Gene Summary

Gene:SGK1; serum/glucocorticoid regulated kinase 1
Aliases: SGK
Summary:This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion. High levels of expression of this gene may contribute to conditions such as hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:serine/threonine-protein kinase Sgk1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (29)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Protein Kinase Inhibitors
  • Remission Induction
  • Dose-Response Relationship, Drug
  • Apoptosis
  • Protein-Serine-Threonine Kinases
  • Gene Expression
  • Androgen Receptors
  • Signal Transduction
  • Mutation
  • Gene Expression Profiling
  • Down-Regulation
  • Phosphorylation
  • MCF-7 Cells
  • Transcription Factors
  • Prostate Cancer
  • Cell Proliferation
  • Breast Cancer
  • Staging
  • Transcription
  • Glucocorticoid Receptors
  • Forkhead Box Protein O3
  • Immediate-Early Proteins
  • Messenger RNA
  • siRNA
  • Chromosome 6
  • Gene Knockdown Techniques
  • Cell Cycle Proteins
  • DNA Methylation
  • AKT1
  • Lung Cancer
  • Cancer Gene Expression Regulation
  • Colorectal Cancer
  • Antineoplastic Agents
  • Oligonucleotide Array Sequence Analysis
  • HEK293 Cells
  • Cell Survival
  • Neoplastic Cell Transformation
  • RNA Interference
  • p53 Protein
  • Cell Movement
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SGK1 (cancer-related)

Ma X, Zhang L, Song J, et al.
Characterization of the Src-regulated kinome identifies SGK1 as a key mediator of Src-induced transformation.
Nat Commun. 2019; 10(1):296 [PubMed] Free Access to Full Article Related Publications
Despite significant progress, our understanding of how specific oncogenes transform cells is still limited and likely underestimates the complexity of downstream signalling events. To address this gap, we use mass spectrometry-based chemical proteomics to characterize the global impact of an oncogene on the expressed kinome, and then functionally annotate the regulated kinases. As an example, we identify 63 protein kinases exhibiting altered expression and/or phosphorylation in Src-transformed mammary epithelial cells. An integrated siRNA screen identifies nine kinases, including SGK1, as being essential for Src-induced transformation. Accordingly, we find that Src positively regulates SGK1 expression in triple negative breast cancer cells, which exhibit a prominent signalling network governed by Src family kinases. Furthermore, combined inhibition of Src and SGK1 reduces colony formation and xenograft growth more effectively than either treatment alone. Therefore, this approach not only provides mechanistic insights into oncogenic transformation but also aids the design of improved therapeutic strategies.

Zhu J, Zhang R, Yang D, et al.
Knockdown of Long Non-Coding RNA XIST Inhibited Doxorubicin Resistance in Colorectal Cancer by Upregulation of miR-124 and Downregulation of SGK1.
Cell Physiol Biochem. 2018; 51(1):113-128 [PubMed] Related Publications
BACKGROUND/AIMS: Doxorubicin (DOX) is a widely used chemotherapeutic agent for colorectal cancer (CRC). However, the acquirement of DOX resistance limits its clinical application for cancer therapy. Mounting evidence has suggested that aberrantly expressed lncRNAs contribute to drug resistance of various tumors. Our study aimed to explore the role and molecular mechanisms of lncRNA X-inactive specific transcript (XIST) in chemoresistance of CRC to DOX.
METHODS: The expressions of XIST, miR-124, serum and glucocorticoid-inducible kinase 1 (SGK1) mRNA in DOX-resistant CRC tissues and cells were detected by qRT-PCR or western blot analysis. DOX sensitivity was assessed by detecting IC50 value of DOX, the protein levels of P-glycoprotein (P-gp) and glutathione S-transferase-π (GST-π) and apoptosis. The interactions between XIST, miR-124 and SGK1 were confirmed by luciferase reporter assay, qRT-PCR and western blot. Xenograft tumor assay was used to verify the role of XIST in DOX resistance in CRC in vivo.
RESULTS: XIST expression was upregulated and miR-124 expression was downregulated in DOX-resistant CRC tissues and cells. Knockdown of XIST inhibited DOX resistance of CRC cells, as evidenced by the reduced IC50 value of DOX, decreased P-gp and GST-π levels and enhanced apoptosis in XIST-silenced DOX-resistant CRC cells. Additionally, XIST positively regulated SGK1 expression by interacting with miR-124 in DOX-resistant CRC cells. miR-124 suppression strikingly reversed XIST-knockdown-mediated repression on DOX resistance in DOX-resistant CRC cells. Moreover, SGK1-depletion-elicited decrease of DOX resistance was greatly restored by XIST overexpression or miR-124 inhibition in DOX-resistant CRC cells. Furthermore, XIST knockdown enhanced the anti-tumor effect of DOX in CRC in vivo.
CONCLUSION: XIST exerted regulatory function in resistance of DOX possibly through miR-124/SGK1 axis, shedding new light on developing promising therapeutic strategy to overcome chemoresistance in CRC patients.

Godbole M, Togar T, Patel K, et al.
Up-regulation of the kinase gene
J Biol Chem. 2018; 293(50):19263-19276 [PubMed] Free Access to Full Article Related Publications
Preoperative progesterone intervention has been shown to confer a survival benefit to breast cancer patients independently of their progesterone receptor (PR) status. This observation raises the question how progesterone affects the outcome of PR-negative cancer. Here, using microarray and RNA-Seq-based gene expression profiling and ChIP-Seq analyses of breast cancer cells, we observed that the serum- and glucocorticoid-regulated kinase gene (

Lehrer S, Rheinstein PH, Rosenzweig KE
Glioblastoma Multiforme: Fewer Tumor Copy Number Segments of the
Cancer Genomics Proteomics. 2018 Jul-Aug; 15(4):273-278 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: Glioblastoma multiforme (GBM) is the most common primary tumor of the central nervous system. The serum and glucocorticoid-regulated kinase SGK1 gene is required for the growth and survival of GBM stem-like cells under both normoxic and hypoxic conditions. It has been reported that oxygenation significantly affects cellular genetic expression; 30% of the genes required in hypoxia were not required under normoxic conditions. Therefore, we examined SGK1 expression to determine if it may be a novel potential drug target for GBM.
MATERIALS AND METHODS: We assessed the association between SGK1 and glioblastoma patient overall survival using the GBM cohort in TCGA (The Cancer Genome Atlas) database (TCGA-GBM). To access and analyze the data we used the UCSC Xena browser ( Survival data of the GBM subgroup were extracted for analysis and generation of Kaplan-Meier curves for overall survival. The best cut-off was identified by methods described in the R2 web-based application (
RESULTS: We analyzed patient survival by tumor SGK1 copy number segments after removal of common germ-line copy-number variants (CNVs). Copy number segments (log2 tumor/normal) ≤0.009700 were associated with significantly poorer survival (p=0.016).
CONCLUSION: Increased median overall survival associated with increased SGK1 copy number segments may be a reflection of better tumor oxygenation. Therefore, besides being a drug target, SGK1 may also be a prognostic marker. Among molecular tumor markers, only the methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) gene has shown a significant association with survival in patients with GBM.

Liu W, Wang X, Wang Y, et al.
SGK1 inhibition-induced autophagy impairs prostate cancer metastasis by reversing EMT.
J Exp Clin Cancer Res. 2018; 37(1):73 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Despite SGK1 has been identified and characterized as a tumor-promoting gene, the functions and underlying mechanisms of SGK1 involved in metastasis regulation have not yet been investigated in cancer.
METHODS: We investigated the cellular responses to GSK650394 treatment and SGK1 silencing (or overexpression) in human prostate cancer (PCa) cell lines and PC3 xenografts by wound healing assay, migration and invasion assay, western blotting, immunofluorescence and immunohistochemistry.
RESULTS: In the present study, we found that SGK1 expression positively correlates with human prostate cancer (PCa) progression and metastasis. We show that SGK1 inhibition significantly attenuates EMT and metastasis both in vitro and in vivo, whereas overexpression of SGK1 dramaticlly promoted the invasion and migration of PCa cells. Our further results suggest that SGK1 inhibition induced antimetastatic effects, at least partially via autophagy-mediated repression of EMT through the downregulation of Snail. Moreover, ectopic expression of SGK1 obviously attenuated the GSK650394-induced autophagy and antimetastatic effects. What's more, dual inhibition of mTOR and SGK1 enhances autophagy and leads to synergistic antimetastatic effects on PCa cells.
CONCLUSIONS: Taken together, this study unveils a novel mechanism in which SGK1 functions as a tumor metastasis-promoting gene and highlights how co-targeting SGK1 and autophagy restrains cancer progression due to the amplified antimetastatic effects.

Tang Z, Shen Q, Xie H, et al.
Serum and glucocorticoid-regulated kinase 1 (SGK1) is a predictor of poor prognosis in non-small cell lung cancer, and its dynamic pattern following treatment with SGK1 inhibitor and γ-ray irradiation was elucidated.
Oncol Rep. 2018; 39(3):1505-1515 [PubMed] Related Publications
The tumor suppressor gene p53 and its dynamic patterns have caused widespread attention in the field of cancer research. Serum and glucocorticoid-regulated kinase 1 (SGK1) with features of serine/threonine kinase activity, which also contributes to the structural and functional similarities with the AKT family of kinases, is a key enzyme in the regulation of immune responses in tumor cells, and SGK1 was noted to be expressed in close relation to p53 protein levels, and there exists a negative feedback pathway between intracellular SGK1 and p53. Noteworthy, SGK1 was detected to play a role in the development of resistance to cancer chemotherapy. In this study, we demonstrated that high SGK1 expression had strong prognostic value for reduced overall survival in NSCLC patients. Detection of SGK1 collectively was helpful to predict the prognosis of NSCLC. We also identified the expression level of SGK1 and the p53 pathway including downstream apoptotic proteins under the stimulation of γ-radiation and SGK1 inhibitor GSK650394, which presented a series of dynamic fluctuations. Our results suggest that SGK1 dynamics could play an important role in cell signaling, which is capable of directly influencing NSCLC cellular fate decisions.

Liu T, Yu T, Hu H, He K
Knockdown of the long non-coding RNA HOTTIP inhibits colorectal cancer cell proliferation and migration and induces apoptosis by targeting SGK1.
Biomed Pharmacother. 2018; 98:286-296 [PubMed] Related Publications
More and more long non-coding RNA (lncRNA) might be serve as molecular biomarkers for tumor cell progression. HOTTIP has been recently revealed as oncogenic regulator in several cancers. However, it remains unclear about whether and how HOTTIP regulates Colorectal cancer (CRC). In the present study, we assayed the expression of HOTTIP in CRC tissues and cell lines, and detected CRC cells (HCT-116 and SW620) proliferation, migration, and apoptosis when HOTTIP was knocked down. Furthermore, we discovered the underlying mechanism. The level of HOTTIP was higher in CRC tissues and in CRC cells compared with adjacent normal tissues and normal colon tissue cell. Knockdown of HOTTIP inhibited the cell proliferation migration and induced apoptosis in HCT-116 and SW620 cell lines. In addition, luciferase reporter assay suggested that knockdown of HOTTIP could target decreasing the expression of Serum- and glucocorticoid-inducible kinase 1 (SGK1) gene, and we subsequently verified that up-regulation of the SGK1 gene promoted cell proliferation and migration and inhibited cell apoptosis in HCT-116 and SW620 cell lines. Furthermore, Knockdown of HOTTIP significantly suppressed the expression of GSK3β, β-catenin, c-myc, Vimentin and MMP-7, and increased the expression of E-cadherin, FoxO3a, p27 and Bim proteins in HCT-116 and SW620 cell lines, and up-regulation of the SGK1 emerged the opposite effect with knockdown of HOTTIP. The data described in this study suggest that HOTTIP may be an oncogene and a potential target in CRC.

Liang X, Lan C, Jiao G, et al.
Therapeutic inhibition of SGK1 suppresses colorectal cancer.
Exp Mol Med. 2017; 49(11):e399 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is one of the leading causes of death worldwide. Thus, the development of new therapeutic targets for CRC treatment is urgently needed. SGK1 is involved in various cellular activities, and its dysregulation can result in multiple cancers. However, little is known about its roles and associated molecular mechanisms in CRC. In present study, we found that SGK1 was highly expressed in tumor tissues compared with peri-tumor samples from CRC patients. In vitro experiments revealed that SGK1 overexpression promoted colonic tumor cell proliferation and migration and inhibited cell apoptosis induced by 5-fluorouracil (5-FU), while SGK1 shRNA and inhibitors showed the inverse effects. Using CRC xenograft mice models, we demonstrated that knockdown or therapeutic inhibition of SGK1 repressed tumor cell proliferation and tumor growth. Moreover, SGK1 inhibitors increased p27 expression and promoted p27 nuclear accumulation in colorectal cancer cells, and p27 siRNAs could attenuate the repression of CRC cell proliferation induced by SGK1 inhibitors. Collectively, SGK1 promotes colorectal cancer development via regulation of CRC cell proliferation, migration and survival. Inhibition of SGK1 represents a novel strategy for the treatment of CRC.

Kulkarni S, Goel-Bhattacharya S, Sengupta S, Cochran BH
A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.
Mol Cancer Res. 2018; 16(1):103-114 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as

Schmid E, Stagno MJ, Yan J, et al.
Serum and Glucocorticoid Inducible Kinase 1-Sensitive Survival, Proliferation and Migration of Rhabdomyosarcoma Cells.
Cell Physiol Biochem. 2017; 43(3):1301-1308 [PubMed] Related Publications
BACKGROUND/AIMS: Rhabdomyosarcoma, the most common pediatric soft tissue sarcoma, may show an intrinsic refractoriness to standard chemotherapy in advanced tumor stages, which is associated with poor prognosis. Cellular mechanisms conferring tumor cell survival and therapy resistance in many tumor types include the serum & glucocorticoid inducible kinase (SGK) 1 pathway, a kinase expressed ubiquitously with particularly strong expression in skeletal muscle and some tumor types. The present study explored whether SGK1 is expressed in rhabdomyosarcoma and, if so, whether this kinase impacts on tumor cell survival, proliferation and migration. Multiple in vitro techniques were used to study the role of SGK1 in rhabdomyosarcoma.
METHODS: The Gene Chip® Human Genome U133 Plus 2.0 Array were employed to examine SGK1 transcriptional activity in healthy muscle and rhabdomyosarcoma tissue. SGK1 transcript levels were quantified in rhabdomyosarcoma cell lines RD (embryonal subtype) and RH30 (alveolar subtype) by RT-PCR, cell viability was measured using MTT assays. Clonal cell growth was assessed via colony forming assays and migration experiments were performed in a transwell system.
RESULTS: SGK1 is expressed in embryonal and alveolar rhabdomyosarcoma tissue samples and in RD and RH30 rhabdomyosarcoma cell lines. Administration of EMD638683 - an inhibitor specific for SGK1 - decreased viability of RD and RH30 cells, enhanced the effects of the cytotoxic drug doxorubicin leading to reduced migration and decreased cell proliferation.
CONCLUSIONS: SGK1 is expressed in rhabdomyosarcoma cells where it contributes to survival, therapy resistance, cell proliferation and migration. Thus, SGK1 inhibitors may be considered a therapeutic option for the treatment of therapy-resistant rhabdomyosarcoma.

Li J, Wang X, Xie Y, et al.
The mTOR kinase inhibitor everolimus synergistically enhances the anti-tumor effect of the Bruton's tyrosine kinase (BTK) inhibitor PLS-123 on Mantle cell lymphoma.
Int J Cancer. 2018; 142(1):202-213 [PubMed] Related Publications
Mantle cell lymphoma (MCL) is an aggressive and incurable malignant disease. Despite of general chemotherapy, relapse and mortality are common, highlighting the need for the development of novel targeted drugs or combination of therapeutic regimens. Recently, several drugs that target the B-cell receptor (BCR) signaling pathway, especially the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib, have demonstrated notable therapeutic effects in relapsed/refractory patients, which indicate that pharmacological inhibition of BCR pathway holds promise in MCL treatment. Here, we have developed a novel irreversible BTK inhibitor, PLS-123, that has more potent and selective anti-tumor activity than ibrutinib in vitro and in vivo. Using in vitro screening, we discovered that the combination of PLS-123 and the mammalian target of rapamycin (mTOR) inhibitor everolimus exert synergistic activity in attenuating proliferation and motility of MCL cell lines. Simultaneous inhibition of BTK and mTOR resulted in marked induction of apoptosis and cell cycle arrest in the G1 phase, which were accompanied by upregulation of pro-apoptotic proteins (cleaved Caspase-3, cleaved PARP and Bax), repression of anti-apoptotic proteins (Mcl-1, Bcl-xl and XIAP), and downregulation of regulators of the G1/S phase transition (CDK2, CDK4, CDK6 and Cyclin D1). Gene expression profile analysis revealed simultaneous treatment with these agents led to inhibition of the JAK2/STAT3, AKT/mTOR signaling pathways and SGK1 expression. Finally, the anti-tumor and pro-apoptotic activities of combination strategy have also been demonstrated using xenograft mice models. Taken together, simultaneous suppression of BTK and mTOR may be indicated as a potential therapeutic modality for the treatment of MCL.

Wu S, Wu F, Jiang Z
Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer.
Oncol Rep. 2017; 38(4):2043-2050 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is the most common cancer of the digestive system. The aim of the present study was to identify the potential biomarkers and uncover the underlying mechanisms. The gene and miRNA expression profiles were obtained from GEO database. The differentially expressed genes (DEGs) and miRNAs (DE miRNAs) were identified by GEO2R. The gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by KOBAS 3.0. The protein-protein interaction (PPI) network and miRNA-gene network were constructed by Cytoscape software. Then, the identified genes were verified by quantitative real-time PCR in both CRC tissue samples and cell lines. A total of 600 upregulated DEGs, 283 downregulated DEGs, 13 upregulated DE miRNAs and 7 downregulated DE miRNAs were identified. GO analysis results showed that upregulated DEGs were significantly enriched in binding, organelle and cellular process. Downregulated DEGs were enriched in binding, extracellular region and chemical homeostasis. KEGG analysis showed that the DEGs were mostly enriched in cell cycle and pathways in cancer. A total of eight genes were identified as biomarkers, including CAD, ITGA2, E2F3, BCL2, PRKACB, IGF1, SGK1 and NR3C1. Experimental validation showed that seven of the eight identified genes had the same expression trend as predicted, except for ITGA2. Besides, hsa-miR-552 and hsa‑miR-30a were identified as key miRNAs. the present study provides a series of biomarkers and mechanisms for the diagnosis and therapy of CRC. We also prove that although bioinformatics analysis is a wonderful approach, experiment validation is necessary.

Hodgson A, Amemiya Y, Seth A, et al.
High-grade Müllerian Adenosarcoma: Genomic and Clinicopathologic Characterization of a Distinct Neoplasm With Prevalent TP53 Pathway Alterations and Aggressive Behavior.
Am J Surg Pathol. 2017; 41(11):1513-1522 [PubMed] Related Publications
Müllerian adenosarcoma harbors low malignant potential, except in cases with myometrial invasion or sarcomatous overgrowth. The presence of a high-grade stromal component has been proposed as an important pathologic predictor of outcome. We hypothesized that high-grade adenosarcoma has distinct clinical and molecular features, distinct from low-grade adenosarcoma. We analyzed the clinicopathologic features and follow-up of 9 high-grade adenosarcomas and a control group of 9 low-grade adenosarcomas. Comprehensive genomic analysis of the high-grade group was performed targeting exons of 409 oncogenes and tumor suppressor genes. In 1 case, the high-grade and low-grade components were separately sequenced. High-grade and low-grade adenosarcomas were comparable in patient age, myometrial invasion, and stage at presentation. Sarcomatous overgrowth was observed in 2/9 (22%) low-grade and 8/9 (89%) high-grade adenosarcomas. Six of 9 (67%) patients with high-grade adenosarcoma developed rapid recurrence; 1 died of her disease. Conversely, no low-grade tumors recurred or metastasized. Sequencing of high-grade adenosarcomas revealed frequent TP53 pathway alterations, identified in 7/9 (78%) cases. p53 expression by immunohistochemistry highly correlated with mutation status. Copy number variations occurred at a mean of 28.8 per tumor; most frequently involved genes included CDK4, MDM2, GNAS, SGK1, and DICER1. High-grade adenosarcoma is an aggressive neoplasm with propensity for short-interval recurrence and metastasis. The proportion of copy number alterations is similar to that reported for adenosarcoma with sarcomatous overgrowth. However, the high frequency of TP53 abnormalities is a novel finding, indicating that high-grade adenosarcoma is a distinct subset with driver TP53 pathway alterations. p53 immunohistochemistry can be used to confirm the presence of a high-grade component. Given its aggressive potential, the presence of any high-grade component in an adenosarcoma should be reported, even in the absence of sarcomatous overgrowth.

De Marco C, Laudanna C, Rinaldo N, et al.
Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer.
PLoS One. 2017; 12(6):e0178865 [PubMed] Free Access to Full Article Related Publications
Hyperactivation of the phosphatydil-inositol-3' phosphate kinase (PI3K)/AKT pathway is observed in most NSCLCs, promoting proliferation, migration, invasion and resistance to therapy. AKT can be activated through several mechanisms that include loss of the negative regulator PTEN, activating mutations of the catalytic subunit of PI3K (PIK3CA) and/or mutations of AKT1 itself. However, number and identity of downstream targets of activated PI3K/AKT pathway are poorly defined. To identify the genes that are targets of constitutive PI3K/AKT signalling in lung cancer cells, we performed a comparative transcriptomic analysis of human lung epithelial cells (BEAS-2B) expressing active mutant AKT1 (AKT1-E17K), active mutant PIK3CA (PIK3CA-E545K) or that are silenced for PTEN. We found that, altogether, aberrant PI3K/AKT signalling in lung epithelial cells regulated the expression of 1,960/20,436 genes (9%), though only 30 differentially expressed genes (DEGs) (15 up-regulated, 12 down-regulated and 3 discordant) out of 20,436 that were common among BEAS-AKT1-E17K, BEAS-PIK3CA-E545K and BEAS-shPTEN cells (0.1%). Conversely, DEGs specific for mutant AKT1 were 133 (85 up-regulated; 48 down-regulated), DEGs specific for mutant PIK3CA were 502 (280 up-regulated; 222 down-regulated) and DEGs specific for PTEN loss were 1549 (799 up-regulated, 750 down-regulated). The results obtained from array analysis were confirmed by quantitative RT-PCR on selected up- and down-regulated genes (n = 10). Treatment of BEAS-C cells and the corresponding derivatives with pharmacological inhibitors of AKT (MK2206) or PI3K (LY294002) further validated the significance of our findings. Moreover, mRNA expression of selected DEGs (SGK1, IGFBP3, PEG10, GDF15, PTGES, S100P, respectively) correlated with the activation status of the PI3K/AKT pathway assessed by S473 phosphorylation in NSCLC cell lines (n = 6). Finally, we made use of Ingenuity Pathway Analysis (IPA) to investigate the relevant BioFunctions enriched by the costitutive activation of AKT1-, PI3K- or PTEN-dependent signalling in lung epithelial cells. Expectedly, the analysis of the DEGs common to all three alterations highlighted a group of BioFunctions that included Cell Proliferation of tumor cell lines (14 DEGs), Invasion of cells (10 DEGs) and Migration of tumour cell lines (10 DEGs), with a common core of 5 genes (ATF3, CDKN1A, GDF15, HBEGF and LCN2) that likely represent downstream effectors of the pro-oncogenic activities of PI3K/AKT signalling. Conversely, IPA analysis of exclusive DEGs led to the identification of different downstream effectors that are modulated by mutant AKT1 (TGFBR2, CTSZ, EMP1), mutant PIK3CA (CCND2, CDK2, IGFBP2, TRIB1) and PTEN loss (ASNS, FHL2). These findings not only shed light on the molecular mechanisms that are activated by aberrant signalling through the PI3K/AKT pathway in lung epithelial cells, but also contribute to the identification of previously unrecognised molecules whose regulation takes part in the development of lung cancer.

Liu J, Zhang G, Lv Y, et al.
SGK2 promotes hepatocellular carcinoma progression and mediates GSK-3β/β-catenin signaling in HCC cells.
Tumour Biol. 2017; 39(6):1010428317700408 [PubMed] Related Publications
The phosphoinositide 3-kinase pathway is one of the most commonly altered pathways in human cancers. The serum/glucocorticoid-regulated kinase (SGK) family of serine/threonine kinases consists of three isoforms, SGK1, SGK2, and SGK3. This family of kinases is highly homologous to the AKT kinase family, sharing similar upstream activators and downstream targets. Few studies have investigated the role of SGK2 in hepatocellular carcinoma. Here, we report that SGK2 expression levels were upregulated in hepatocellular carcinoma tissues and human hepatoma cell lines compared to the adjacent normal liver tissues and a normal hepatocyte line, respectively. We found that downregulated SGK2 inhibits cell migration and invasive potential of hepatocellular carcinoma cell lines (SMMC-7721 and Huh-7).We also found that downregulated SGK2 suppressed the expression level of unphosphorylated (activated) glycogen synthase kinase 3 beta. In addition, SGK2 downregulation decreased the dephosphorylation (activation) of β-catenin by preventing its proteasomal degradation in the hepatocellular carcinoma cell lines. These findings suggest that SGK2 promotes hepatocellular carcinoma progression and mediates glycogen synthase kinase 3 beta/β-catenin signaling in hepatocellular carcinoma cells.

Tian S, Wang X, Proud CG
Oncogenic MNK signalling regulates the metastasis suppressor NDRG1.
Oncotarget. 2017; 8(28):46121-46135 [PubMed] Free Access to Full Article Related Publications
The protein N-myc down-regulated gene 1 (NDRG1) represses tumour metastasis. It is phosphorylated at several sites by serum and glucocorticoid-regulated kinase 1 (SGK1). Here we show that NDRG1 is also regulated by the oncogenic MAP kinase-interacting kinase (MNK) pathway, a target for cancer therapy.Inhibiting MNKs increases the expression of NDRG1 protein and mRNA in breast cancer cells. MNK inhibition also decreases the phosphorylation of NDRG1. Phosphorylation of NDRG1 is reduced in cells lacking MNK1, but not MNK2-knockout cells, indicating that NDRG1 phosphorylation is a specific target for MNK1. However, MNK1 cannot directly phosphorylate NDRG1 in vitro, indicating that additional signalling connections are involved. Taken together, our data indicate that MNK signaling regulates NDRG1 at transcriptional and post-translational levels.We show that SGK1 phosphorylates MNK1 at a conserved site, which represses its activity. NDRG1, SGK1 and the MNKs are implicated in cell migration and metastasis. As expected, knocking-down NDRG1 promoted cell migration. However, whereas MNK inhibition impairs these processes irrespective of NDRG1 levels, SGK inhibition only did so in NDRG1-depleted cells. Thus, MNKs and SGK affect migration/invasion through distinct mechanisms.Our data reveal several novel connections between signalling pathways important for tumour biology.

Marzook H, Deivendran S, George B, et al.
Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells.
Oncogene. 2017; 36(37):5263-5273 [PubMed] Related Publications
Chromatin remodeling factor metastatic tumor protein 1 (MTA1), one of the most upregulated oncogene in human cancer, has an important role in gene expression, cell survival and promoting hypoxic response. Successful cancer progression is dependent on the ability of cells to utilize its survival pathways for adapting to hypoxic microenvironment. Although MTA1 is a stress-responsive gene, but whether hypoxia modulates its function and its role in engaging other core stress-responsive survival pathway(s) remains unknown. Here we have discovered that MTA1 is a novel corepressor of serum and glucocorticoid-inducible kinase 1 (SGK1). Surprisingly, this regulatory corepressive function of MTA1 is lost under hypoxia, allowing upregulation of SGK1 expression and engaging the MTA1-SGK1 axis for the benefit of the cell survival. The underlying mechanism of the noticed stimulation of SGK1 expression by hypoxia includes de-repression of SGK1 transcription because of hypoxia-triggered nucleus-to-cytoplasmic translocation of MTA1. In addition, the newly recognized cytoplasmic translocation of MTA1 was dependent on the chaperoning function of heat shock protein 90 (HSP90) and co-accompanied by the formation of MTA1, HSP90 and HIF1α complex under hypoxic condition but not under normoxic condition. Hypoxia-triggered redistribution of MTA1, SGK1 upregulation and cell survival functions were compromised by a pharmacological SGK1 inhibitor. In summary, for the first time, we report MTA1 regulation of SGK1 expression, hypoxia-dependent MTA1 translocation to the cytoplasm and de-repression of SGK1 transcription. These findings illustrate how cancer cells utilize a chromatin remodeling factor to engage a core survival pathway to support its cancerous phenotypes, and reveal new facets of MTA1-SGK1 axis by a physiologic signal in cancer progression.

Schmidt KM, Hellerbrand C, Ruemmele P, et al.
Inhibition of mTORC2 component RICTOR impairs tumor growth in pancreatic cancer models.
Oncotarget. 2017; 8(15):24491-24505 [PubMed] Free Access to Full Article Related Publications
Mammalian Target of Rapamycin complex 2 (mTORC2) and its regulatory component Rapamycin-insensitive companion of mTOR (RICTOR) are increasingly recognized as important players in human cancer development and progression. However, the role of RICTOR in human pancreatic ductal adenocarcinoma (PDAC) is unclear so far. Here, we sought to analyze the effects of RICTOR inhibition in human pancreatic cancer cell lines in vitro and in vivo. Furthermore, RICTOR expression was determined in human PDAC samples. Results demonstrate that depletion of RICTOR with siRNA (transient knock-down) or shRNA (stable knock-down) has an inhibitory effect on tumor growth in vitro. Moreover, RICTOR inhibition led to impaired phosphorylation/activity of AGC kinases (AKT, SGK1). Interestingly, hypoxia-induced expression of hypoxia-induced factor-1α (HIF-1α) was diminished and secretion of vascular-endothelial growth factor-A (VEGF-A) was impaired upon targeting RICTOR. Stable RICTOR knock-down led to significant inhibition of tumor growth in subcutaneous and orthotopic tumor models which was accompanied by significant reduction of tumor cell proliferation. Finally, immunohistochemical analyses of 85 human PDAC samples revealed significantly poorer survival in patients with higher RICTOR expression. In conclusion, these findings provide first evidence for mTORC2/RICTOR as an attractive novel target for treatment of human PDAC.

Kach J, Long TM, Selman P, et al.
Selective Glucocorticoid Receptor Modulators (SGRMs) Delay Castrate-Resistant Prostate Cancer Growth.
Mol Cancer Ther. 2017; 16(8):1680-1692 [PubMed] Free Access to Full Article Related Publications
Increased glucocorticoid receptor (GR) expression and activity following androgen blockade can contribute to castration-resistant prostate cancer (CRPC) progression. Therefore, we hypothesized that GR antagonism will have therapeutic benefit in CRPC. However, the FDA-approved nonselective, steroidal GR antagonist, mifepristone, lacks GR specificity, reducing its therapeutic potential. Here, we report that two novel nonsteroidal and highly selective GR modulators (SGRM), CORT118335 and CORT108297, have the ability to block GR activity in prostate cancer and slow CRPC progression. In contrast to mifepristone, these novel SGRMs did not affect androgen receptor (AR) signaling, but potently inhibited GR transcriptional activity. Importantly, SGRMs decreased GR-mediated tumor cell viability following AR blockade.

Shi G, Wang Q, Zhou X, et al.
Response of human non-small-cell lung cancer cells to the influence of Wogonin with SGK1 dynamics.
Acta Biochim Biophys Sin (Shanghai). 2017; 49(4):302-310 [PubMed] Related Publications
A number of significant studies in the field of cell biology have revealed another pattern of intracellular signal transduction in which cells transmit information through the dynamics of key signaling molecules. Dynamical properties of p53 have been demonstrated to be the key factor in dictating cell fate, including cell cycle arrest, permanent cell cycle arrest, and cell death. Previous studies showed a negative feedback regulation pathway between SGK1 and p53, but the dynamics of SGK1 have never been reported before. Therefore, we used different dosing strategies of Wogonin to affect SGK1 dynamics and investigate its impact on cell response. Key factors, such as APAF1, BAX, GADD45A, p21, PML, and YPEL3, which are related to cell cycle arrest, senescence, and apoptosis, were measured at different time points after incubation with Wogonin. Western blot and quantitative reverse transcriptase-polymerase chain reaction analysis were used to examine protein and mRNA expression of these genes. In addition, we also used β-galactosidase staining and flow cytometric analysis to further verify the results. It was found that Wogonin inhibited cell viability and downregulated SGK1 protein levels; 20 μM Wogonin could induce non-small-cell lung cancer A549 cells into cell cycle arrest/senescence/apoptosis after 0.5/2/4 h, respectively; and SGK1 dynamics showed significant differences under different cell responses. Together, our findings showed that SGK1 protein dynamics can be an important part of intracellular signaling, directly influencing cellular response decisions.

Jhanwar-Uniyal M, Amin AG, Cooper JB, et al.
Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects.
Adv Biol Regul. 2017; 64:39-48 [PubMed] Related Publications
Activation of PI3K/Akt/mTOR (mechanistic target of rapamycin) signaling cascade has been shown in tumorigenesis of numerous malignancies including glioblastoma (GB). This signaling cascade is frequently upregulated due to loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. Also, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK. mTORC2 plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. Both complexes control each other as Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Another significant component of mTORC2 is Sin1, which is crucial for mTORC2 complex formation and function. Allosteric inhibitors of mTOR, rapamycin and rapalogs, have essentially been ineffective in clinical trials of patients with GB due to their incomplete inhibition of mTORC1 or unexpected activation of mTOR via the loss of negative feedback loops. Novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6K

Yu W, Honisch S, Schmidt S, et al.
Chorein Sensitive Orai1 Expression and Store Operated Ca2+ Entry in Rhabdomyosarcoma Cells.
Cell Physiol Biochem. 2016; 40(5):1141-1152 [PubMed] Related Publications
BACKGROUND: Chorein, a protein encoded by VPS13A (vacuolar protein sorting-associated protein 13A), is defective in chorea acanthocytosis, a rare disease characterized by acanthocytosis of red blood cells and neuronal cell death with progressive hyperkinetic movement disorder, cognitive dysfunction, behavioral abnormalities and chronic hyperkalemia. Chorein is highly expressed in ZF rhabdomyosarcoma cells and counteracts apoptosis of those cells. Chorein is effective in part by interacting with and fostering stimulation of phosphoinositide-3-kinase (PI3K)-p85-subunit. PI3K dependent signaling includes the serum and glucocorticoid inducible kinase SGK1. The kinase activates NFκB with subsequent up-regulation of the Ca2+ channel subunit Orai1, which accomplishes store operated Ca2+ entry (SOCE). Orai1 and SOCE have been shown to confer survival of tumor cells. The present study thus explored whether chorein impacts on Orai1 expression and SOCE.
METHODS: In rhabdomyosarcoma cells chorein, Orai1, NFκB and SGK1 transcript levels were quantified by RT-PCR, Orai1 protein abundance by Western blotting, FACS analysis and confocal laser microscopy, [Ca2+]i utilizing Fura-2 fluorescence, and SOCE from the increase of [Ca2+]i following store depletion with extracellular Ca2+ removal and inhibition of the sarcoendoplasmatic reticular Ca2+ ATPase with thapsigargin.
RESULTS: The mRNA coding for chorein was most abundant in drug resistant, poorly differentiated human ZF rhabdomyosarcoma cells. Chorein silencing significantly decreased Orai1 transcript levels and Orai1 protein expression, as well as SGK1 and NFκB transcript levels. SOCE in ZF rhabdomyosarcoma cells was significantly blunted by chorein silencing, Orai1 inhibitor 2-APB (50 µM), SGK1 inhibitor EMD638683 (50 µM, 10 h) and NFκB inhibitor wogonin (50 µM, 24 h).
CONCLUSION: Chorein is a stimulator of Orai1 expression and thus of store operated Ca2+ entry. The effect may involve SGK1 and NFκB.

Talarico C, Dattilo V, D'Antona L, et al.
SGK1, the New Player in the Game of Resistance: Chemo-Radio Molecular Target and Strategy for Inhibition.
Cell Physiol Biochem. 2016; 39(5):1863-1876 [PubMed] Related Publications
The serum- and glucocorticoid-regulated kinase (SGK) family consists of three members, SGK1, SGK2 and SGK3, all displaying serine/threonine kinase activity and sharing structural and functional similarities with the AKT family of kinases. SGK1 was originally described as a key enzyme in the hormonal regulation of several ion channels and pumps. Over time, growing and impressive evidence has been accumulated, linking SGK1 to the cell survival, de-differentiation, cell cycle control, regulation of caspases, response to chemical, mechanical and oxidative injury in cancer models as well as to the control of mitotic stability. Much evidence shows that SGK1 is over-expressed in a variety of epithelial tumors. More recently, many contributions to the published literature demonstrate that SGK1 can mediate chemo-and radio-resistance during the treatment of various human tumors, both in vitro and in vivo. SGK1 appears therefore as a dirty player in the stress response to chemical and radio-agents, responsible of a selective advantage that favors the uncontrolled tumor progression and the selection of the most aggressive clones. The purpose of this review is the analysis of the literature describing SGK1 as central node of the cell resistance, and a summary of the possible strategies in the pharmacological targeting of SGK1.

Minchenko DO, Riabovol OO, Tsymbal DO, et al.
Inhibition of IRE1 signaling affects the expression of genes encoded glucocorticoid receptor and some related factors and their hypoxic regulation in U87 glioma cells.
Endocr Regul. 2016; 50(3):127-36 [PubMed] Related Publications
OBJECTIVE: The aim of the present investigation was to examine the effect of inhibition of endoplasmic reticulum stress signaling, mediated by IRE1 (inositol requiring enzyme 1), which is a central mediator of the unfolded protein response on the expression of genes encoding glucocorticoid receptor (NR3C1) and some related proteins (SGK1, SGK3, NCOA1, NCOA2, ARHGAP35, NNT) and their hypoxic regulation in U87 glioma cells for evaluation of their possible significance in the control of the glioma growth.
METHODS: The expression of NR3C1,SGK1,SGK3, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells, transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia, was studied by quantitative polymerase chain reaction.
RESULTS: Inhibition of IRE1 signaling enzyme function up-regulates the expression of NR3C1, SGK1, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells in comparison with the control glioma cells, with more significant changes for NR3C1, SGK1, and NNT genes. At the same time, the expression of SGK3 gene is strongly down-regulated in glioma cells upon inhibition of IRE1. We have also shown that hypoxia increases the expression of NR3C1, SGK1, NCOA2, ARHGAP35, and NNT genes but decreases SGK3 and NCOA1 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in U87 glioma cells enhances the eff ect of hypoxia on the expression of SGK1, SGK3, and NNT genes, but decreases the sensitivity of NR3C1 gene to hypoxic condition. Furthermore, the expression of NCOA1 gene is resistant to hypoxia in control glioma cells, but NCOA2 and ARHGAP35 genes are resistant to this condition in glioma cells without functional activity of IRE1 signaling enzyme.
CONCLUSIONS: Results of this investigation demonstrate that inhibition of IRE1 signaling enzyme function affects the expression of NR3C1, SGK1, SGK3, NCOA1, NCOA2, ARHGAP35, and NNT genes in U87 glioma cells in gene specific manner and that all these genes are regulated by hypoxia preferentially through IRE1 signaling pathway of the endoplasmic reticulum stress.

Di Cecilia S, Zhang F, Sancho A, et al.
RBM5-AS1 Is Critical for Self-Renewal of Colon Cancer Stem-like Cells.
Cancer Res. 2016; 76(19):5615-5627 [PubMed] Free Access to Full Article Related Publications
Cancer-initiating cells (CIC) undergo asymmetric growth patterns that increase phenotypic diversity and drive selection for chemotherapeutic resistance and tumor relapse. WNT signaling is a hallmark of colon CIC, often caused by APC mutations, which enable activation of β-catenin and MYC Accumulating evidence indicates that long noncoding RNAs (lncRNA) contribute to the stem-like character of colon cancer cells. In this study, we report enrichment of the lncRNA RBM5-AS1/LUST during sphere formation of colon CIC. Its silencing impaired WNT signaling, whereas its overexpression enforced WNT signaling, cell growth, and survival in serum-free media. RBM5-AS1 has been little characterized previously, and we determined it to be a nuclear-retained transcript that selectively interacted with β-catenin. Mechanistic investigations showed that silencing or overexpression of RBM5-AS1 caused a respective loss or retention of β-catenin from TCF4 complexes bound to the WNT target genes SGK1, YAP1, and MYC Our work suggests that RBM5-AS1 activity is critical for the functional enablement of colon cancer stem-like cells. Furthermore, it defines the mechanism of action of RBM5-AS1 in the WNT pathway via physical interactions with β-catenin, helping organize transcriptional complexes that sustain colon CIC function. Cancer Res; 76(19); 5615-27. ©2016 AACR.

Ji YM, Zhou XF, Zhang J, et al.
DEPTOR suppresses the progression of esophageal squamous cell carcinoma and predicts poor prognosis.
Oncotarget. 2016; 7(12):14188-98 [PubMed] Free Access to Full Article Related Publications
As a naturally occurring inhibitor of mTOR, accumulated evidence has suggested that DEPTOR plays a pivotal role in suppressing the progression of human malignances. However, the function of DEPTOR in the development of esophageal squamous cell carcinoma (ESCC) is still unclear. Here we report that the expression of DEPTOR is significantly reduced in tumor tissues derived from human patients with ESCC, and the downregulation of DEPTOR predicts a poor prognosis of ESCC patients. In addition, we found that the expression of DEPTOR negatively regulates the tumorigenic activities of ESCC cell lines (KYSE150, KYSE510 and KYSE190). Furthermore, ectopic DEPTOR expression caused a significant suppression of the cellular proliferation, migration and invasion of KYSE150 cells, which has the lowest expression level of DEPTOR in the three cell lines. Meanwhile, CRISPR/Cas9 mediated knockout of DEPTOR in KYSE-510 cells significantly promoted cellular proliferation, migration and invasion. In addition, in vivo assays further revealed that tumor growth was significantly inhibited in xenografts with ectopic DEPTOR expression as compared to untreated KYSE150 cells, and was markedly enhanced in DEPTOR knockout KYSE-510 cells. Biochemical studies revealed that overexpression of DEPTOR led to the suppression of AKT/mTOR pathway as evidenced by reduced phosphorylation of AKT, mTOR and downstream SGK1, indicating DEPTOR might control the progression of ESCC through AKT/mTOR signaling pathway. Thus, these findings, for the first time, demonstrated that DEPTOR inhibits the tumorigenesis of ESCC cells and might serve as a potential therapeutic target or prognostic marker for human patients with ESCC.

Hoang B, Shi Y, Frost PJ, et al.
SGK Kinase Activity in Multiple Myeloma Cells Protects against ER Stress Apoptosis via a SEK-Dependent Mechanism.
Mol Cancer Res. 2016; 14(4):397-407 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: To assess the role of the serum and glucocorticoid-regulated kinase (SGK) kinase in multiple myeloma, we ectopically expressed wild type or a phosphomimetic version of SGK into multiple myeloma cell lines. These cells were specifically resistant to the ER stress inducers tunicamycin, thapsigargin, and bortezomib. In contrast, there was no alteration of sensitivity to dexamethasone, serum starvation, or mTORC inhibitors. Mining of genomic data from a public database indicated that low baseline SGK expression in multiple myeloma patients correlated with enhanced ability to undergo a complete response to subsequent bortezomib treatment and a longer time to progression and overall survival following treatment. SGK overexpressing multiple myeloma cells were also relatively resistant to bortezomib in a murine xenograft model. Parental/control multiple myeloma cells demonstrated a rapid upregulation of SGK expression and activity (phosphorylation of NDRG-1) during exposure to bortezomib and an SGK inhibitor significantly enhanced bortezomib-induced apoptosis in cell lines and primary multiple myeloma cells. In addition, a multiple myeloma cell line selected for bortezomib resistance demonstrated enhanced SGK expression and SGK activity. Mechanistically, SGK overexpression constrained an ER stress-induced JNK proapoptotic pathway and experiments with a SEK mutant supported the notion that SGK's protection against bortezomib was mediated via its phosphorylation of SEK (MAP2K4) which abated SEK/JNK signaling. These data support a role for SGK inhibitors in the clinical setting for myeloma patients receiving treatment with ER stress inducers like bortezomib.
IMPLICATIONS: Enhanced SGK expression and activity in multiple myeloma cells contributes to resistance to ER stress, including bortezomib challenge.

Hart T, Dider S, Han W, et al.
Toward Repurposing Metformin as a Precision Anti-Cancer Therapy Using Structural Systems Pharmacology.
Sci Rep. 2016; 6:20441 [PubMed] Free Access to Full Article Related Publications
Metformin, a drug prescribed to treat type-2 diabetes, exhibits anti-cancer effects in a portion of patients, but the direct molecular and genetic interactions leading to this pleiotropic effect have not yet been fully explored. To repurpose metformin as a precision anti-cancer therapy, we have developed a novel structural systems pharmacology approach to elucidate metformin's molecular basis and genetic biomarkers of action. We integrated structural proteome-scale drug target identification with network biology analysis by combining structural genomic, functional genomic, and interactomic data. Through searching the human structural proteome, we identified twenty putative metformin binding targets and their interaction models. We experimentally verified the interactions between metformin and our top-ranked kinase targets. Notably, kinases, particularly SGK1 and EGFR were identified as key molecular targets of metformin. Subsequently, we linked these putative binding targets to genes that do not directly bind to metformin but whose expressions are altered by metformin through protein-protein interactions, and identified network biomarkers of phenotypic response of metformin. The molecular targets and the key nodes in genetic networks are largely consistent with the existing experimental evidence. Their interactions can be affected by the observed cancer mutations. This study will shed new light into repurposing metformin for safe, effective, personalized therapies.

Hartmann S, Schuhmacher B, Rausch T, et al.
Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma.
Leukemia. 2016; 30(4):844-53 [PubMed] Related Publications
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL)-a subtype of Hodgkin lymphoma (HL)-is characterized by a low content of tumor cells, the lymphocyte predominant (LP) cells. Transformation into diffuse large B-cell lymphoma (DLBCL) occurs in about 10% of patients. We performed whole-genome mutation analysis of the DLBCL components from two composite lymphomas consisting of clonally related NLPHL and DLBCL as a means to identify candidate tumor suppressor genes and oncogenes in NLPHL. The analysis of LP cells for selected mutations of the DLBCL revealed that most mutations are also present in the LP cells, indicating a close relationship between the two components. The analysis of 62 selected genes in NLPHL by targeted ultra-deep sequencing revealed three novel highly recurrently mutated genes (each mutated in ~50% of cases), that is, DUSP2, SGK1 and JUNB. SGK1 was expressed in the LP cells of primary NLPHL cases and in the NLPHL cell line DEV. Administration of an SGK1 inhibitor induced apoptosis in the NLPHL cell line DEV and the DLBCL cell line Farage, suggesting a pathogenetic role of SGK1 in the LP and DLBCL cells. In summary, the present study identifies SGK1, DUSP2 and JUNB as novel key players in the pathogenesis of NLPHL.

Xiaobo Y, Qiang L, Xiong Q, et al.
Serum and glucocorticoid kinase 1 promoted the growth and migration of non-small cell lung cancer cells.
Gene. 2016; 576(1 Pt 2):339-46 [PubMed] Related Publications
Serum and glucocorticoid kinase 1 (SGK1) has been reported to be up-regulated in non-small cell lung cancer (NSCLC). However, its functions in NSCLC remained unclear. Here, SGK1 was found to be up-regulated in NSCLC samples. Over-expression of SGK1 promoted the growth and migration of NSCLC cells, while down-regulation of SGK1 inhibited the growth, migration and metastasis of NSCLC cells. SGK1 promoted the phosphorylation of GSK3 beta and the accumulation of beta-catenin, up-regulation of the target genes downstream of beta-catenin/TCF signaling, and activating the transcriptional activity of beta-catenin/TCF complex. Collectively, SGK1 might promote the progression of NSCLC through activating beta-catenin/TCF signaling.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SGK1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999