Gene Summary

Gene:NUMA1; nuclear mitotic apparatus protein 1
Aliases: NUMA, NMP-22
Summary:This gene encodes a large protein that forms a structural component of the nuclear matrix. The encoded protein interacts with microtubules and plays a role in the formation and organization of the mitotic spindle during cell division. Chromosomal translocation of this gene with the RARA (retinoic acid receptor, alpha) gene on chromosome 17 have been detected in patients with acute promyelocytic leukemia. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2013]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:nuclear mitotic apparatus protein 1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (20)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Cycle
  • Chromosome 11
  • Pedigree
  • Transcription Factors
  • Haplotypes
  • Mutation
  • HeLa Cells
  • Leukemia, Promyelocytic, Acute
  • Infant
  • Breast Cancer
  • Gene Expression Profiling
  • Leukaemia
  • Genotype
  • Exons
  • DNA-Binding Proteins
  • Genetic Predisposition
  • Vinorelbine
  • Single Nucleotide Polymorphism
  • Cell Cycle Proteins
  • Nuclear Proteins
  • Bladder Cancer
  • Genetic Variation
  • Apoptosis
  • Spindle Apparatus
  • Tumor Suppressor Proteins
  • Translocation
  • Base Sequence
  • Zinc Fingers
  • Alleles
  • Antigens, Nuclear
  • Statistics as Topic
  • RARA
  • Signal Transduction
  • Risk Factors
  • Receptors, Progesterone
  • Alternative Splicing
  • Retinoic Acid
  • Receptors, Retinoic Acid
  • Cell Proliferation
  • Messenger RNA
  • Nuclear Matrix-Associated Proteins
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NUMA1 (cancer-related)

Wagner F, Holzapfel BM, McGovern JA, et al.
Humanization of bone and bone marrow in an orthotopic site reveals new potential therapeutic targets in osteosarcoma.
Biomaterials. 2018; 171:230-246 [PubMed] Related Publications
BACKGROUND: Existing preclinical murine models often fail to predict effects of anti-cancer drugs. In order to minimize interspecies-differences between murine hosts and human bone tumors of in vivo xenograft platforms, we tissue-engineered a novel orthotopic humanized bone model.
METHODS: Orthotopic humanized tissue engineered bone constructs (ohTEBC) were fabricated by 3D printing of medical-grade polycaprolactone scaffolds, which were seeded with human osteoblasts and embedded within polyethylene glycol-based hydrogels containing human umbilical vein endothelial cells (HUVECs). Constructs were then implanted at the femur of NOD-scid and NSG mice. NSG mice were then bone marrow transplanted with human CD34 
RESULTS: After harvesting the femurs micro computed tomography and immunohistochemical staining showed an organ, which had all features of human bone. Around the original mouse femur new bone trabeculae have formed surrounded by a bone cortex. Staining for human specific (hs) collagen type-I (hs Col-I) showed human extracellular bone matrix production. The presence of nuclei staining positive for human nuclear mitotic apparatus protein 1 (hs NuMa) proved the osteocytes residing within the bone matrix were of human origin. Flow cytometry verified the presence of human hematopoietic cells. After injection of Luc-SAOS-2 cells a primary tumor and lung metastasis developed. After euthanization histological analysis showed pathognomic features of osteoblastic OS. Furthermore, the tumor utilized the previously implanted HUVECS for angiogenesis. Tumor marker expression was similar to human patients. Moreover, the recently discovered musculoskeletal gene C12orf29 was expressed in the most common subtypes of OS patient samples.
CONCLUSION: OhTEBCs represent a suitable orthotopic microenvironment for humanized OS growth and offers a new translational direction, as the femur is the most common location of OS. The newly developed and validated preclinical model allows controlled and predictive marker studies of primary bone tumors and other bone malignancies.

Miyake M, Morizawa Y, Hori S, et al.
Diagnostic and prognostic role of urinary collagens in primary human bladder cancer.
Cancer Sci. 2017; 108(11):2221-2228 [PubMed] Free Access to Full Article Related Publications
Collagen type 4 alpha 1 (COL4A1) and collagen type 13 alpha 1 (COL13A1) produced by urothelial cancer cells support the vital oncogenic property of tumor invasion. We investigated the diagnostic and prognostic capability of COL4A1 and COL13A1 in voided urine and compared the observed values with those of fragments of cytokeratin-19 (CYFRA21-1), nuclear matrix protein 22 (NMP-22), and voided urine cytology in bladder cancer (BCa). We collected voided urine samples from 154 patients newly diagnosed with BCa, before surgery and from 61 control subjects. Protein levels of COL4A1, COL13A1, CYFRA21-1, and NMP-22 in urine supernatants were measured using enzyme-linked immunosorbent assays. Diagnostic performance and optimal cut-off values were determined by receiver operating characteristic analysis. Urine levels of COL4A1, COL13A1, the combined values of COL4A1 and COL13A1 (COL4A1 + COL13A1), and CYFRA21-1 were significantly elevated in urine from patients with BCa compared to the controls. Among these biomarkers, the optimal cut-off value of COL4A1 + COL13A1 at 1.33 ng/mL resulted in 57.4%, 83.7%, 56.1%, 80.7%, and 91.7% sensitivity for low-grade tumors, high-grade tumors, Ta, T1, and muscle invasive disease, respectively. We evaluated the prognostic value of preoperative urine levels in 130 non-muscle invasive BCa samples after the initial transurethral surgery. A high urinary COL4A1 + COL13A1 was found to be an independent risk factor for intravesical recurrence. Although these data need to be externally validated, urinary COL4A1 and COL13A1 could be a potential diagnostic and prognostic biomarker for BCa. This easy-to-use urinary signature identifies a subgroup of patients with a high probability of recurrence and progression in non-muscle invasive and muscle invasive BCa.

Iwama E, Goto Y, Murakami H, et al.
Alectinib for Patients with ALK Rearrangement-Positive Non-Small Cell Lung Cancer and a Poor Performance Status (Lung Oncology Group in Kyushu 1401).
J Thorac Oncol. 2017; 12(7):1161-1166 [PubMed] Related Publications
INTRODUCTION: Alectinib has shown marked efficacy and safety in patients with anaplastic lymphoma receptor tyrosine kinase gene (ALK) rearrangement-positive NSCLC and a good performance status (PS). It has remained unclear whether alectinib might also be beneficial for such patients with a poor PS.
METHODS: Eligible patients with advanced ALK rearrangement-positive NSCLC and a PS of 2 to 4 received alectinib orally at 300 mg twice daily. The primary end point of the study was objective response rate (ORR), and the most informative secondary end point was rate of PS improvement.
RESULTS: Between September 2014 and December 2015, 18 patients were enrolled in this phase II study. Of those patients, 12, five, and one had a PS of 2, 3, or 4, respectively, whereas four patients had received prior crizotinib treatment. The ORR was 72.2% (90% confidence interval: 52.9-85.8%). The ORR did not differ significantly between patients with a PS of 2 and those with a PS of 3 or higher (58.3% and 100%, respectively [p = 0.114]). The PS improvement rate was 83.3% (90% confidence interval: 64.8-93.1%, p < 0.0001), with the frequency of improvement to a PS of 0 or 1 being 72.2%. The median progression-free survival was 10.1 months. Toxicity was mild, with the frequency of adverse events of grade 3 or higher being low. Neither dose reduction nor withdrawal of alectinib because of toxicity was necessary.
CONCLUSIONS: Alectinib is a treatment option for patients with ALK rearrangement-positive NSCLC and a poor PS.

Visochek L, Castiel A, Mittelman L, et al.
Exclusive destruction of mitotic spindles in human cancer cells.
Oncotarget. 2017; 8(13):20813-20824 [PubMed] Free Access to Full Article Related Publications
We identified target proteins modified by phenanthrenes that cause exclusive eradication of human cancer cells. The cytotoxic activity of the phenanthrenes in a variety of human cancer cells is attributed by these findings to post translational modifications of NuMA and kinesins HSET/kifC1 and kif18A. Their activity prevented the binding of NuMA to α-tubulin and kinesins in human cancer cells, and caused aberrant spindles. The most efficient cytotoxic activity of the phenanthridine PJ34, caused significantly smaller aberrant spindles with disrupted spindle poles and scattered extra-centrosomes and chromosomes. Concomitantly, PJ34 induced tumor growth arrest of human malignant tumors developed in athymic nude mice, indicating the relevance of its activity for cancer therapy.

Metodieva G, Adoki S, Lausen B, Metodiev MV
Decreased Usage of Specific Scrib Exons Defines a More Malignant Phenotype of Breast Cancer With Worsened Survival.
EBioMedicine. 2016; 8:150-158 [PubMed] Free Access to Full Article Related Publications
SCRIB is a polarity regulator known to be abnormally expressed in cancer at the protein level. Here we report that, in breast cancer, an additional and hidden dimension of deregulations exists: an unexpected SCRIB exon usage pattern appears to mark a more malignant tumor phenotype and significantly correlates with survival. Conserved exons encoding the leucine-rich repeats tend to be overexpressed while others are underused. Mechanistic studies revealed that the underused exons encode part of the protein necessary for interaction with Vimentin and Numa1, a protein which is required for proper positioning of the mitotic spindle. Thus, the inclusion/exclusion of specific SCRIB exons is a mechanistic hallmark of breast cancer, which could potentially be exploited to develop more efficient diagnostics and therapies.

Lakshmi TV, Bale S, Khurana A, Godugu C
Tankyrase as a Novel Molecular Target in Cancer and Fibrotic Diseases.
Curr Drug Targets. 2017; 18(10):1214-1224 [PubMed] Related Publications
Tankyrases belong to a group of enzymes called poly ADP ribosyl polymerases (PARPs). With the advent of a new class of small molecule inhibitors of PARP for clinical use like OLAPARIB; that gained accelerated approval by the USFDA in treating ovarian and breast cancers, the horizons of the PARPs as a novel target in various disease conditions has risen. Tankyrases (PARP 5) are yet another class of PARPs that perform poly ADP ribosylation on different substrate proteins aiding in progression of many diseases like cancer, fibrosis, diabetes and neurological disorders even. Few of the substrates of Tankyrases are Telomeric Repeat binding Factor protein (TRF1), Axis Inhibitory protein (AXIN 1&2), Insulin Responsive Amino Peptidase (IRAP), Nuclear Mitotic Apparatus protein (NuMa), that become aberrantly active due to the apparent overexpression of the enzyme during hyper proliferative disease conditions like cancer, fibrosis and metabolic disorders like diabetes. Tankyrases intervene in many physiological processes like cell growth and survival by affecting the Wnt signaling pathways. On the other hand, these functions are overdone during cancer and fibrosis especially. The development of novel therapies for cancer is a never ending process pertaining to several issues associated with current anticancer drugs like development of drug resistance and toxicity. A fibrotic disease like lung fibrosis is a debilitating condition with limited treatment options and survival rate. Tankyrase inhibition by specific small molecule inhibitors can therefore become a good combinatorial or single treatment strategy in treating hyper proliferative diseases and diabetes. In light of all these concerns, this article aims to brief the role of Tankyrase and the relevance of its inhibition to overcome the hurdles faced by current treatment regimens.

Sebestyén E, Singh B, Miñana B, et al.
Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks.
Genome Res. 2016; 26(6):732-44 [PubMed] Free Access to Full Article Related Publications
Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We systematically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alternatively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferentiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1 We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome amplification in nontumorigenic mammary epithelial cells. Our study uncovers novel splicing networks that potentially contribute to cancer development and progression.

Er TK, Su YF, Wu CC, et al.
Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer.
J Mol Med (Berl). 2016; 94(7):835-47 [PubMed] Related Publications
UNLABELLED: Recent molecular and pathological studies suggest that endometriosis may serve as a precursor of ovarian cancer (endometriosis-associated ovarian cancer, EAOC), especially of the endometrioid and clear cell subtypes. Accordingly, this study had two cardinal aims: first, to obtain mutation profiles of EAOC from Taiwanese patients; and second, to determine whether somatic mutations present in EAOC can be detected in preneoplastic lesions. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from ten endometriosis patients with malignant transformation. Macrodissection was performed to separate four different types of cells from FFPE sections in six patients. The four types of samples included normal endometrium, ectopic endometriotic lesion, atypical endometriosis, and carcinoma. Ultra-deep (>1000×) targeted sequencing was performed on 409 cancer-related genes to identify pathogenic mutations associated with EAOC. The most frequently mutated genes were PIK3CA (6/10) and ARID1A (5/10). Other recurrently mutated genes included ETS1, MLH1, PRKDC (3/10 each), and AMER1, ARID2, BCL11A, CREBBP, ERBB2, EXT1, FANCD2, MSH6, NF1, NOTCH1, NUMA1, PDE4DIP, PPP2R1A, RNF213, and SYNE1 (2/10 each). Importantly, in five of the six patients, identical somatic mutations were detected in atypical endometriosis and tumor lesions. In two patients, genetic alterations were also detected in ectopic endometriotic lesions, indicating the presence of genetic alterations in preneoplastic lesion. Genetic analysis in preneoplastic lesions may help to identify high-risk patients at early stage of malignant transformation and also shed new light on fundamental aspects of the molecular pathogenesis of EAOC.
KEY MESSAGES: Molecular characterization of endometriosis-associated ovarian cancer genes by targeted NGS. Candidate genes predictive of malignant transformation were identified. Chromatin remodeling, PI3K-AKT-mTOR, Notch signaling, and Wnt/β-catenin pathway may promote cell malignant transformation.

Panagopoulos I, Gorunova L, Bjerkehagen B, et al.
LAMTOR1-PRKCD and NUMA1-SFMBT1 fusion genes identified by RNA sequencing in aneurysmal benign fibrous histiocytoma with t(3;11)(p21;q13).
Cancer Genet. 2015; 208(11):545-51 [PubMed] Related Publications
RNA sequencing of an aneurysmal benign fibrous histiocytoma with the karyotype 46,XY,t(3;11)(p21;q13),del(6)(p23)[17]/46,XY[2] showed that the t(3;11) generated two fusion genes: LAMTOR1-PRKCD and NUMA1-SFMBT1. RT-PCR together with Sanger sequencing verified the presence of fusion transcripts from both fusion genes. In the LAMTOR1-PRKCD fusion, the part of the PRKCD gene coding for the catalytic domain of the serine/threonine kinase is under control of the LAMTOR1 promoter. In the NUMA1-SFMBT1 fusion, the part of the SFMBT1 gene coding for two of four malignant brain tumor domains and the sterile alpha motif domain is controlled by the NUMA1 promoter. The data support a neoplastic genesis of aneurysmal benign fibrous histiocytoma and indicate a pathogenetic role for LAMTOR1-PRKCD and NUMA1-SFMBT1.

Sandgren J, Holm S, Marino AM, et al.
Whole Exome- and mRNA-Sequencing of an AT/RT Case Reveals Few Somatic Mutations and Several Deregulated Signalling Pathways in the Context of SMARCB1 Deficiency.
Biomed Res Int. 2015; 2015:862039 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: AT/RTs are rare aggressive brain tumours, mainly affecting young children. Most cases present with genetic inactivation of SMARCB1, a core member of the SWI/SNF chromatin-remodeling complex. We have performed whole exome- and mRNA-sequencing on an early onset AT/RT case for detection of genetic events potentially contributing to the disease.
RESULTS: A de novo germline variant in SMARCB1, c.601C>T p.Arg201∗, in combination with somatic deletion of the healthy allele is likely the major tumour causing event. Only seven somatic small scale mutations were discovered (hitting SEPT03, H2BFM, ZIC4, HIST2H2AB, ZIK1, KRTAP6-3, and IFNA8). All were found with subclonal allele frequencies (range 5.7-17%) and none were expressed. However, besides SMARCB1, candidate genes affected by predicted damaging germline variants that were expressed were detected (KDM5C, NUMA1, and PCM1). Analysis of differently expressed genes revealed many dysregulated pathways in the tumour, such as cell cycle, CXCR4 pathway, GPCR-signalling, and neuronal system. FGFR1, CXCR4, and MDK were upregulated and may represent possible drug targets.
CONCLUSION: The loss of SMARCB1 function leads to AT/RT development and deregulated genes and pathways. Additional predisposing events may however contribute. Studies utilizing NGS technologies in larger cohorts will probably identify recurrent genetic and epigenetic alterations and molecular subgroups with implications for clinical practice and development of targeted therapies.

Wu J, Xu Z, He D, Lu G
Identification and characterization of novel NuMA isoforms.
Biochem Biophys Res Commun. 2014; 454(3):387-92 [PubMed] Related Publications
The large nuclear mitotic apparatus (NuMA) has been investigated for over 30years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two "hotspot" exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA's various functions.

Pilato B, De Summa S, Danza K, et al.
Genetic risk transmission in a family affected by familial breast cancer.
J Hum Genet. 2014; 59(1):51-3 [PubMed] Related Publications
Breast Cancer is the most common malignancy among women. Family history is the strongest single predictor of breast cancer risk, and thus great attention has been focused on BRCA1 and BRCA2 genes whose mutations lead to a high risk of developing this disease. Today, only 25% of high- and moderate-risk genes are known, suggesting the importance of the discovery of new risk modifiers. Therefore, the investigation of new polygenic alterations is of great importance, especially if considered high- and moderate-risk variants. In this study, the transmission of BRCA1-2 polymorphisms in association with the transmission of polymorphisms in the genes NUMA1, CCND1, COX11, FGFR2, TNRC9 and SLC4A7 were examined in all members of a family with the BRCA2 c.6447_6448dup mutation. This is the first study about the transmission of high-risk polygenic variants in all members of a family with a strong history of breast cancer. The results about the possible polygenic variant associations that could increase and modify the risk suggested the importance to search new variants to better manage patients and their family members.

Ohata H, Miyazaki M, Otomo R, et al.
NuMA is required for the selective induction of p53 target genes.
Mol Cell Biol. 2013; 33(12):2447-57 [PubMed] Free Access to Full Article Related Publications
The p53 tumor suppressor protein is a transcription factor controlling various outcomes, such as growth arrest and apoptosis, through the regulation of different sets of target genes. The nuclear mitotic apparatus protein (NuMA) plays important roles in spindle pole organization during mitosis and in chromatin regulation in the nucleus during interphase. Although NuMA has been shown to colocalize with several nuclear proteins, including high-mobility-group proteins I and Y and GAS41, the role of NuMA during interphase remains unclear. Here we report that NuMA binds to p53 to modulate p53-mediated transcription. Acute and partial ablation of NuMA attenuates the induction of the proarrested p21 gene following DNA damage, subsequently causing impaired cell cycle arrest. Interestingly, NuMA knockdown had little effect on the induction of the p53-dependent proapoptotic PUMA gene. Furthermore, NuMA is required for the recruitment of cyclin-dependent kinase 8 (Cdk8), a component of the Mediator complex and a promoter of p53-mediated p21 gene function. These data demonstrate that NuMA is critical for the target selectivity of p53-mediated transcription.

Zhang L, Mitani Y, Caulin C, et al.
Detailed genome-wide SNP analysis of major salivary carcinomas localizes subtype-specific chromosome sites and oncogenes of potential clinical significance.
Am J Pathol. 2013; 182(6):2048-57 [PubMed] Free Access to Full Article Related Publications
The molecular genetic alterations underlying the development and diversity of salivary gland carcinomas are largely unknown. To characterize these events, comparative genomic hybridization analysis was performed, using a single-nucleotide polymorphism microarray platform, of 60 fresh-frozen specimens that represent the main salivary carcinoma types: mucoepidermoid carcinoma (MEC), adenoid cystic carcinoma (ACC), and salivary duct carcinoma (SDC). The results were correlated with the clinicopathologic features and translocation statuses to characterize the genetic alterations. The most commonly shared copy number abnormalities (CNAs) in all types were losses at chromosomes 6q23-26 and the 9p21 region. Subtype-specific CNAs included a loss at 12q11-12 in ACC and a gain at 17q11-12 in SDC. Focal copy number losses included 1p36.33-p36-22 in ACC, 9p13.2 in MEC, and 3p12.3-q11-2, 6q21-22.1, 12q14.1, and 12q15 in SDC. Tumor-specific amplicons were identified at 11q23.3 (PVRL1) in ACC, 11q13.3 (NUMA1) in MEC, and 6p21.1 (CCND3), 9p13.2 (PAX5), 12q15 (CNOT2/RAB3IP), 12q21.1 (GLIPR1L1), and 17q12 (ERBB2/CCL4) in SDC. A comparative CNA analysis of fusion-positive and fusion-negative ACCs and MECs revealed relatively lower CNAs in fusion-positive tumors than in fusion-negative tumors in both tumor types. An association between CNAs and high grade and advanced stage was observed in MECs only. These findings support the pathogenetic segregation of these entities and define novel chromosomal sites for future identification of biomarkers and therapeutic targets.

Izumi H, Kaneko Y
Evidence of asymmetric cell division and centrosome inheritance in human neuroblastoma cells.
Proc Natl Acad Sci U S A. 2012; 109(44):18048-53 [PubMed] Free Access to Full Article Related Publications
Asymmetric cell division (ACD) is believed to be a physiological event that occurs during development and tissue homeostasis in a large variety of organisms. ACD produces two unequal daughter cells, one of which resembles a multipotent stem and/or progenitor cell, whereas the other has potential for differentiation. Although recent studies have shown that the balance between self-renewal and differentiation potentials is precisely controlled and that alterations in the balance may lead to tumorigenesis in Drosophila neuroblasts, it is largely unknown whether human cancer cells directly show ACD in an evolutionarily conserved manner. Here, we show that the conserved polarity/spindle protein NuMA is preferentially localized to one side of the cell cortex during cell division, generating unequal inheritance of fate-altering molecules in human neuroblastoma cell lines. We also show that the cells with a single copy of MYCN showed significantly higher percentages of ACD than those with MYCN amplification. Moreover, suppression of MYCN in MYCN-amplified cells caused ACD, whereas expression of MYCN in MYCN-nonamplified cells enhanced symmetric cell division. Furthermore, we demonstrate that centrosome inheritance follows a definite rule in ACD: The daughter centrosome with younger mother centriole is inherited to the daughter cell with NuMA preferentially localized to the cell cortex, whereas the mother centrosome with the older mother centriole migrates to the other daughter cell. Thus, the mechanisms of cell division of ACD or symmetric cell division and centrosome inheritance are recapitulated in human cancer cells, and these findings may facilitate studies on cancer stem cells.

Schmitt J, Fischer U, Heisel S, et al.
GAS41 amplification results in overexpression of a new spindle pole protein.
Genes Chromosomes Cancer. 2012; 51(9):868-80 [PubMed] Free Access to Full Article Related Publications
Amplification is a hallmark of many human tumors but the role of most amplified genes in human tumor development is not yet understood. Previously, we identified a frequently amplified gene in glioma termed glioma-amplified sequence 41 (GAS41). Using the TCGA data portal and performing experiments on HeLa and TX3868, we analyzed the role of GAS41 amplification on GAS41 overexpression and the effect on the cell cycle. Here we show that GAS41 amplification is associated with overexpression in the majority of cases. Both induced and endogenous overexpression of GAS41 leads to an increase in multipolar spindles. We showed that GAS41 is specifically associated with pericentrosome material. As result of an increased GAS41 expression we found bipolar spindles with misaligned chromosomes. This number was even increased by a combined overexpression of GAS41 and a reduced expression of NuMA. We propose that GAS41 amplification may have an effect on the highly altered karyotype of glioblastoma via its role during spindle pole formation.

Rohr SS, Pelloso LA, Borgo A, et al.
Acute promyelocytic leukemia associated with the PLZF-RARA fusion gene: two additional cases with clinical and laboratorial peculiar presentations.
Med Oncol. 2012; 29(4):2345-7 [PubMed] Related Publications
Acute promyelocytic leukemia (APL) is characterized by the presence of the t(15;17) and PML-RARa rearrangement, with good response to treatment with retinoids. However, few cases of variant APL involving alternative chromosomal aberrations have been reported, including t(11;17)(q23;q21) (Wells et al. in Nat Genet 17:109-113, 1; Arnould et al. in Hum Mol Genet 8:1741-1749, 2) t(5;17)(q35;q12-21), t(11;17)(q13;q21) (Grimwade et al in Blood 96:1297-1308, 3) and der(17) (Rego et al. in Blood (ASH Annual Meeting Abstracts)114:Abstract 6, 4), whereby RARa is fused to the PLZF, NPM, NuMA, and STAT5b genes, respectively, have been described. These cases are characterized by distinct morphology, clinical presentation, and in respect to PLZF, a lack of differentiation response to retinoids leading to the need of different approaches concerning diagnostic methods and therapeutics. This paper describes two cases of APL associated with the PLZF-RARA fusion gene enrolled in the IC-APL trial that is a non-randomized, multicenter study conducted in Brazil, Mexico, Chile and Uruguay with the aim to improve the treatment outcome of APL patients in developing countries. These cases, although rare, offer a challenge to its early recognition and proper conduction.

Sukhai MA, Thomas M, Hamadanizadeh SA, et al.
Correlation among nuclear localization of NuMA-RARα, deregulation of gene expression and leukemic phenotype of hCG-NuMA-RARα transgenic mice.
Leuk Res. 2011; 35(5):670-6 [PubMed] Related Publications
Acute promyelocytic leukemia (APL) is a model system of aberrant transcription in cancer. We sought to elucidate the mechanism of action of the variant fusion NuMA-RARα in APL, using the hCG-NuMA-RARα transgenic model. We report that subcellular localization of NuMA-RARα in transgenic mice is dependent upon its protein expression and transgene dosage. Subcellular localization of the fusion is inversely correlated with extent of gene deregulation at the mRNA level for Cebpα, Cebpɛ and Pu.1. Finally, we report that phenotype onset is correlated with NuMA-RARα copy number; mice with higher copy number developing disease later than those with lower copy number.

Rosa-Rosa JM, Pita G, González-Neira A, et al.
A 7 Mb region within 11q13 may contain a high penetrance gene for breast cancer.
Breast Cancer Res Treat. 2009; 118(1):151-9 [PubMed] Related Publications
Familial breast cancer represents up to 5% of all breast cancer cases. Recently, our group has performed a new SNP-based linkage study in 19 non-BRCA1/2 families. We found that a single family was linked to regions in two different chromosomes (11q13 and 14q21), and observed a non-parametric LOD score of 11.5 in both regions. In the present study, we ruled out any possible translocation between the chromosomes. We also used both a panel of STRs and an indirect approach based on HapMap data to narrow down these regions from 28 to 7 Mb in chromosome 11 and from 14.5 to 8.5 Mb in chromosome 14. We performed a mutational screening on candidate genes in 11q13 (NUMA1, FGF3, CCND1, RAD9A, RNF121, FADD and hsa-mir-192), and on FOXA1 in 14q21. Although we have not found any deleterious mutations in the coding region of these genes, data from STR markers confirm 11q13 as a candidate region to contain a breast cancer susceptibility gene.

Pereira S, Massacrier A, Roll P, et al.
Nuclear localization of a novel human syntaxin 1B isoform.
Gene. 2008; 423(2):160-71 [PubMed] Related Publications
The syntaxins are proteins associated with various intracellular membrane compartments. They are major participants in a large variety of physiological processes where membrane fusion occurs, including exocytosis. We have identified a novel syntaxin isoform generated by alternative splicing of the human STX1B gene. In contrast with the canonical syntaxins, this isoform (STX1B-DeltaTMD) lacked the classical C-terminal transmembrane domain and localized to the nucleus of various tumoral and non-tumoral cell types including human brain cortical neurons in vivo. The reversible blockade of STX1B-DeltaTMD nuclear import demonstrated that nuclear import occurred via a Ran-dependent pathway. A specific and glycine-rich C-terminus of 15 amino acids served as an unconventional nuclear localization signal. STX1B-DeltaTMD colocalized with Lamin A/C and NuMA (NUclear Mitotic Apparatus protein) in interphasic nuclei, and with NuMA and gamma-tubulin in the pericentrosomal region of the mitotic spindle in dividing cells. In a series of 37 human primary brain tumors, the ratio of STX1B-DeltaTMD to Lamin A/C transcripts was a significant prognostic marker of survival, independent of tumor staging. The characterization of STX1B-DeltaTMD as the first nucleoplasmic syntaxin with no transmembrane domain, illustrates the importance of alternative splicing in the emergence of unsuspected properties of the syntaxins in human cells, in both physiological and pathological conditions.

Suehiro Y, Okada T, Okada T, et al.
Aneuploidy predicts outcome in patients with endometrial carcinoma and is related to lack of CDH13 hypermethylation.
Clin Cancer Res. 2008; 14(11):3354-61 [PubMed] Related Publications
PURPOSE: Many investigators have reported that aneuploidy detected by flow cytometry is a useful prognostic marker in patients with endometrial cancer. Laser scanning cytometry (LSC) is a technology similar to flow cytometry but is more feasible for clinical laboratory use. We evaluated the usefulness of DNA ploidy detected by LSC as a prognostic marker in patients with endometrial cancer and investigated genetic and epigenetic factors related to aneuploidy.
EXPERIMENTAL DESIGN: Endometrial cancer specimens from 106 patients were evaluated. The methylation status of CDH13, Rassf1, SFRP1, SFRP2, SFRP4, SFRP5, p16, hMLH1, MGMT, APC, ATM, and WIF1 and mutations in the p53 and CDC4 genes were investigated. LSC was carried out to determine DNA ploidy. Fluorescence in situ hybridization was done with chromosome-specific centromeric probes to assess chromosomal instability.
RESULTS: Univariate and multivariate analyses revealed that p53 mutation and lack of CDH13 hypermethylation associated positively with aneuploidy. Univariate analysis showed that aneuploidy, chromosomal instability, and lack of CDH13 hypermethylation as well as surgical stage were significantly predictive of death from endometrial cancer. Furthermore, multivariate analysis revealed that stage in combination with either DNA aneuploidy or lack of CDH13 hypermethylation was an independent prognostic factor.
CONCLUSION: These results suggest that analysis of DNA ploidy and methylation status of CDH13 may help predict clinical outcome in patients with endometrial cancer. Prospective randomized trials are needed to confirm the validity of an individualized approach, including determination of tumor ploidy and methylation status of CDH13, to management of endometrial cancer patients.

Sukhai MA, Thomas M, Xuan Y, et al.
Evidence of functional interaction between NuMA-RARalpha and RXRalpha in an in vivo model of acute promyelocytic leukemia.
Oncogene. 2008; 27(34):4666-77 [PubMed] Related Publications
Acute promyelocytic leukemia (APL) is characterized by reciprocal balanced chromosomal translocations involving retinoic acid receptor-alpha (RARalpha). RARalpha heterodimerizes with the retinoid X receptor-alpha (RXRalpha) and transcriptionally regulates myeloid differentiation in response to ATRA (all-trans retinoic acid). Several lines of evidence suggest that APL fusion proteins interact with RXRalpha. To elucidate the role of RXRalpha in APL, we conditionally knocked out RXRalpha in the hCG-NuMA-RARalpha APL mouse model. Phenotype analysis of NuMA-RARalpha+ mice demonstrated that these mice developed a myeloproliferative disease-like myeloid leukemia within 4 months of birth. While hemizygous and homozygous RXRalpha conditional knockout mice were phenotypically normal as late as 12 months of age, we observed that the leukemic phenotype in NuMA-RARalpha+ mice was dependent on the presence of functional RXRalpha. Bone marrow promyelocyte counts were significantly reduced in NuMA-RARalpha+ mice with RXRalpha knocked down. Significant differences in the accumulations of Gr-1+ and Mac-1+ cells were also seen. We further observed that genes previously identified to be cooperating events in APL were also regulated in an RXRalpha-dependent manner. We therefore propose that the APL fusion protein NuMA-RARalpha cooperates with RXRalpha in the development of leukemia in hCG-NuMA-RARalpha transgenic mice and suggest a novel role for RXRalpha in the pathogenesis of APL.

Kilpivaara O, Rantanen M, Tamminen A, et al.
Comprehensive analysis of NuMA variation in breast cancer.
BMC Cancer. 2008; 8:71 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: A recent genome wide case-control association study identified NuMA region on 11q13 as a candidate locus for breast cancer susceptibility. Specifically, the variant Ala794Gly was suggested to be associated with increased risk of breast cancer.
METHODS: In order to evaluate the NuMa gene for breast cancer susceptibility, we have here screened the entire coding region and exon-intron boundaries of NuMa in 92 familial breast cancer patients and constructed haplotypes of the identified variants. Five missense variants were further screened in 341 breast cancer cases with a positive family history and 368 controls. We examined the frequency of Ala794Gly in an extensive series of familial (n = 910) and unselected (n = 884) breast cancer cases and controls (n = 906), with a high power to detect the suggested breast cancer risk. We also tested if the variant is associated with histopathologic features of breast tumors.
RESULTS: Screening of NuMA resulted in identification of 11 exonic variants and 12 variants in introns or untranslated regions. Five missense variants that were further screened in breast cancer cases with a positive family history and controls, were each carried on a unique haplotype. None of the variants, or the haplotypes represented by them, was associated with breast cancer risk although due to low power in this analysis, very low risk alleles may go unrecognized. The NuMA Ala794Gly showed no difference in frequency in the unselected breast cancer case series or familial case series compared to control cases. Furthermore, Ala794Gly did not show any significant association with histopathologic characteristics of the tumors, though Ala794Gly was slightly more frequent among unselected cases with lymph node involvement.
CONCLUSION: Our results do not support the role of NuMA variants as breast cancer susceptibility alleles.

Okazuka K, Masuko M, Seki Y, et al.
Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RAR fusion.
Int J Hematol. 2007; 86(3):246-9 [PubMed] Related Publications
Acute promyelocytic leukemia (APL) is characterized by a reciprocal chromosomal translocation involving the gene for retinoic acid receptor alpha(RAR). Most APL patients have a t(15;17) translocation that generates the PML-RAR fusion gene, and such patients respond well to treatment with all-trans retinoic acid (ATRA). Some APL cases also involve rearrangements that fuse RAR to partner genes other than PML, including nucleophosmin (NPM), promyelocytic leukemia zinc finger (PLZF), nuclear mitotic apparatus (NUMA), and Stat5b, but the clinical characteristics of APL without PML-RAR have not been fully clarified. We describe a 64-year-old man with NPM-RAR-positive APL who was receiving hemodialysis therapy for chronic uremia. Complete remission was achieved with ATRA monotherapy and was maintained for 18 months with consolidation chemotherapy. These findings suggest that ATRA can be used to treat APL patients with NPM/RAR as well as APL with PML/RAR.

Chun SM, Kim YL, Choi HB, et al.
Identification of leukemia-specific fusion gene transcripts with a novel oligonucleotide array.
Mol Diagn Ther. 2007; 11(1):21-8 [PubMed] Related Publications
BACKGROUND: Identification of specific chromosomal translocations is essential for the diagnosis and prognosis of leukemia. In this study, we employ DNA microarray technology to detect chromosomal aberrations in patients with chronic myeloid leukemia (CML) and acute myeloid leukemia (AML), as well as in leukemic cell lines.
METHODS: Reverse transcription using a random 9-mer primer was performed with total RNA from patients and leukemic cells lines. Multiplex PCR reactions using four groups of primer sets were then performed for amplification of cDNA from reverse-transcribed total RNA samples. Normal and fusion sequences were distinguished by hybridization of the amplified cDNA to a selective oligonucleotide array (SOA) containing 20-30mer synthetic probes. A total of 23 sets of oligomers were fabricated on glass slides for the detection of normal and fusion genes, as follows: BCR/ABL, AML/EAP, AML/ETO, AML/MDS, PML/RARA, NUMA1/RARA, PLZF/RARA, and CBFB/MYH.
RESULTS: Gene translocation in leukemia was effectively identified with the SOA containing various leukemia-specific fusion and normal control sequences. Leukemic fusion sequences from patients and cell lines hybridized specifically to their complementary probes. The probe sets differing by approximately 50% at their 5' or 3' ends could distinguish between normal and fusion sequences. The entire process of detection was completed within 8 hours using the SOA method.
CONCLUSIONS: Probe sets on SOA can effectively discriminate between leukemia-specific fusion and normal sequences with a chip hybridization procedure. The oligonucleotide array presents several advantages in identifying leukemic gene translocations, such as multiplex screening, relatively low cost, and speed.

Kalogianni DP, Bravou V, Christopoulos TK, et al.
Dry-reagent disposable dipstick test for visual screening of seven leukemia-related chromosomal translocations.
Nucleic Acids Res. 2007; 35(4):e23 [PubMed] Free Access to Full Article Related Publications
We report the first dry-reagent, disposable, dipstick test for molecular screening of seven chromosomal translocations associated with acute and chronic leukemia. The dipstick assay offers about 10 times higher detectability than agarose gel electrophoresis and, contrary to electrophoresis, allows confirmation of the sequence of the polymerase chain reaction (PCR) product by hybridization within a few minutes without the need of instrumentation. Biotinylated amplified DNA is hybridized with a dA-tailed probe and applied to the strip, which contains oligo(dT)-conjugated gold nanoparticles in dry form. Upon immersion of the strip in the appropriate buffer, the solution migrates and the hybrids are captured by immobilized streptavidin at the test zone generating a characteristic red line. The excess nanoparticles are captured by oligo(dA) strands immobilized at the control zone of the strip producing a second red line. We studied the: t(9;22)(q34;q11), t(15;17)(q22;q21), t(11;17)(q23;q21), t(5;17)(q32;q21), t(11;17)(q13;q21), t(8,21)(q22;q22) and inv(16)(p13;q22) that generate the BCR-ABL, PML-RARa, PLZF-RARa, NPM-RARa, NuMA-RARa, AML1-ETO and CBFbeta-MYH11 fusion genes, respectively. A single K562 cell was detectable amidst 10(6) normal leukocytes. A dipstick test was developed for actin, as a reference gene. The dipstick assay with appropriate probes can be used for identification of the fusion transcripts involved in the translocation.

Scaglioni PP, Pandolfi PP
The theory of APL revisited.
Curr Top Microbiol Immunol. 2007; 313:85-100 [PubMed] Related Publications
Acute promyelocytic leukemia (APL) is associated with reciprocal and balanced chromosomal translocations always involving the retinoic acid receptor alpha (RARa) gene on chromosome 17 and variable partner genes (X genes) on distinct chromosomes. RARalpha fuses to the PML gene in the majority of APL cases, and in a few cases to the PLZF, NPM, NuMA and STAT5b genes. As a consequence, X-RARalpha and RARalpha-X fusion genes are generated encoding aberrant chimeric proteins that exert critical oncogenic functions. Here we will integrate some of the most recent findings in APL research in a unified model and discuss some of the outstanding questions that remain to be addressed.

Rego EM, Ruggero D, Tribioli C, et al.
Leukemia with distinct phenotypes in transgenic mice expressing PML/RAR alpha, PLZF/RAR alpha or NPM/RAR alpha.
Oncogene. 2006; 25(13):1974-9 [PubMed] Related Publications
Recurrent chromosomal translocations involving the RAR alpha locus on chromosome 17 are the hallmark of acute promyelocytic leukemia (APL). The RAR alpha gene fuses to variable partners (PML, PLZF, NPM, NuMA and STAT5B: X genes) leading to the expression of APL-specific fusion proteins with identical RAR alpha moieties. To analyse whether the variable X moiety could affect the activity of the fusion protein in vivo, we generated and characterized, on a comparative basis, NPM/RAR alpha transgenic mice (TM) in which the fusion gene is expressed under the control of a human Cathepsin G (hCG) minigene. We compared the features of the leukemia observed in these TM with those in hCG-PML/RAR alpha and hCG-PLZF/RAR alpha TM. In all three transgenic models, leukemia developed after a variably long latency, with variable penetrance. However, the three leukemias displayed distinct cytomorphological features. hCG-NPM/RAR alpha leukemic cells resembled monoblasts. This phenotype contrasts with what was observed in the hCG-PML/RAR alpha TM model in which the leukemic phase was characterized by the proliferation of promyelocytic blasts. Similarly, hCG-PLZF/RAR alpha TM displayed a different phenotype where terminally differentiated myeloid cells predominated. Importantly, the NPM/RAR alpha oncoprotein was found to localize in the nucleolus, unlike PML/RAR alpha and PLZF/RAR alpha, thus possibly interfering with the normal function of NPM. Similarly to what was observed in human APL patients, we found that NPM/RAR alpha and PML/RAR alpha, but not PLZF/RAR alpha leukemia, was responsive to all-trans retinoic acid (ATRA) or As2O3 treatments. Taken together, our results underscore the critical relevance of the X moiety in dictating the biology of the disease and the activity of the APL fusion oncoprotein.

Kivinen K, Kallajoki M, Taimen P
Caspase-3 is required in the apoptotic disintegration of the nuclear matrix.
Exp Cell Res. 2005; 311(1):62-73 [PubMed] Related Publications
Apoptotic breakdown of cellular structures is largely mediated by caspases. One target of degradation is a proteinaceous framework of the nucleus termed the nuclear matrix. We compared the apoptotic changes of the nuclear matrix in staurosporine-treated caspase-3-deficient MCF-7 cells transfected with intact CASP-3 gene (MCF-7c3) or an empty vector (MCF-7v) as a control. Nuclear Mitotic Apparatus protein (NuMA), lamin A/C and lamin B were used as markers for internal nuclear matrix and peripheral nuclear lamina, respectively. In both cell lines, staurosporine induced rapid cytoplasmic shrinkage and partial chromatin condensation. MCF-7c3 cells formed apoptotic bodies, whereas MCF-7v cells did not. NuMA and lamins were actively cleaved in MCF-7c3 cells following caspase-3 activation, but only minimal or no cleavage was detected in MCF-7v cells. Interestingly, lamin B but not lamin A/C was relocated into cytoplasmic granules in apoptotic MCF-7v cells. Pancaspase inhibitor, z-VAD-fmk, prevented the apoptotic changes, while caspase-3 inhibitor, z-DEVD-fmk, induced lamin B granules in both cell lines. These results show that caspase-3 is involved in the cleavage of NuMA and lamins either directly or by activating other proteases. This may be essential for disintegration of the nuclear structure during apoptosis.

Suminami Y, Kishi F, Nawata S, et al.
Promoter analyses of SCC antigen genes.
Biochim Biophys Acta. 2005; 1727(3):208-12 [PubMed] Related Publications
SCC antigen (SCCA) has been used as a tumor marker for squamous cell carcinoma. Analyses of the SCCA1 and SCCA2 genes, which are almost identical, and their promoters have been reported. Recently it was found that both SCCAs were stimulated by interleukin (IL)-4 and IL-13. Here we analyzed the promoter activity of both SCCAs in the 5'-flanking region, exon 1, and intron 1 to evaluate a putative STAT6 binding site. The addition of intron 1 to the luciferase assay constructs including the 5'-flanking region significantly augmented the promoter activity of both SCCA1 and SCCA2. Furthermore, deletion analyses of intron 1 revealed that a 50-bp fragment of intron 1 that includes putative STAT6 binding site was responsible for the increased promoter activity. Although the sequences of SCCA1 and SCCA2 are very similar in the 5'-flanking region, the analysis of the -337 single nucleotide polymorphism of SCCA2 indicated that this polymorphism may underlie the difference in promoter activity between SCCA1 and SCCA2.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NUMA1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999