FTH1P3, PDIA3F and GTF2IRD2P1 targeted most of DEGs. Predicted targets-related functional annotation showed significant changes in inflammation-related functions and Toll-like receptor signaling pathway. By further conducting PPI network with lncRNA co-expressed DEGs, we found that OSCC-associated genes including MMP1 (matrix metallopeptidase), MMP3, MMP9, PLAU (plasminogen activator, urokinase) and IL8 (interleukin 8) were targeted by FTH1P3, PDIA3F and GTF2IRD2P1. Our results indicate that lncRNAs FTH1P3, PDIA3F and GTF2IRD2P1 may responsible for progression and metastasis of OSCC via targeting MMP1, MMP3, MMP9, PLAU and IL8 which are key regulators of tumorigenesis.

Hou X, Zhang Y, Qiao H
CCL18 promotes the invasion and migration of gastric cancer cells via ERK1/2/NF-κB signaling pathway.
Tumour Biol. 2016; 37(1):641-51 [PubMed] Related Publications
CCL18 is a member of CCL chemokines and is frequently overexpressed in cancer. Elevated CCL18 expression has been reported to be associated with poor prognosis of gastric cancer. However, the molecular mechanisms of CCL18 in gastric cancer cells remain elusive. In our study, we found that CCL18 was highly expressed in different gastric cancer cells. CCL18 stimulation dose-dependently enhanced the invasion and migration of MGC-803 cells. Knockdown of endogenous CCL18 inhibited the invasion and migration of MGC-803 cells, whereas overexpression of CCL18 promoted the invasion and migration of MKN28 cells. We further found that CCL18 increased the expressions of MMP-3 and Slug and decreased the expression of E-cadherin in MGC-803 cells. In addition, CCL18 time-dependently induced activation of ERK1/2, IκBα, and NF-κB. These effects of CCL18 were prevented by ERK1/2 selective inhibitor U0126 as well as NF-κB selective inhibitor BAY117082. Taken together, our findings establish a signaling role for CCL18 in gastric cancer cells and identify that the CCL18/ERK1/2/NF-κB signaling pathway is essential for tumor invasiveness in gastric cancer cells. Thus, our data may provide knowledge for using CCL18 as a novel target for effective diagnosis and treatment of gastric cancer.

Kalmár A, Wichmann B, Galamb O, et al.
Gene-expression analysis of a colorectal cancer-specific discriminatory transcript set on formalin-fixed, paraffin-embedded (FFPE) tissue samples.
Diagn Pathol. 2015; 10:126 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: A recently published transcript set is suitable for gene expression-based discrimination of normal colonic and colorectal cancer (CRC) biopsy samples. Our aim was to test the discriminatory power of the CRC-specific transcript set on independent biopsies and on formalin-fixed, paraffin-embedded (FFPE) tissue samples.
METHODS: Total RNA isolations were performed with the automated MagNA Pure 96 Cellular RNA Large Volume Kit (Roche) from fresh frozen biopsies stored in RNALater (CRC (n = 15) and healthy colonic (n = 15)), furthermore from FFPE specimens including CRC (n = 15) and normal adjacent tissue (NAT) (n = 15) specimens next to the tumor. After quality and quantity measurements, gene expression analysis of a colorectal cancer-specific marker set with 11 genes (CA7, COL12A1, CXCL1, CXCL2, CHI3L1, GREM1, IL1B, IL1RN, IL8, MMP3, SLC5A7) was performed with array real-time PCR using Transcriptor First Strand cDNA Synthesis Kit (Roche) and RealTime ready assays on LightCycler480 System (Roche). In situ hybridization for two selected transcripts (CA7, CXCL1) was performed on NAT (n = 3), adenoma (n = 3) and CRC (n = 3) FFPE samples.
RESULTS: Although analytical parameters of automatically isolated RNA samples showed differences between fresh frozen biopsy and FFPE samples, both quantity and the quality enabled their application in gene expression analyses. CRC and normal fresh frozen biopsy samples could be distinguished with 93.3% sensitivity and 86.7% specificity and FFPE samples with 96.7 and 70.0%, respectively. In situ hybridization could confirm the upregulation of CXCL1 and downregulation of CA7 in colorectal adenomas and tumors compared to healthy controls.
CONCLUSION: According to our results, gene expression analysis of the analyzed colorectal cancer-specific marker set can also be performed from FFPE tissue material. With the addition of an automated workflow, this marker set may enhance the objective classification of colorectal neoplasias in the routine procedure in the future.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MMP3, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999