Gene Summary

Gene:ZEB1; zinc finger E-box binding homeobox 1
Summary:This gene encodes a zinc finger transcription factor. The encoded protein likely plays a role in transcriptional repression of interleukin 2. Mutations in this gene have been associated with posterior polymorphous corneal dystrophy-3 and late-onset Fuchs endothelial corneal dystrophy. Alternatively spliced transcript variants encoding different isoforms have been described.[provided by RefSeq, Mar 2010]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:zinc finger E-box-binding homeobox 1
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (39)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ZEB1 (cancer-related)

Kishore C, Sundaram S, Karunagaran D
Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells.
Chem Biol Interact. 2019; 309:108725 [PubMed] Related Publications
Tumor recurrence and metastasis decrease the survival rate of colorectal cancer (CRC) patients. Menadione reduces the numbers and incidences of 1,2-dimethylhydrazine induced colon tumors in mouse but the mechanism of anticancer activity of menadione in colorectal cancer is not very clear. Since Wnt signaling is constitutively active in CRC and it aggravates the epithelial mesenchymal transition (EMT), the regulation of EMT and Wnt signaling by menadione (vitamin K3) was investigated in CRC cells. Menadione showed cytotoxicity against human CRC cells (SW480 and SW620) and human primary colon cancer cells but was relatively ineffective against the cells from human normal colon (CRL-1790) and human primary colon epithelial cells. Menadione suppressed invasion, migration and epithelial-mesenchymal transition in human CRC cells by upregulating the expression of E-cadherin (CDH1), ZO-1 and downregulating that of N-cadherin (CDH2), Vimentin (VIM), ZEB1, MMP2 and MMP9. Menadione decreased TOPFlash/FOPFlash luciferase activity and expression of several downstream targets of Wnt signaling and coactivators such as β-catenin (CTNNB1), TCF7L2, Bcl9l, p300 (EP300) and cyclin D1 (CCND1) was suppressed. Menadione induced differentiation and increased apoptotic cell population in SubG0 phase of cell cycle in SW480 and SW620 cells. The ability of menadione to suppress EMT, migration, invasion, Wnt signaling, cell proliferation and induce Sub G0 arrest, highlights its potential to be considered for intensive preclinical and clinical investigation in CRC.

Kumar KJS, Vani MG, Hsieh HW, et al.
Antcin-A Modulates Epithelial-to-Mesenchymal Transition and Inhibits Migratory and Invasive Potentials of Human Breast Cancer Cells via p53-Mediated miR-200c Activation.
Planta Med. 2019; 85(9-10):755-765 [PubMed] Related Publications
Antcin-A (ATA) is a steroid-like phytochemical isolated from the fruiting bodies of a precious edible mushroom

Dudzik P, Trojan SE, Ostrowska B, et al.
The Epigenetic Modifier 5-Aza-2-deoxycytidine Triggers the Expression of
Anticancer Res. 2019; 39(5):2395-2403 [PubMed] Related Publications
BACKGROUND/AIM: During cancer progression cells undergo epithelial-to-mesenchymal transition (EMT). Although EMT is a complex process, recently, it has been reported that CD146 overexpression in prostate cancer cells is sufficient to induce mesenchymal phenotype. The following study aimed to investigate whether the expression of CD146 is altered by an epigenetic modifier in prostate cancer cells, in vitro.
MATERIALS AND METHODS: Three human prostate cancer cell lines were treated with 5-aza-2-deoxycytidine; the expression of CD146 and EMT-related factors was analyzed by RT-PCR and western Blot. The methylation status of the CD146 promoter area was assessed using bisulfite sequencing.
RESULTS: Our data showed that, the expression of CD146 was evidently increased in all three studied cell lines in response to a demethylating agent, both at the mRNA and protein level, suggesting epigenetic regulation of the analyzed gene. However, there was no methylation in the studied CpG island in CD146 gene promoter. Moreover, the demethylating agent induced the expression of EMT-related transcription factors (SNAI1, SNAI2, TWIST1 and ZEB1), the pattern of which differed among the cell lines, as well as alterations in cell morphology; altogether accounting for the mesenchymal phenotype.
CONCLUSION: The demethylating agent 5-aza-2-deoxycytidine triggers the expression of CD146 in prostate cancer cells independently on the methylation status of the analyzed CpG island fragment in CD146 gene promoter. Moreover, demethylation treatment induces a mesenchymal profile in prostate cancer cells.

Zeng P, Sun S, Li R, et al.
HER2 Upregulates ATF4 to Promote Cell Migration via Activation of ZEB1 and Downregulation of E-Cadherin.
Int J Mol Sci. 2019; 20(9) [PubMed] Free Access to Full Article Related Publications
HER2 (human epidermal growth factor receptor 2) activation is critical in breast cancer development. HER2 promotes cell proliferation, angiogenesis, survival, and metastasis by activation of PI3K/Akt, Ras/MEK/ERK, and JAK/STAT pathways. However, beyond these signaling molecules, the key proteins underlining HER2-mediated metastasis remain elusive. ATF4 (Activating transcription factor 4), a critical regulator in unfolded protein response (UPR), is implicated in cell migration and tumor metastasis. In this study, we demonstrate that HER2 upregulated ATF4 expression at both mRNA and protein levels, resulting in cell migration increased. In addition, ATF4 upregulated ZEB1 (Zinc finger E-box-binding homeobox 1) and suppressed E-cadherin expression resulting in promoting cell migration. Restoration of E-cadherin expression effectively inhibited HER2- or ATF4-mediated cell migration. In addition, upregulated expression of ATF4 was found in HER2-positive breast cancer specimens. Together, this study demonstrates that ATF4-ZEB1 is important for HER2-mediated cell migration and suggests that ATF4-ZEB1 may be potential therapeutic targets for breast cancer metastasis.

Sale MJ, Balmanno K, Saxena J, et al.
MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAF
Nat Commun. 2019; 10(1):2030 [PubMed] Free Access to Full Article Related Publications
Acquired resistance to MEK1/2 inhibitors (MEKi) arises through amplification of BRAF

Cheng Z, Wei W, Wu Z, et al.
ARPC2 promotes breast cancer proliferation and metastasis.
Oncol Rep. 2019; 41(6):3189-3200 [PubMed] Free Access to Full Article Related Publications
Actin-related protein 2/3 complex (ARPC2) is an actin‑binding component involved in the regulation of actin polymerization. It mediates the formation of branched actin networks and contacts the mother actin filament. Migration and invasion are key processes which enable tumor cells to infiltrate blood vessels or lymphatic vessels, and the actin pathway plays a very important role. Given that ARPC2 is critical to this progression, the present study focused on ARPC2 activity in breast cancer (BrCa) cell invasion and migration. Limited data are available on the expression and role of ARPC2 proteins in breast carcinomas. We screened the Oncomine database for messenger RNAs (mRNAs) that are upregulated in BrCa and found that ARPC2 was one of the most consistently involved mRNAs in BrCa. The analysis of immunohistochemical data revealed that ARPC2 expression was higher in breast cancerous tissues than in adjacent non‑cancerous tissues. In addition, ARPC2 was highly associated with the tumor stage, nodal metastasis, and overall survival of patients with BrCa. We performed siRNA‑ARPC2 transfection to investigate the effect of ARPC2 on the proliferation, migration, invasion and arrest of BrCa cells. It was revealed that ectopic ARPC2 expression significantly upregulated N‑cadherin, vimentin, ZEB1, MMP‑9 and MMP‑3 expression and also activated the TGF‑β pathway to contribute to epithelial‑mesenchymal transition (EMT). These results collectively indicated that ARPC2 promoted the tumorigenesis of breast carcinoma and the initiation of EMT. Therefore, ARPC2 was revealed to be a potential therapeutic target in patients with BrCa.

Zhang Z, Yin J, Lu C, et al.
Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma.
J Exp Clin Cancer Res. 2019; 38(1):166 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Acquired drug resistance is a constraining factor in clinical treatment of glioblastoma (GBM). However, the mechanisms of chemoresponsive tumors acquire therapeutic resistance remain poorly understood. Here, we aim to investigate whether temozolomide (TMZ) resistance of chemoresponsive GBM was enhanced by long non-coding RNA SBF2 antisense RNA 1 (lncRNA SBF2-AS1) enriched exosomes.
METHOD: LncSBF2-AS1 level in TMZ-resistance or TMZ-sensitive GBM tissues and cells were analyzed by qRT-PCR and FISH assays. A series of in vitro assay and xenograft tumor models were performed to observe the effect of lncSBF2-AS1 on TMZ-resistance in GBM. CHIP assay were used to investigate the correlation of SBF2-AS1 and transcription factor zinc finger E-box binding homeobox 1 (ZEB1). Dual-luciferase reporter, RNA immunoprecipitation (RIP), immunofluorescence and western blotting were performed to verify the relation between lncSBF2-AS1, miR-151a-3p and XRCC4. Comet assay and immunoblotting were performed to expound the effect of lncSBF2-AS1 on DNA double-stand break (DSB) repair. A series of in vitro assay and intracranial xenografts tumor model were used to determined the function of exosomal lncSBF2-AS1.
RESULT: It was found that SBF2-AS1 was upregulated in TMZ-resistant GBM cells and tissues, and overexpression of SBF2-AS1 led to the promotion of TMZ resistance, whereas its inhibition sensitized resistant GBM cells to TMZ. Transcription factor ZEB1 was found to directly bind to the SBF2-AS1 promoter region to regulate SBF2-AS1 level and affected TMZ resistance in GBM cells. SBF2-AS1 functions as a ceRNA for miR-151a-3p, leading to the disinhibition of its endogenous target, X-ray repair cross complementing 4 (XRCC4), which enhances DSB repair in GBM cells. Exosomes selected from temozolomide-resistant GBM cells had high levels of SBF2-AS1 and spread TMZ resistance to chemoresponsive GBM cells. Clinically, high levels of lncSBF2-AS1 in serum exosomes were associated with poor response to TMZ treatment in GBM patients.
CONCLUSION: We can conclude that GBM cells remodel the tumor microenvironment to promote tumor chemotherapy-resistance by secreting the oncogenic lncSBF2-AS1-enriched exosomes. Thus, exosomal lncSBF2-AS1 in human serum may serve as a possible diagnostic marker for therapy-refractory GBM.

Wu Y, Yang X, Chen Z, et al.
Mol Cancer. 2019; 18(1):87 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as critical players in cancer progression, but their functions in colorectal cancer (CRC) metastasis have not been systematically clarified.
METHODS: lncRNA expression profiles in matched normal and CRC tissue were checked using microarray analysis. The biological roles of a novel lncRNA, namely RP11-138 J23.1 (RP11), in development of CRC were checked both in vitro and in vivo. Its association with clinical progression of CRC was further analyzed.
RESULTS: RP11 was highly expressed in CRC tissues, and its expression increased with CRC stage in patients. RP11 positively regulated the migration, invasion and epithelial mesenchymal transition (EMT) of CRC cells in vitro and enhanced liver metastasis in vivo. Post-translational upregulation of Zeb1, an EMT-related transcription factor, was essential for RP11-induced cell dissemination. Mechanistically, the RP11/hnRNPA2B1/mRNA complex accelerated the mRNA degradation of two E3 ligases, Siah1 and Fbxo45, and subsequently prevented the proteasomal degradation of Zeb1. m

Olszewski MB, Pruszko M, Snaar-Jagalska E, et al.
Diverse and cancer type‑specific roles of the p53 R248Q gain‑of‑function mutation in cancer migration and invasiveness.
Int J Oncol. 2019; 54(4):1168-1182 [PubMed] Free Access to Full Article Related Publications
Gain‑of‑function (GOF) mutations in the TP53 gene lead to acquisition of new functions by the mutated tumor suppressor p53 protein. A number of the over‑represented 'hot spot' mutations, including the ones in codons 175, 248 or 273, convey GOF phenotypes. Such phenotypes may include resistance to chemotherapeutics or changes in motility and invasiveness. Whereas the prevalent notion is that the acquisition of the p53 GOF phenotype translates into poorer prognosis for the patient, the analysis of a human somatic p53 mutations dataset demonstrated earlier tumor onset, but decreased frequency and altered location of metastases in patients with the p53‑R248Q allele. Therefore, the GOF activities of p53‑R248Q and p53‑D281G were analyzed in triple negative breast cancer MDA‑MB‑231 and lung adenocarcinoma H1299 cell lines with regard to invasive and metastatic traits. The expression of p53‑D281G increased the motility and invasiveness of the lung cancer cells, but not those of the breast cancer cells. In contrast, the expression of p53‑R248Q decreased the motility and invasiveness of the breast and lung cancer cells in a p53 transactivation‑dependent manner. The intravenous xenotransplantation of MDA‑MB‑231 cells expressing p53‑R248Q into zebrafish embryos resulted in an alteration of the distribution of cancer cells in the body of the fish. In p53‑R248Q‑expressing H1299 cells a decrease in the expression of TCF8/ZEB1 and N‑cadherin was observed, suggesting partial mesenchymal‑to‑epithelial transition. In the two cell lines expressing p53‑R248Q a decrease was noted in the expression of myosin light chain 2, a protein involved in actomyosin‑based motility. To the best of our knowledge, the present study is one of only few reports demonstrating the mutated p53 GOF activity resulting in a decrease of a malignant trait in human cancer.

Li QH, Liu Y, Chen S, et al.
circ-CSPP1 promotes proliferation, invasion and migration of ovarian cancer cells by acting as a miR-1236-3p sponge.
Biomed Pharmacother. 2019; 114:108832 [PubMed] Related Publications
Circular RNAs are known to participate in tumorigenesis through a variety of pathways, and as such, have potential to serve as molecular markers in tumor diagnosis and treatment. Here, using quantitative reverse transcription (qRT)-PCR, we showed that circ-CSPP1 is highly expressed in ovarian cancer (OC) tissues. Particularly, we detected circ-CSPP1 expression in three OC cell lines; of which, OVCAR3 and A2780 demonstrated higher levels of circ-CSPP1 expression, and CAOV3 showed lower circ-CSPP1 expression level. Subsequent silencing of circ-CSPP1 in OVCAR3 and A2780 cell lines revealed decreased cell growth, migration and invasion, while overexpression of circ-CSPP1 caused opposite results We also found that miR-1236-3p is a target of circ-CSPP1. Circ-CSPP1 silencing increased the expression of miR-1236-3p, and circ-CSPP1 overexpression decreased miR-1236-3p expression. MiR-1236-3p reportedly plays a tumor-suppressor role in OC by targeting zinc finger E-box binding homeobox 1 (ZEB1). In agreement with this, we showed that silencing circ-CSPP1 significantly decreased ZEB1 expression at both RNA and protein levels, and epithelial-mesenchymal transition (EMT) related markers (E-cadherin and N-cadherin) varied with ZEB1 expression. Circ-CSPP1 silencing also caused decreased expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor A (VEGFA), both of which are related to tumorigenesis. Overexpression of circ-CSPP1 had opposite effects. In addition, we indicated that the tumor-promoting effect was inhibited after we transfected miR-1236-3p into circ-CSPP1 overexpressing OC cells. Altogether, our findings suggest that by acting as a miR-1236-3p sponge, circ-CSPP1 impairs the inhibitory effect of miR-1236-3p on ZEB1, which subsequently promotes EMT and OC development.

Wang M, Zhang R, Zhang S, et al.
MicroRNA-574-3p regulates epithelial mesenchymal transition and cisplatin resistance via targeting ZEB1 in human gastric carcinoma cells.
Gene. 2019; 700:110-119 [PubMed] Related Publications
MicroRNA-574-3p (miR-574-3p) has different roles in different cancer types. However, the exact regulation mechanism of miR-574-3p in gastric cancer (GC) progression remains unclear. Thus, we aimed to evaluate the role of miR-574-3p in GC metastasis. We investigated the mechanism via which miR-574-3p regulated cancer cell migration and invasion to determine the relationship between epithelial mesenchymal transition (EMT) and drug resistance. Our results indicated that human GC cell line SGC7901 cells were more sensitive to cisplatin (DDP), but SGC7901 cisplatin-resistant cells (SGC7901/DDP) were more resistant to DDP and had mesenchymal characteristics. In addition, miR-574-3p overexpression up-regulated E-cadherin expression, and concomitantly down-regulated the expression of vimentin. We also identified zinc finger E-box binding homeobox transcription factor 1 (ZEB1), a crucial EMT inducer gene, as a new target of miR-574-3p. In fact, miR-574-3p bound the 3' untranslated region (3'-UTR) of ZEB1, regulating expression of this transcription factor at both the mRNA and protein levels. Furthermore, miR-574-3p overexpression reduced the migratory and invasive properties of the SGC7901/DDP cells and inhibited cisplatin (DDP) resistance in vitro and in vivo. In conclusion, the results indicated that miR-574-3p inhibited the EMT and enhanced cisplatin sensitivity in GC cells by suppressing ZEB1. These results provide further evidence for the critical roles of miR-574-3p and ZEB1 in invasion and migration regulation characteristics of GC cells.

Wang D, Wu C, Liu D, et al.
Ginsenoside Rg3 Inhibits Migration and Invasion of Nasopharyngeal Carcinoma Cells and Suppresses Epithelial Mesenchymal Transition.
Biomed Res Int. 2019; 2019:8407683 [PubMed] Free Access to Full Article Related Publications
Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic head and neck cancer. Distant metastasis becomes the predominant mode of treatment failure in NPC patients. Ginsenoside Rg3 (Rg3), an active pharmaceutical component extracted from traditional Chinese medicine ginseng, shows antitumor effects in various cancers. In this study, we aimed to determine whether Rg3 inhibits the migration and invasion activity of NPC cells and to explore the possible mechanisms. Our results revealed that Rg3 hampers cell migration and invasion in both HNE1 and CNE2 cell lines. A reduced level of matrix metalloproteinase-2 (MMP-2) and MMP-9 was induced by Rg3 treatment. In addition, Rg3 significantly altered the expression of epithelial mesenchymal transition (EMT) markers with increased E-cadherin but decreased Vimentin and N-cadherin expression. Transforming growth factor

Kröger C, Afeyan A, Mraz J, et al.
Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells.
Proc Natl Acad Sci U S A. 2019; 116(15):7353-7362 [PubMed] Free Access to Full Article Related Publications
Carcinoma cells residing in an intermediate phenotypic state along the epithelial-mesenchymal (E-M) spectrum are associated with malignant phenotypes, such as invasiveness, tumor-initiating ability, and metastatic dissemination. Using the recently described CD104

Jeong H, Park J, Shim JK, et al.
Combined treatment with 2'-hydroxycinnamaldehyde and temozolomide suppresses glioblastoma tumorspheres by decreasing stemness and invasiveness.
J Neurooncol. 2019; 143(1):69-77 [PubMed] Related Publications
INTRODUCTION: Glioblastoma (GBM) is the most common and aggressive human primary brain malignancy. The key properties of GBM, stemness and invasiveness, are known to be associated with a highly unfavorable prognosis. Notably, the process of epithelial-mesenchymal transition (EMT) is closely related to the progression of GBM. On the basis of reports that 2'-hydroxycinnamaldehyde (HCA) and its derivative, 2'-benzoyloxycinnamaldehyde (BCA), suppresses EMT in several human cancer cells, we sought to evaluate the therapeutic efficacy of HCA and BCA, alone and in combination with temozolomide (TMZ), on GBM tumorspheres (TSs).
METHODS: Two human GBM TSs were treated with HCA, BCA, or TMZ. Therapeutic effects were evaluated by measuring ATP levels, neurosphere formation, 3D-invasion in collagen matrix, and viability. Protein expression profiles after drug treatment were evaluated by western blotting. In vivo anticancer efficacy of drugs was examined in a mouse orthotopic xenograft model.
RESULTS: Combined treatment of GBM TSs with HCA or BCA and TMZ significantly reduced cell viability, stemness, and invasiveness. Expression levels of stemness-, invasiveness-, and mesenchymal transition-associated markers, Zeb1, N-cadherin, and β-catenin, were also substantially decreased by the combined treatment. The combined treatment also reduced tumor growth in a mouse orthotopic xenograft model.
CONCLUSION: Our findings suggest that HCA and BCA, combined with TMZ, are potential therapeutic agents in the treatment of GBM.

He J, Xiang D, Lin Y
MicroRNA‑708 inhibits the proliferation and invasion of osteosarcoma cells by directly targeting ZEB1.
Mol Med Rep. 2019; 19(5):3948-3954 [PubMed] Related Publications
Numerous microRNAs (miRNAs) have been identified as aberrantly expressed in osteosarcoma (OS). miRNAs serve important roles in the pathogenesis of OS as oncogenes or tumor suppressors. Recent studies revealed that miR‑708‑5p (miR‑708) was dysregulated in various types of human cancer; however, its roles and underlying molecular mechanisms in OS remain unknown. Therefore, the present study aimed to determine miR‑708 expression in OS, investigate the roles of miR‑708 in the progression of OS and reveal the potential mechanisms involved. It was demonstrated using reverse transcription‑polymerase chain reaction that miR‑708 was downregulated in OS tissues and cell lines. Cell Counting Kit‑8 and Transwell assays revealed that miR‑708 overexpression suppressed the proliferation and invasion of OS cells in vitro. Additionally, zinc finger E‑box binding homeobox 1 (ZEB1) was validated as a direct target gene of miR‑708 in OS cells. ZEB1 was upregulated in OS tissues; elevated ZEB1 expression was negatively correlated with the levels of miR‑708 expression. Rescue experiments indicated that ZEB1 reintroduction significantly counteracted the inhibitory effects of miR‑708 overexpression on the proliferation and invasion of OS cells. The findings may improve understanding of the roles of miR‑708 in the development of OS, and suggest that miR‑708 may be a potential novel therapeutic target in the treatment of patients with this disease.

Li T, Ren J, Ma J, et al.
LINC00702/miR-4652-3p/ZEB1 axis promotes the progression of malignant meningioma through activating Wnt/β-catenin pathway.
Biomed Pharmacother. 2019; 113:108718 [PubMed] Related Publications
Long noncoding RNAs (lncRNAs) have been acknowledged as significant regulators in the progression of various cancers, including malignant meningioma. Being a newly identified lncRNA, long intergenic non-protein coding RNA 702 (LINC00702) has not been comprehensively studied in malignant meningioma. In this study, the role of LINC00702 was identified and explored in malignant meningioma. The LINC00702 expression was determined in malignant meningioma tissues and cell lines by qRT-PCR. Then the association between LINC00702 expression and the prognosis of malignant meningioma patients was analyzed by Kaplan-Meier analysis. The functional role of LINC00702 in malignant meningioma cell proliferation and migration was analyzed by loss-of function assays. Subcellular fractionation assay and FISH assay revealed the cytoplasmic localization of LINC00702. Bioinformatics analysis and mechanism experiments demonstrated that LINC00702 acted as the molecular sponge of miR-4652-3p to upregulate ZEB1 in malignant meningioma. Furthermore, high level of LINC00702 was demonstrated to be associated with the activity of Wnt/β-catenin signaling. Moreover, miR-4652-3p and ZEB1 involved in LINC00702-mediated Wnt/β-catenin signaling. At last, rescue assays revealed that miR-4652-3p and ZEB1 attenuated LINC00702-mediated cell proliferation and migration.

Gao R, Zhang N, Yang J, et al.
Long non-coding RNA ZEB1-AS1 regulates miR-200b/FSCN1 signaling and enhances migration and invasion induced by TGF-β1 in bladder cancer cells.
J Exp Clin Cancer Res. 2019; 38(1):111 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The effect of competing endogenous RNA (ceRNA) can regulate gene expression by competitively binding microRNAs. Fascin-1 (FSCN1) plays an important role in the regulation of cellular migration and invasion during tumor progression, but how its regulatory mechanism works through the ceRNA effect is still unclear in bladder cancer (BLCA).
METHODS: The role of fascin-1, miR-200b, and ZEB1-AS1 in BLCA was investigated in vitro and in vivo. The interaction between fascin-1, miR-200b, and ZEB1-AS1 was identified using bioinformatics analysis, luciferase activity assays, RNA-binding protein immunoprecipitation (RIP), quantitative PCR, and western blotting. Loss (or gain)-of-function experiments were performed to investigate the biological roles of miR-200b and ZEB1-AS1 on migration, invasion, proliferation, cell apoptosis, and cell cycle.
RESULTS: ZEB1-AS1 functions as a competing endogenous RNA in BLCA to regulate the expression of fascin-1 through miR-200b. Moreover, the oncogenic long non-coding RNA ZEB1-AS1 was highly expressed in BLCA and positively correlated with high tumor grade, high TNM stage, and reduced survival of patients with BLCA. Moreover, ZEB1-AS1 downregulated the expression of miR-200b, promoted migration, invasion, and proliferation, and inhibited apoptosis in BLCA. Furthermore, we found TGF-β1 induced migration and invasion in BLCA by regulating the ZEB1-AS1/miR-200b/FSCN1 axis.
CONCLUSION: The observations in this study identify an important regulatory mechanism of fascin-1 in BLCA, and the TGF-β1/ZEB1-AS1/miR-200b/FSCN1 axis may serve as a potential target for cancer therapeutic purposes.

Zmetakova I, Kalinkova L, Smolkova B, et al.
A disintegrin and metalloprotease 23 hypermethylation predicts decreased disease-free survival in low-risk breast cancer patients.
Cancer Sci. 2019; 110(5):1695-1704 [PubMed] Free Access to Full Article Related Publications
A Disintegrin And Metalloprotease 23 (ADAM23), a member of the ADAM family, is involved in neuronal differentiation and cancer. ADAM23 is considered a possible tumor suppressor gene and is frequently downregulated in various types of malignancies. Its epigenetic silencing through promoter hypermethylation was observed in breast cancer (BC). In the present study, we evaluated the prognostic significance of ADAM23 promoter methylation for hematogenous spread and disease-free survival (DFS). Pyrosequencing was used to quantify ADAM23 methylation in tumors of 203 BC patients. Presence of circulating tumor cells (CTC) in their peripheral blood was detected by quantitative RT-PCR. Expression of epithelial (KRT19) or mesenchymal (epithelial-mesenchymal transition [EMT]-inducing transcription factors TWIST1, SNAI1, SLUG and ZEB1) mRNA transcripts was examined in CD45-depleted peripheral blood mononuclear cells. ADAM23 methylation was significantly lower in tumors of patients with the mesenchymal CTC (P = .006). It positively correlated with Ki-67 proliferation, especially in mesenchymal CTC-negative patients (P = .001). In low-risk patients, characterized by low Ki-67 and mesenchymal CTC absence, ADAM23 hypermethylation was an independent predictor of DFS (P = .006). Our results indicate that ADAM23 is likely involved in BC progression and dissemination of mesenchymal CTC. ADAM23 methylation has the potential to function as a novel prognostic marker and therapeutic target.

Farhan M, Malik A, Ullah MF, et al.
Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs.
Int J Mol Sci. 2019; 20(4) [PubMed] Free Access to Full Article Related Publications
Garcinol, a dietary factor obtained from

Goulet CR, Champagne A, Bernard G, et al.
Cancer-associated fibroblasts induce epithelial-mesenchymal transition of bladder cancer cells through paracrine IL-6 signalling.
BMC Cancer. 2019; 19(1):137 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer-associated fibroblasts (CAFs), activated by tumour cells, are the predominant type of stromal cells in cancer tissue and play an important role in interacting with neoplastic cells to promote cancer progression. Epithelial-mesenchymal transition (EMT) is a key feature of metastatic cells. However, the mechanism by which CAFs induce EMT program in bladder cancer cells remains unclear.
METHODS: To investigate the role of CAFs in bladder cancer progression, healthy primary bladder fibroblasts (HFs) were induced into CAFs (iCAFs) by bladder cancer-derived exosomes. Effect of conditioned medium from iCAFs (CM
RESULTS: Cancer exosome-treated HFs showed CAFs characteristics with high expression levels of αSMA and FAP. We showed that the CM
CONCLUSIONS: We conclude that CAFs promote aggressive phenotypes of non-invasive bladder cancer cells through an EMT induced by the secretion of IL-6.

Fu J, Shrivastava A, Shrivastava SK, et al.
Triacetyl resveratrol upregulates miRNA‑200 and suppresses the Shh pathway in pancreatic cancer: A potential therapeutic agent.
Int J Oncol. 2019; 54(4):1306-1316 [PubMed] Related Publications
Trans‑3,4',5‑trihydroxystilbene (resveratrol) is a naturally occurring polyphenolic phytoalexin with marked anticancer activities, and is mainly found in grapes, berries and peanuts. However, due to a low bioavailability, it has not progressed to clinical practice for cancer treatment. Therefore, the aims of the present study were to examine the anticancer activities of the resveratrol derivative, triacetyl resveratrol (TCRV), in pancreatic cancer cells. Apoptosis was measured by fluorescence‑activated cell sorting and terminal deoxynucleotidyl transferase (TdT)‑mediated dUTP nick‑end labeling assays. Gene expression was measured by reverse transcription‑quantitative polymerase chain reaction. TCRV inhibited colony formation and induced apoptosis through caspase‑3 activation in human pancreatic cancer AsPC‑1 and PANC‑1 cells, whereas it exerted no effect on human pancreatic normal ductal epithelial cells (HPNE). TCRV inhibited epithelial‑mesenchymal transition (EMT) by upregulating the expression of E‑cadherin and suppressing the expression of N‑cadherin and the transcription factors, Snail, Slug and Zeb1. TCRV inhibited Zeb1 3'UTR‑luciferase activity through the upregulation of microRNA (miR)‑200 family members. The inhibitory effects of TCRV on pancreatic cancer cell migration and invasion were counteracted by anti‑miR‑200 family members. The inhibitory effects of TCRV on EMT and the induction of apoptosis were exerted through the suppression of the sonic hedgehog (Shh) pathway, and through the modulation of cyclin D1 and Bcl‑2 expression. The hyperactivation of the Shh pathway by either Shh protein or Gli1 overexpression abrogated the biological effects of TCRV. Taken together, the results of this study demonstrate that TCRV inhibits pancreatic cancer growth and EMT by targeting the Shh pathway and its downstream signaling mediators. TCRV inhibited EMT through the upregulation of miR‑200 family members. Since TCRV effectively inhibited the growth of human pancreatic cancer cells by modulating the Shh pathway, without affecting the growth of HPNE cells, our findings suggest the possible use of TCRV as a promising candidate for the treatment and/or prevention of pancreatic cancer.

Pereira CV, Duarte M, Silva P, et al.
Polymethoxylated Flavones Target Cancer Stemness and Improve the Antiproliferative Effect of 5-Fluorouracil in a 3D Cell Model of Colorectal Cancer.
Nutrients. 2019; 11(2) [PubMed] Free Access to Full Article Related Publications
Polymethoxylated flavones (PMFs) from citrus fruits are reported to present anticancer potential. However, there is a lack of information regarding their effect on cancer stem cell (CSC) populations, which has been recognized as responsible for tumor initiation, relapse, and chemoresistance. In this study, we evaluated the effect of an orange peel extract (OPE) and its main PMFs, namely, nobiletin, sinensetin, tangeretin, and scutellarein tetramethylether in targeting cell proliferation and stemness using a 3D cell model of colorectal cancer composed of HT29 cell spheroids cultured for 7 days in stirred conditions. Soft agar assay, ALDH1 activity, and relative quantitative gene expression analysis of specific biomarkers were carried out to characterize the stemness, self-renewal, and mesenchymal features of HT29 cell spheroids. Then, the impact of OPE and PMFs in reducing cell proliferation and modulating cancer stemness and self-renewal was assessed. Results showed that, when compared with monolayer cultures, HT29 cell spheroids presented higher ALDH1 activity (81.97% ± 5.27% compared to 63.55% ± 17.49% for 2D), upregulation of

Lee SY, Ju MK, Jeon HM, et al.
Oncogenic Metabolism Acts as a Prerequisite Step for Induction of Cancer Metastasis and Cancer Stem Cell Phenotype.
Oxid Med Cell Longev. 2018; 2018:1027453 [PubMed] Free Access to Full Article Related Publications
Metastasis is a major obstacle to the efficient and successful treatment of cancer. Initiation of metastasis requires epithelial-mesenchymal transition (EMT) that is regulated by several transcription factors, including Snail and ZEB1/2. EMT is closely linked to the acquisition of cancer stem cell (CSC) properties and chemoresistance, which contribute to tumor malignancy. Tumor suppressor p53 inhibits EMT and metastasis by negatively regulating several EMT-inducing transcription factors and regulatory molecules; thus, its inhibition is crucial in EMT, invasion, metastasis, and stemness. Metabolic alterations are another hallmark of cancer. Most cancer cells are more dependent on glycolysis than on mitochondrial oxidative phosphorylation for their energy production, even in the presence of oxygen. Cancer cells enhance other oncogenic metabolic pathways, such as glutamine metabolism, pentose phosphate pathway, and the synthesis of fatty acids and cholesterol. Metabolic reprogramming in cancer is regulated by the activation of oncogenes or loss of tumor suppressors that contribute to tumor progression. Oncogenic metabolism has been recently linked closely with the induction of EMT or CSC phenotypes by the induction of several metabolic enzyme genes. In addition, several transcription factors and molecules involved in EMT or CSCs, including Snail, Dlx-2, HIF-1

Qin Y, Yu J, Zhang M, et al.
ZEB1 promotes tumorigenesis and metastasis in hepatocellular carcinoma by regulating the expression of vimentin.
Mol Med Rep. 2019; 19(3):2297-2306 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and its prognosis remains poor. Epithelial‑to‑mesenchymal transition (EMT)‑induced markers have emerged as key regulators of tumor development and progression in HCC. The aim of the present study was to investigate the role of zinc finger E‑box‑binding homeobox 1 (ZEB1) in the tumorigenesis of HCC and to elucidate the mechanism underlying the correlation between ZEB1 and vimentin (VIM). The expression levels of ZEB1 and VIM were assessed by immunohistochemistry, western blotting and reverse transcription‑quantitative polymerase chain reaction analysis in HCC tissues and cell lines. The biological significance of ZEB1 was examined by downregulating the expression of ZEB1 in Huh‑7 cells. A luciferase reporter assay was used to investigate the association between ZEB1 and VIM. The expression levels of ZEB1 and VIM were higher in tumor tissues compared with those in adjacent normal tissues, and they were significantly associated with a poor prognosis in patients with HCC, whereas ZEB1 silencing led to the attenuation of HCC cell proliferation, invasion and migration. Furthermore, it was observed that ZEB1 was able to bind to a certain site in the VIM promoter and regulate the transcriptional activity of VIM. Therefore, the present study demonstrated that ZEB1 is a potential biomarker of the tumorigenesis and progression of HCC, and it may regulate transcription of the VIM gene.

Wang X, Lai Q, He J, et al.
LncRNA SNHG6 promotes proliferation, invasion and migration in colorectal cancer cells by activating TGF-β/Smad signaling pathway via targeting UPF1 and inducing EMT via regulation of ZEB1.
Int J Med Sci. 2019; 16(1):51-59 [PubMed] Free Access to Full Article Related Publications

Yu Y, Yin W, Yu ZH, et al.
miR-190 enhances endocrine therapy sensitivity by regulating SOX9 expression in breast cancer.
J Exp Clin Cancer Res. 2019; 38(1):22 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Breast cancer is the most common cancer among women worldwide, and approximately 70% of breast cancers are hormone receptor-positive and express estrogen receptor-α (ERα) or/and progesterone receptor. Therapies targeting ERα have been successfully used in patients with ERα
METHODS: The effect of miR-190 on breast cancer anti-estrogen sensitivity was investigated both in vitro and in vivo. The protein expression levels and localization were analyzed by western blotting and immunofluorescence, respectively. Chromatin immunoprecipitation and dual-luciferase reporter assays were used to validate the regulation of the zinc-finger E-box binding homeobox 1/ ERα-miR-190-SRY-related high mobility group box 9 (ZEB1/ERα-miR-190-SOX9) axis.
RESULTS: miR-190 increased the anti-estrogen sensitivity of breast cancer cells both in vitro and in vivo. miR-190 inhibited Wnt/β-catenin signaling by targeting SOX9, and its expression inversely correlated with that of SOX9 in breast cancer samples. Furthermore, ERα and ZEB1 competitively regulated miR-190 expression.
CONCLUSIONS: Our data uncover the ZEB1/ERα-miR-190-SOX9 axis and suggest a mechanism by which the Wnt/β-catenin signaling pathway is involved in breast cancer anti-estrogen therapy.

Long L, Xiang H, Liu J, et al.
ZEB1 mediates doxorubicin (Dox) resistance and mesenchymal characteristics of hepatocarcinoma cells.
Exp Mol Pathol. 2019; 106:116-122 [PubMed] Related Publications
The acquired chemoresistance during long term chemotherapy is one of the most important factors to limit the application of Doxorubicin (Dox) on clinical treatment of hepatocellular carcinoma (HCC) patients. Our present study found that Dox resistant HCC (HCC/Dox) cells had greater capability of in vitro migration and invasion compared to their parental cells. HCC/Dox cells exhibited mesenchymal characteristics, which was evidenced by the up regulation of fibronectin, vimentin while down regulation of E-Cadherin. Zeb1, one powerful epithelial mesenchymal transition related transcription factor (EMT-TF), was markedly upregulated in HCC/Dox cells. Targeted inhibition of Zeb1 via siRNA can suppress the cell migration and re-sensitized cells to Dox treatment. The upregulation of Zeb1 in HCC/Dox cells was due to the increasing protein and mRNA stability of Zeb1. In HCC/Dox cells, the down regulation of SIAH1 mediated the upregulation of protein stability of Zeb1, while decreased levels of miR-3129-5p was responsible for the increasing mRNA stability of Zeb1. Collectively, our data suggested that SIAH1 and miR-3129-5p induced upregulation of Zeb1 mediated the Dox resistance of HCC cells. Targeted inhibition of Zeb1 might be helpful to overcome of Dox resistance of HCC.

Savci-Heijink CD, Halfwerk H, Hooijer GKJ, et al.
Epithelial-to-mesenchymal transition status of primary breast carcinomas and its correlation with metastatic behavior.
Breast Cancer Res Treat. 2019; 174(3):649-659 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has been implicated as an important step in the development of distant metastases. We therefore wished to study EMT status of primary breast carcinomas from patients who during follow-up developed distant metastases.
METHODS: mRNA expression profiles of primary breast carcinoma samples (n = 151) from patients who developed metastatic disease were analyzed and EMT status was designated using a previously described EMT-core signature. EMT status of the primary tumor was correlated to clinicopathological characteristics, molecular subtypes, metastasis pattern, chemotherapy response and survival outcomes. In addition, using immunohistochemistry, the expression levels of several proteins implicated in EMT were studied (CDH1, CDH2, NAT1, SNAI2, TWIST1, VIM, and ZEB1) compared with the designated EMT status and survival.
RESULTS: Utilizing the 130-gene-EMT-core signature, 66.2% of the primary tumors in the current study was assessed as EMT-activated. In contrast to our expectations, analyses revealed that 84.6% of Luminal A tumors, 65.1% of Luminal B tumors, and 55.6% of HER2-like had an activated EMT status, compared to only 25% of the basal-type tumors (p < 0.001). EMT status was not correlated to the pattern of metastatic disease, metastasis-specific survival, and overall survival. Similarly, there was not a significant association between EMT status of the primary tumor and chemotherapy response in the metastatic setting. Immunostaining for NAT1 and TWIST1 correlated with the EMT status (p 0.003 and p 0.047, respectively). Multivariate analyses showed that NAT1 and TWIST1 staining was significantly associated with EMT status regardless of the estrogen receptor status of the tumors (p values: 0.020 and 0.027, respectively).
CONCLUSIONS: The EMT status of breast cancers, as defined by the presence of a core EMT gene expression signature is associated with non-basal-type tumors, but not with the pattern of distant metastasis. Of several potential immunohistochemical EMT markers, only NAT1 and TWIST1 expression levels were associated with the gene expression-based EMT status.

Turini S, Bergandi L, Gazzano E, et al.
Epithelial to Mesenchymal Transition in Human Mesothelial Cells Exposed to Asbestos Fibers: Role of TGF-β as Mediator of Malignant Mesothelioma Development or Metastasis via EMT Event.
Int J Mol Sci. 2019; 20(1) [PubMed] Free Access to Full Article Related Publications
Asbestos exposure increases the risk of asbestosis and malignant mesothelioma (MM). Both fibrosis and cancer have been correlated with the Epithelial to Mesenchymal Transition (EMT)-an event involved in fibrotic development and cancer progression. During EMT, epithelial cells acquire a mesenchymal phenotype by modulating some proteins. Different factors can induce EMT, but Transforming Growth Factor β (TGF-β) plays a crucial role in promoting EMT. In this work, we verified if EMT could be associated with MM development. We explored EMT in human mesothelial cells (MeT-5A) exposed to chrysotile asbestos: we demonstrated that asbestos induces EMT in MeT-5A cells by downregulating epithelial markers E-cadherin, β-catenin, and occludin, and contemporarily, by upregulating mesenchymal markers fibronectin, α-SMA, and vimentin, thus promoting EMT. In these cells, this mechanism is mediated by increased TGF-β secretion, which in turn downregulates E-cadherin and increases fibronectin. These events are reverted in the presence of TGF-β antibody, via a Small Mother Against Decapentaplegic (SMAD)-dependent pathway and its downstream effectors, such as Zinc finger protein SNAI1 (SNAIL-1), Twist-related protein (Twist), and Zinc Finger E-Box Binding Homeobox 1 (ZEB-1), which downregulate the

Li C, Bu J, Liao Y, et al.
High Expressions of CUL4A and TP53 in Colorectal Cancer Predict Poor Survival.
Cell Physiol Biochem. 2018; 51(6):2829-2842 [PubMed] Related Publications
BACKGROUND/AIMS: Cullin 4A (CUL4A) is vital in cell survival, development, growth and cell cycle, it plays an important role in chaperone-mediated ubiquitination and interacts with TP53 in carcinogenesis. However, the clinicopathologic significance of CUL4A expression in colorectal cancer is unknown; in particular, the prognostic value of CUL4A combined with TP53 expression has not been explored.
METHODS: We analyzed the expression of CUL4A in both public database (Oncomine) and 180 cases of colorectal cancer and paired normal tissues by real-time polymerase chain reaction and western blotting. Colony formation, wound healing, migration and invasion assays and tumorigenesis in nude mice were used to explore the function of CUL4A in CRC proliferation and metastasis in vitro and in vivo. Markers of epithelial to mesenchymal transition (EMT) were evaluated by western blotting. Immunohistochemistry (IHC) was used to analyse the relationship between CUL4A expression and E-cadherin expression.
RESULTS: CUL4A and TP53 protein expression was significantly higher in cancerous tissues compared to normal tissues. Significant correlation between CUL4A and TP53 expression was observed. CUL4A expression was an independent prognostic factor for overall survival (OS) and disease-free survival (DFS). Interestingly, patients with tumors that had both CUL4A overexpression and mutant TP53 protein accumulation relapsed and died within a significantly short period after surgery (P < 0.001). Multivariate analysis showed that patients with both CUL4A+ and TP53+ positive tumors had extremely poor OS and DFS. Knockdown of CUL4A by a short interfering RNA (siRNA) significantly suppressed the progression of EMT, proliferation, migration, and invasion of colon cancer cells in vitro and tumor growth in vivo. ZEB1 silencing blocked CUL4A-driven these processes.
CONCLUSION: CUL4A expression correlated positively with the prognosis of colorectal cancer. Mechanistically, ZEB1 was confirmed to mediate the function of CUL4A in regulating the EMT. The assessment of both CUL4A and mutant TP53 expression will be helpful in predicting colon cancer prognosis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ZEB1, Cancer Genetics Web: http://www.cancer-genetics.org/ZEB1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999