RUNX1T1

Gene Summary

Gene:RUNX1T1; RUNX1 translocation partner 1
Aliases: CDR, ETO, MTG8, AML1T1, ZMYND2, CBFA2T1, AML1-MTG8
Location:8q21.3
Summary:This gene encodes a member of the myeloid translocation gene family which interact with DNA-bound transcription factors and recruit a range of corepressors to facilitate transcriptional repression. The t(8;21)(q22;q22) translocation is one of the most frequent karyotypic abnormalities in acute myeloid leukemia. The translocation produces a chimeric gene made up of the 5'-region of the runt-related transcription factor 1 gene fused to the 3'-region of this gene. The chimeric protein is thought to associate with the nuclear corepressor/histone deacetylase complex to block hematopoietic differentiation. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:protein CBFA2T1
Source:NCBIAccessed: 15 March, 2017

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Proto-Oncogene Proteins
  • Zinc Fingers
  • Cell Differentiation
  • Polymerase Chain Reaction
  • Adolescents
  • Amino Acid Sequence
  • Hematopoietic Stem Cells
  • Promoter Regions
  • Translocation
  • Transcription Factors
  • Chromosome 21
  • Chromosome 8
  • Cancer Gene Expression Regulation
  • Molecular Sequence Data
  • Childhood Cancer
  • Tumor Stem Cell Assay
  • Acute Myeloid Leukaemia
  • Leukaemia
  • Cloning, Molecular
  • RUNX1
  • Mutation
  • Oncogene Fusion Proteins
  • Core Binding Factor Alpha 2 Subunit
  • Karyotyping
  • Repressor Proteins
  • DNA-Binding Proteins
  • Messenger RNA
  • Residual Disease
  • Leukemic Gene Expression Regulation
  • FISH
  • Antineoplastic Agents
  • Neoplasm Proteins
  • Myeloid Leukemia
  • Bone Marrow
  • Base Sequence
  • Neoplastic Cell Transformation
  • Transcription
  • Cell Line
  • Protein Binding
  • RTPCR
  • Recombinant Fusion Proteins
Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Entity Topic PubMed Papers
LeukaemiaRUNX1T1 and Myeloid Leukemia View Publications184
Acute Myeloid Leukaemia (AML)RUNX1T1 and Acute Myeloid Leukaemia View Publications145
-RUNX1T1 and Residual Disease View Publications25
Acute Myeloid Leukaemia (AML) t(8;21)(q22;q22) in Acute Myeloid Leukemia
The t(8;21) translocation is the most frequent cytogenetic abnormality in acute myeloid leukaemia (AML). The translocation fuses the RUNX1 (CBFA2, AML1) gene on chromosome 21q to the RUNX1T1 (CBFA2T1, ETO) gene on chromosome 8q. The resulting fusion gene AML1-ETO occurs more frequently, though not exclusively, in the AML-M2 sub-type. In a series of 64 AML cases Andrieu et al (1996) detected the fusion in 3% (1/32) of M1 patients compared to 8/32 (25%) with M2. It is detected in approximately 20% of adult and 40% of paediatric patients with AML-M2.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RUNX1T1 (cancer-related)

Alfayez M, Vishnubalaji R, Alajez NM
Runt-related Transcription Factor 1 (RUNX1T1) Suppresses Colorectal Cancer Cells Through Regulation of Cell Proliferation and Chemotherapeutic Drug Resistance.
Anticancer Res. 2016; 36(10):5257-5263 [PubMed] Related Publications
BACKGROUND/AIM: Altered expression of runt-related transcription factor 1 (RUNX1T1) has been observed in several human cancer types; however, the exact role for RUNX1T1 in colorectal cancer (CRC) remains unclear.
MATERIALS AND METHODS: The GSE21510 CRC and our previously published datasets were utilized in this study. Gene-expression profiling was conducted using the Agilent microarray platform, while data normalization and bioinformatics were conducted using GeneSpring software. AlamarBlue assay was used to assess cell viability in vitro.
RESULTS: The expression of RUNX1T1 was severely down-regulated in primary CRC and cell lines. Lentiviral-mediated re-expression of RUNX1T1 inhibited CRC cell growth, and global gene-expression analysis revealed the cell cycle, DNA replication, and DNA damage as the pathways most affected by RUNX1T1. Forced expression of RUNX1T1 induced a significant reduction in cellular proliferation and sensitized CRC cells to 5-flurouracil.
CONCLUSION: Our data revealed a novel role for RUNX1T1 as a tumor-suppressor gene in CRC through modulation of multiple cellular pathways.

Liu MY, Wang WZ, Liao FF, et al.
Selective and effective targeting of chronic myeloid leukemia stem cells by topoisomerase II inhibitor etoposide in combination with imatinib mesylate in vitro.
Cell Biol Int. 2017; 41(1):16-23 [PubMed] Related Publications
Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (TKIs) have improved chronic myeloid leukemia (CML) patient survival markedly but fail to eradicate quiescent CML leukemia stem cells (LSCs). Thus, strategies targeting LSCs are required to induce long-term remission and achieve cure. Here, we investigated the ability of topoisomerase II (Top II) inhibitor etoposide (Eto) to target CML LSCs. Treatment with Eto combined with IM markedly induced apoptosis in primitive CML CD34(+) CD38(-) stem cells resistant to eradication by IM alone, but not in normal hematopoietic stem cells, CML and normal mature CD34(-) cells, and other leukemia and lymphoma cell lines. The interaction of IM and Eto significantly inhibited phosphorylation of PDK1, AKT, GSK3, S6, and ERK proteins; increased the expression of pro-apoptotic gene Bax; and decreased the expression of anti-apoptotic gene c-Myc in CML CD34(+) cells. Top II inhibitors treatment represents an attractive approach for targeting LSCs in CML patients undergoing TKIs monotherapy.

Akhter A, Mughal MK, Elyamany G, et al.
Multiplexed automated digital quantification of fusion transcripts: comparative study with fluorescent in-situ hybridization (FISH) technique in acute leukemia patients.
Diagn Pathol. 2016; 11(1):89 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The World Health Organization (WHO) classification system defines recurrent chromosomal translocations as the sole diagnostic and prognostic criteria for acute leukemia (AL). These fusion transcripts are pivotal in the pathogenesis of AL. Clinical laboratories universally employ conventional karyotype/FISH to detect these chromosomal translocations, which is complex, labour intensive and lacks multiplexing capacity. Hence, it is imperative to explore and evaluate some newer automated, cost-efficient multiplexed technologies to accommodate the expanding genetic landscape in AL.
METHODS: "nCounter® Leukemia fusion gene expression assay" by NanoString was employed to detect various fusion transcripts in a large set samples (n = 94) utilizing RNA from formalin fixed paraffin embedded (FFPE) diagnostic bone marrow biopsy specimens. This series included AL patients with various recurrent translocations (n = 49), normal karyotype (n = 19), or complex karyotype (n = 21), as well as normal bone marrow samples (n = 5). Fusion gene expression data were compared with results obtained by conventional karyotype and FISH technology to determine sensitivity/specificity, as well as positive /negative predictive values.
RESULTS: Junction probes for PML/RARA; RUNX1-RUNX1T1; BCR/ABL1 showed 100 % sensitivity/specificity. A high degree of correlation was noted for MLL/AF4 (85 sensitivity/100 specificity) and TCF3-PBX1 (75 % sensitivity/100 % specificity) probes. CBFB-MYH11 fusion probes showed moderate sensitivity (57 %) but high specificity (100 %). ETV6/RUNX1 displayed discordance between fusion transcript assay and FISH results as well as rare non-specific binding in AL samples with normal or complex cytogenetics.
CONCLUSIONS: Our study presents preliminary data with high correlation between fusion transcript detection by a throughput automated multiplexed platform, compared to conventional karyotype/FISH technique for detection of chromosomal translocations in AL patients. Our preliminary observations, mandates further vast validation studies to explore automated molecular platforms in diagnostic pathology.

Luo LJ, Yang F, Ding JJ, et al.
MiR-31 inhibits migration and invasion by targeting SATB2 in triple negative breast cancer.
Gene. 2016; 594(1):47-58 [PubMed] Related Publications
Metastasis is the leading cause of death among breast cancer (BCa) patients and triple negative breast cancer (TNBC) as one of BCa subtypes exhibits the worst survival rate due to its highly aggressive and metastatic behavior. A growing body of research has shown that the dynamic expression of microRNAs (miRNAs) was intimately associated with tumor invasion and metastasis. Recent studies have demonstrated miR-31 as a metastasis-suppressor in breast cancer, but it is still known little about the mechanism of it suppresses metastasis. The special AT-rich sequence-binding protein-2 (SATB2) has been reported to involve in tumor proliferation and invasion, but its function and relationship with miR-31 in breast cancer is still unknown. Here we found that the expression of miR-31 was downregulated in TNBC tissue and cell line. MiR-31 expression was increased after MDA-MB-231 cell was treated by 5-aza-2'-deoxycytidine (5-AZA-CdR), enhance the expression of miR-31 significantly inhibited MDA-MB-231 cell migration and invasion, downregulation of miR-31 expression could promoted MCF-7 cell migration and invasion. The expression of SATB2 was negatively correlated with miR-31 and was upregulated in MCF-7 and MDA-MB-231. Silencing SATB2 expression significantly inhibited MCF-7 and MDA-MB-231 cell proliferation, migration and invasion. Luciferase reporter assays indicated SATB2 is a direct target of miR-31. Taken together, these results suggest miR-31 inhibited TNBC cells migration and invasion through suppressing SATB2 expression.

Imai Y, Maru Y, Tanaka J
Action mechanisms of histone deacetylase inhibitors in the treatment of hematological malignancies.
Cancer Sci. 2016; 107(11):1543-1549 [PubMed] Free Access to Full Article Related Publications
Histone deacetylases (HDACs) critically regulate gene expression by determining the acetylation status of histones. Studies have increasingly focused on the activities of HDACs, especially involving non-histone proteins, and their various biological effects. Aberrant HDAC expression observed in several kinds of human tumors makes HDACs potential targets for cancer treatment. Several preclinical studies have suggested that HDAC inhibitors show some efficacy in the treatment of acute myelogenous leukemia with AML1-ETO, which mediates transcriptional repression through its interaction with a complex including HDAC1. Recurrent mutations in epigenetic regulators are found in T-cell lymphomas (TCLs), and HDAC inhibitors and hypomethylating agents were shown to act cooperatively in the treatment of TCLs. Preclinical modeling has suggested that persistent activation of the signal transducer and activator of transcription signaling pathway could serve as a useful biomarker of resistance to HDAC inhibitor in patients with cutaneous TCL. Panobinostat, a pan-HDAC inhibitor, in combination with bortezomib and dexamethasone, has achieved longer progression-free survival in patients with relapsed/refractory multiple myeloma (MM) than the placebo in combination with bortezomib and dexamethasone. Panobinostat inhibited MM cell growth by degrading protein phosphatase 3 catalytic subunit α (PPP3CA), a catalytic subunit of calcineurin. This degradation was suggested to be mediated by the blockade of the chaperone function of heat shock protein 90 due to HDAC6 inhibition. Aberrant PPP3CA expression in advanced MM indicated a possible correlation between high PPP3CA expression and the pathogenesis of MM. Furthermore, PPP3CA was suggested as a common target of panobinostat and bortezomib.

Hu D, Zhou W, Wang F, et al.
Development of a NanoString assay to detect leukemogenic fusion transcripts in acute myeloid leukemia.
Int J Lab Hematol. 2016; 38(6):663-673 [PubMed] Related Publications
INTRODUCTION: Detection of leukemogenic fusion transcripts in acute myeloid leukemia (AML) is critical for AML diagnosis. NanoString nCounter system is a novel probe-based gene expression platform capable of measuring up to 800 targets with advantages of reproducibility, accuracy, and sample type flexibility. To study the potential application of NanoString in leukemia at clinic, we used this technology to detect AML leukemogenic fusion transcripts and compared the performances with clinical molecular assays.
METHODS: We developed a NanoString assay to detect seven leukemogenic fusion transcripts, namely RUNX1-RUNX1T1 (e5e12), PML-RARA (bcr1, bcr2, and bcr3), and CBFB-MYH11 (e5e12, e5e8, and e5e7). We set up the cut-off value for each fusion transcript and tested 42 de novo AML samples. We compared the results with reverse transcriptase-polymerase chain reaction (RT-PCR) and TaqMan reverse quantitative-polymerase chain reaction (RQ-PCR), the molecular methods standardly used at clinic.
RESULTS: We demonstrated that the NanoString and RT-PCR results correlate well (P < 0.0001) and are highly concordant (95.2%). Using TaqMan RQ-PCR as a validation method and gold standard, we demonstrated superior accuracy and sensitivity of NanoString compared to RT-PCR and comparable specificity. Furthermore, we showed that NanoString is not as sensitive as TaqMan RQ-PCR in detecting very low level of fusion transcripts.
CONCLUSIONS: NanoString can serve as a reliable and alternative molecular method to multiplexed RT-PCR for diagnosis of de novo AML with the perspective of screening/quantitation of a large number of leukemogenic fusion transcripts and prognostic genes. However, NanoString may not be an alternative method for monitoring minimal residual disease in AML.

Yu P, Guo Y, Yusufu M, et al.
Decreased expression of EZH2 reactivates RASSF2A by reversal of promoter methylation in breast cancer cells.
Cell Biol Int. 2016; 40(10):1062-70 [PubMed] Related Publications
EZH2, the catalytic subunit of polycomb repressor complex 2, has oncogenic properties, whereas RASSF2A, a Ras association domain family protein, has a tumor suppressor role in many types of human cancer. However, the interrelationship between these two genes remains unclear. Here, we showed that the downregulation of EZH2 reduces CpG island methylation of the RASSF2A promoter, thereby leading to increased RASSF2A expression. Our findings also showed that knockdown of EZH2 increased RASSF2A expression in the human breast cancer cell line MCF-7 in cooperation with DNMT1. This was similar to the effect of 5-Aza-CdR, a DNA methylation inhibitor that reactivates tumor suppressor genes and activated RASSF2A expression in our study. The EZH2 inhibitor DZNep markedly suppressed the proliferation, migration, and invasion of MCF-7 cells treated with ADR and TAM. EZH2 inhibits the expression of tumor suppressor gene RASSF2A via promoter hypermethylation. Thus, it plays an important role in tumorigenesis and is a potential therapeutic target for the treatment of breast cancer.

Wu AY, Yang HC, Lin CM, et al.
The Transcriptome Study of Subtype M2 Acute Myeloblastic Leukemia.
Cell Biochem Biophys. 2015; 72(3):653-6 [PubMed] Related Publications
Our objective is to explore the tumor-specific mutated genes by transcriptome sequencing of patients with acute myeloblastic leukemia. 96 patients with subtype M2 acute myeloid leukemia (AML), admitted during January 2007 to January 2012, were selected. Bone marrow and peripheral blood samples from the patients after the first visit and the patients who were improved or alleviated, were subjected to high-throughput sequencing to compare the gene expression. The single nucleotide mutation related to subtype M2 AML was detected. Meanwhile, real-time fluorescent quantitation RT-PCR was used to detect the AML1/ETO fusion gene and its correlation with prognosis after treatment. Among 96 patients, AML1-ETO fusion gene was positive in 52 cases, the positive rate was 54.17 %. The complete relief (CR) rate of AML1-ETO fusion gene positive patients was 84.62 %, and the CR rate of AML1/ETO fusion gene negative patients was 77.27 %; the CR rate of AML1-ETO positive patients was higher than that of patients without the fusion gene, however there was no statistical difference. In the analysis of recurrent gene mutation in AML-M2 patients, IDH2, ASXL1, TET2, JAK1 and JAK2 gene expressions were not significantly different before treatment and after CR, however, IDHI, JAK3, ABL1 and BCR gene expressions were significantly different. In the study of transcriptome in AML-M2 patients, high-throughput sequencing could effectively detect the difference of the gene expression before treatment and after CR. Furthermore, positive expression of AML1-ETO fusion gene had effect on the prognosis of patients.

Huang S, Jiang MM, Chen GF, et al.
Epigenetic Silencing of Eyes Absent 4 Gene by Acute Myeloid Leukemia 1-Eight-twenty-one Oncoprotein Contributes to Leukemogenesis in t(8;21) Acute Myeloid Leukemia.
Chin Med J (Engl). 2016; 129(11):1355-62 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The acute myeloid leukemia 1 (AML1)-eight-twenty-one (ETO) fusion protein generated by the t(8;21)(q22;q22) translocation is considered to display a crucial role in leukemogenesis in AML. By focusing on the anti-leukemia effects of eyes absent 4 (EYA4) gene on AML cells, we investigated the biologic and molecular mechanism associated with AML1-ETO expressed in t(8;21) AML.
METHODS: Qualitative polymerase chain reaction (PCR), quantitative reverse transcription PCR (RT-PCR), and Western blotting analysis were used to observe the mRNA and protein expression levels of EYA4 in cell lines. Different plasmids (including mutant plasmids) of dual luciferase reporter vector were built to study the binding status of AML1-ETO to the promoter region of EYA4. Chromatin immunoprecipitation assay was used to study the epigenetic silencing mechanism of EYA4. Bisulfite sequencing was applied to detect the methylation status in EYA4 promoter region. The influence of EYA4 gene in the cell proliferation, apoptosis, and cell clone-forming ability was detected by the technique of Cell Counting Kit-8, flow cytometry, and clonogenic assay.
RESULTS: EYA4 gene was hypermethylated in AML1-ETO+ patients and its expression was down-regulated by 6-fold in Kasumi-1 and SKNO-1 cells, compared to HL-60 and SKNO-1-siA/E cells, respectively. We demonstrated that AML1-ETO triggered the epigenetic silencing of EYA4 gene by binding at AML1-binding sites and recruiting histone deacetylase 1 and DNA methyltransferases. Enhanced EYA4 expression levels inhibited cellular proliferation and suppressed cell colony formation in AML1-ETO+ cell lines. We also found EYA4 transfection increased apoptosis of Kasumi-1 and SKNO-1 cells by 1.6-fold and 1.4-fold compared to negative control, respectively.
CONCLUSIONS: Our study identified EYA4 gene as targets for AML1-ETO and indicated it as a novel tumor suppressor gene. In addition, we provided evidence that EYA4 gene might be a novel therapeutic target and a potential candidate for treating AML1-ETO+ t (8;21) AML.

Qin YZ, Wang Y, Zhu HH, et al.
Low WT1 transcript levels at diagnosis predicted poor outcomes of acute myeloid leukemia patients with t(8;21) who received chemotherapy or allogeneic hematopoietic stem cell transplantation.
Chin J Cancer. 2016; 35:46 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Acute myeloid leukemia (AML) with t(8;21) is a heterogeneous disease. Identifying AML patients with t(8;21) who have a poor prognosis despite achieving remission is important for determining the best subsequent therapy. This study aimed to evaluate the impact of Wilm tumor gene-1 (WT1) transcript levels and cellular homolog of the viral oncogene v-KIT receptor tyrosine kinase (C-KIT) mutations at diagnosis, and RUNX1-RUNX1T1 transcript levels after the second consolidation chemotherapy cycle on outcomes.
METHODS: Eighty-eight AML patients with t(8;21) who received chemotherapy only or allogeneic hematopoietic stem cell transplantation (allo-HSCT) were included. Patients who achieved remission, received two or more cycles of consolidation chemotherapy, and had a positive measureable residual disease (MRD) test result (defined as <3-log reduction in RUNX1-RUNX1T1 transcript levels compared to baseline) after 2-8 cycles of consolidation chemotherapy were recommended to receive allo-HSCT. Patients who had a negative MRD test result were recommended to receive further chemotherapy up to only 8 cycles. WT1 transcript levels and C-KIT mutations at diagnosis, and RUNX1-RUNX1T1 transcript levels after the second consolidation chemotherapy cycle were tested.
RESULTS: Patients who had a C-KIT mutation had significantly lower WT1 transcript levels than patients who did not have a C-KIT mutation (6.7% ± 10.6% vs. 19.5% ± 19.9%, P < 0.001). Low WT1 transcript levels (≤5.0%) but not C-KIT mutation at diagnosis, a positive MRD test result after the second cycle of consolidation chemotherapy, and receiving only chemotherapy were independently associated with high cumulative incidence of relapse in all patients (hazard ratio [HR] = 3.53, 2.30, and 11.49; 95% confidence interval [CI] 1.64-7.62, 1.82-7.56, and 4.43-29.82; P = 0.002, 0.034, and <0.001, respectively); these conditions were also independently associated with low leukemia-free survival (HR = 3.71, 2.33, and 5.85; 95% CI 1.82-7.56, 1.17-4.64, and 2.75-12.44; P < 0.001, 0.016, and <0.001, respectively) and overall survival (HR = 3.50, 2.32, and 4.34; 95% CI 1.56-7.82, 1.09-4.97, and 1.98-9.53; P = 0.002, 0.030, and <0.001, respectively) in all patients.
CONCLUSIONS: Testing for WT1 transcript levels at diagnosis in patients with AML and t(8;21) may predict outcomes in those who achieve remission. A randomized study is warranted to determine whether allo-HSCT can improve prognosis in these patients.

Ding XL, Yang X, Liang G, Wang K
Isoform switching and exon skipping induced by the DNA methylation inhibitor 5-Aza-2'-deoxycytidine.
Sci Rep. 2016; 6:24545 [PubMed] Free Access to Full Article Related Publications
DNA methylation in gene promoters leads to gene silencing and is the therapeutic target of methylation inhibitors such as 5-Aza-2'-deoxycytidine (5-Aza-CdR). By analyzing the time series RNA-seq data (days 5, 9, 13, 17) obtained from human bladder cells exposed to 5-Aza-CdR with 0.1 uM concentration, we showed that 5-Aza-CdR can affect isoform switching and differential exon usage (i.e., exon-skipping), in addition to its effects on gene expression. We identified more than 2,000 genes with significant expression changes after 5-Aza-CdR treatment. Interestingly, 29 exon-skipping events induced by treatment were identified and validated experimentally. Particularly, exon-skipping event in Enhancer of Zeste Homologue 2 (EZH2) along with expression changes showed significant down regulation on Day 5 and Day 9 but returned to normal level on Day 13 and Day 17. EZH2 is a component of the multi-subunit polycomb repressive complex PRC2, and the down-regulation of exon-skipping event may lead to the regain of functional EZH2 which was consistent with our previous finding that demethylation may cause regain of PRC2 in demethylated regions. In summary, our study identified pervasive transcriptome changes of bladder cancer cells after treatment with 5-Aza-CdR, and provided valuable insights into the therapeutic effects of 5-Aza-CdR in current clinical trials.

Kawano Y, Takahashi W, Eto M, et al.
Prognosis of metastatic renal cell carcinoma with first-line interferon-α therapy in the era of molecular-targeted therapy.
Cancer Sci. 2016; 107(7):1013-7 [PubMed] Free Access to Full Article Related Publications
The RCC-SELECT study showed the correlation between single nucleotide polymorphisms (SNP) in STAT3 gene and survival in metastatic renal cell carcinoma (mRCC) patients with first-line interferon-α (IFN-α). In that study, even patients with STAT3 SNP linked to shorter overall survival (OS) exhibited remarkably improved prognosis. All 180 patients evaluated in the above study were further analyzed for correlation between OS and demographics/clinicopathological parameters. OS was estimated using the Kaplan-Meier method. Associations between OS and potential prognostic factors were assessed using the log-rank test and the Cox proportional hazards model. The median OS was 42.8 months. Univariate analysis showed that worse Eastern Cooperative Oncology Group-performance status (ECOG-PS), high T stage, regional lymph node metastasis, distant metastasis, higher grade, infiltrative growth pattern, the presence of microscopic vascular invasion (MVI), hypercalcemia, anemia, thrombocytopenia and elevated C-reactive protein were significantly associated with OS. Multivariate analysis revealed that ECOG-PS (hazard ratio [HR] = 3.665, P = 0.0004), hypercalcemia (HR = 6.428, P = 0.0005) and the presence of MVI (HR = 2.668, P = 0.0109) were jointly significant poor prognostic factors. This is the first study analysing prognostic factors of mRCC patients with first-line IFN-α using large cohort of the prospective study. The present study suggests that first-line IFN-α is still a useful therapy for mRCC even in the era of molecular targeted therapy.

Hui H, Zhang X, Li H, et al.
Oroxylin A, a natural anticancer flavonoid compound, induces differentiation of t(8;21)-positive Kasumi-1 and primary acute myeloid leukemia cells.
J Cancer Res Clin Oncol. 2016; 142(7):1449-59 [PubMed] Related Publications
PURPOSE: AML1/ETO fusion gene is one of disease-causing genes of t(8;21)-positive acute myeloid leukemia (AML). Oroxylin A (OA) has showed anticancer effects on other cancer cells. Here, studies were conducted to determine the antileukemia effect of OA on t(8;21)-positive AML cells in vitro and in vivo.
MATERIALS AND METHODS: The effects of OA on cell viability of t(8;21)-positive Kasumi-1 and primary AML cells were analyzed by MTT assay. Cell differentiation was examined by NBT reduction assay, flow cytometry analysis for CD11b/CD14, and Giemsa stain. Protein expressions were determined by Western blots. Immunofluorescence assay was used to verify the effect of OA on HDAC-1 expression in vivo. Immunohistochemical staining was applied to evaluate leukemic infiltration of AML-bearing NOD/SCID mice.
RESULTS: OA enhanced NBT reduction activity and CD11b/CD14 expression of AML1/ETO-positive AML cells markedly. Results of Giemsa staining also demonstrated that OA could induce the morphologic changes with reduction of nuclear/cytoplasmic ratios, suggesting the cell differentiation induced by OA. Further study showed that OA decreased the expression of fusion protein AML1/ETO and down-regulated HDAC-1 protein levels in vitro and in vivo. Moreover, OA increased the expression of differentiation-related proteins C/EBPα and P21. Acetylation levels of histones were also advanced obviously after treatment of OA. In vivo study indicated that OA could prolong the survival of AML-bearing NOD/SCID mice and reduce leukocytic infiltration of the spleen.
CONCLUSIONS: All these results suggested that OA might be a novel candidate agent for differentiation therapy for AML1/ETO-positive AML and the mechanism required further investigation.

Masaoka H, Ito H, Soga N, et al.
Aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) polymorphisms exacerbate bladder cancer risk associated with alcohol drinking: gene-environment interaction.
Carcinogenesis. 2016; 37(6):583-8 [PubMed] Related Publications
Although a range of chemical exposures (cigarette smoking and occupational exposure) are recognized risk factors for the development of bladder cancer (BCa), many epidemiological studies have demonstrated that alcohol drinking is not associated with BCa risk. Aldehyde dehydrogenase 2 (ALDH2; rs671, Glu504Lys) and alcohol dehydrogenase 1B (ADH1B; rs1229984, His47Arg) polymorphisms impact the accumulation of acetaldehyde, resulting in an increased risk of various cancers. To date, however, no studies evaluating the association between BCa risk and alcohol drinking have considered these polymorphisms. Here, we conducted a matched case-control study to investigate whether ALDH2 and ADH1B polymorphisms influence BCa risk associated with alcohol drinking. Cases were 74 BCa patients and controls were 740 first-visit outpatients without cancer at Aichi Cancer Center Hospital between January 2001 and December 2005. Odds ratio (OR), 95% confidence interval (CI) and gene-environment interaction were assessed by conditional logistic regression analysis with adjustment for potential confounders. Results showed that ALDH2 Glu/Lys was associated with a significantly increased risk of BCa compared with Glu/Glu (OR 2.03, 95% CI 1.14-3.62, P = 0.017). In contrast, ALDH2 Glu/Lys showed no increase in risk among the stratum of never drinkers compared with Glu/Glu, indicating a gene-environment interaction. ADH1B His/Arg had an OR of 1.98 (1.20-3.24, P = 0.007) compared with His/His. ADH1B Arg+ showed a similar OR and 95% CI. Individuals with ALDH2 Glu/Lys and ADH1B Arg+ had the highest risk of BCa compared with ALDH2 Glu/Glu and ADH1B His/His [OR 4.00 (1.81-8.87), P = 0.001].

Kohrs N, Kolodziej S, Kuvardina ON, et al.
MiR144/451 Expression Is Repressed by RUNX1 During Megakaryopoiesis and Disturbed by RUNX1/ETO.
PLoS Genet. 2016; 12(3):e1005946 [PubMed] Free Access to Full Article Related Publications
A network of lineage-specific transcription factors and microRNAs tightly regulates differentiation of hematopoietic stem cells along the distinct lineages. Deregulation of this regulatory network contributes to impaired lineage fidelity and leukemogenesis. We found that the hematopoietic master regulator RUNX1 controls the expression of certain microRNAs, of importance during erythroid/megakaryocytic differentiation. In particular, we show that the erythorid miR144/451 cluster is epigenetically repressed by RUNX1 during megakaryopoiesis. Furthermore, the leukemogenic RUNX1/ETO fusion protein transcriptionally represses the miR144/451 pre-microRNA. Thus RUNX1/ETO contributes to increased expression of miR451 target genes and interferes with normal gene expression during differentiation. Furthermore, we observed that inhibition of RUNX1/ETO in Kasumi1 cells and in RUNX1/ETO positive primary acute myeloid leukemia patient samples leads to up-regulation of miR144/451. RUNX1 thus emerges as a key regulator of a microRNA network, driving differentiation at the megakaryocytic/erythroid branching point. The network is disturbed by the leukemogenic RUNX1/ETO fusion product.

Niu M, Gao D, Wen Q, et al.
MiR-29c regulates the expression of miR-34c and miR-449a by targeting DNA methyltransferase 3a and 3b in nasopharyngeal carcinoma.
BMC Cancer. 2016; 16:218 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Nasopharyngeal carcinoma (NPC) is prevalent in South East Asia and Southern China particularly, despite the reported 5-year survival ratio is relative higher than other deadly cancers such as liver, renal, pancreas cancer, the lethality is characterized by high metastatic potential in the early stage and high recurrence rate after radiation treatment. MicroRNA-29c was found to be down-regulated in the serum as well as in the tissue of nasopharyngeal carcinoma tissue.
METHODS: In this study, we found accidentally that the transfection of pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a but doesn't affect that of miR-222 using real-time quantitative PCR in nasopharyngeal carcinoma cell lines. To explore the molecular mechanism of the regulatory role, the cells are treated with 5-Aza-2-deoxycytidine (5-Aza-CdR) treatment and the level of miR-34c and miR-449a but not miR-222 accumulated by the treatment. DNA methyltransferase 3a, 3b were down-regulated by the 5-Aza-CdR treatment with western blot and real-time quantitative PCR.
RESULTS: We found that pre-miR-29c or miR-29c mimics significantly increases the expression level of miR-34c and miR-449a. We further found DNA methyltransferase 3a and 3b are the target gene of miR-29c. Restoration of miR-29c in NPC cells down-regulated DNA methyltransferase 3a, 3b, but not DNA methyltransferase T1.
CONCLUSIONS: The regulation of miR-29c/DNMTs/miR-34c\449a is an important molecular axis of NPC development and targeting DNMTs or restoring of miR-29c might be a promising therapy strategy for the prevention of NPC.

Boutzen H, Saland E, Larrue C, et al.
Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia.
J Exp Med. 2016; 213(4):483-97 [PubMed] Free Access to Full Article Related Publications
Acute myeloid leukemia (AML) is characterized by the accumulation of malignant blasts with impaired differentiation programs caused by recurrent mutations, such as the isocitrate dehydrogenase (IDH) mutations found in 15% of AML patients. These mutations result in the production of the oncometabolite (R)-2-hydroxyglutarate (2-HG), leading to a hypermethylation phenotype that dysregulates hematopoietic differentiation. In this study, we identified mutant R132H IDH1-specific gene signatures regulated by key transcription factors, particularly CEBPα, involved in myeloid differentiation and retinoid responsiveness. We show that treatment with all-trans retinoic acid (ATRA) at clinically achievable doses markedly enhanced terminal granulocytic differentiation in AML cell lines, primary patient samples, and a xenograft mouse model carrying mutant IDH1. Moreover, treatment with a cell-permeable form of 2-HG sensitized wild-type IDH1 AML cells to ATRA-induced myeloid differentiation, whereas inhibition of 2-HG production significantly reduced ATRA effects in mutant IDH1 cells. ATRA treatment specifically decreased cell viability and induced apoptosis of mutant IDH1 blasts in vitro. ATRA also reduced tumor burden of mutant IDH1 AML cells xenografted in NOD-Scid-IL2rγ(null)mice and markedly increased overall survival, revealing a potent antileukemic effect of ATRA in the presence of IDH1 mutation. This therapeutic strategy holds promise for this AML patient subgroup in future clinical studies.

Ma C, Komohara Y, Ohnishi K, et al.
Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma.
Cancer Sci. 2016; 107(5):700-7 [PubMed] Free Access to Full Article Related Publications
Cancer stem-like cells (CSC) or cancer-initiating cells are now considered to be an important cell population related to cancer recurrence and the resistance to anti-cancer therapy. Tumor-associated macrophages (TAM) are a main component of stromal cells and are related to cancer progression in clear cell renal cell carcinoma (ccRCC). Because the detailed mechanisms allowing the maintenance of CSC in cancer tissues remain unclear, we investigated the relationship between TAM and CD44-expressing cancer cells in ccRCC. CD44 was used as a marker for CSC, and CD163 and CD204 were used as markers for TAM. CD44-positive cancer cells were detected in 37 of the 103 cases. Although statistical analysis showed no relationship between CD44-positive cancer cells and the clinical course, the distribution of CD44-positive cancer cells was significantly associated with a high density of TAM. Our in vitro study using RCC cell lines and human macrophages demonstrated that CD44 expression was upregulated by direct co-culture with macrophages. Silencing of TNF-alpha on macrophages abrogated the upregulation of CD44 expression in cancer cells. Macrophage-induced CD44 overexpression was also suppressed by NF-κB inhibitors. These results suggest that TNF-alpha derived from TAM is linked to CD44 overexpression via NF-κB signaling in ccRCC.

Cheng CK, Chan NP, Wan TS, et al.
Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia.
Haematologica. 2016; 101(4):448-57 [PubMed] Free Access to Full Article Related Publications
Helicase-like transcription factor is a SWI/SNF chromatin remodeling factor involved in various biological processes. However, little is known about its role in hematopoiesis. In this study, we measured helicase-like transcription factor mRNA expression in the bone marrow of 204 adult patients with de novo acute myeloid leukemia. Patients were dichotomized into low and high expression groups at the median level for clinicopathological correlations. Helicase-like transcription factor levels were dramatically reduced in the low expression patient group compared to those in the normal controls (n=40) (P<0.0001). Low helicase-like transcription factor expression correlated positively with French-American-British M4/M5 subtypes (P<0.0001) and complex cytogenetic abnormalities (P=0.02 for ≥3 abnormalities;P=0.004 for ≥5 abnormalities) but negatively with CEBPA double mutations (P=0.012). Also, low expression correlated with poorer overall (P=0.005) and event-free (P=0.006) survival in the intermediate-risk cytogenetic subgroup. Consistent with the more aggressive disease associated with low expression, helicase-like transcription factor knockdown in leukemic cells promoted proliferation and chromosomal instability that was accompanied by downregulation of mitotic regulators and impaired DNA damage response. The significance of helicase-like transcription factor in genome maintenance was further indicated by its markedly elevated expression in normal human CD34(+)hematopoietic stem cells. We further demonstrated that helicase-like transcription factor was a RUNX1 target and transcriptionally repressed by RUNX1-ETO and site-specific DNA methylation through a duplicated RUNX1 binding site in its promoter. Taken together, our findings provide new mechanistic insights on genomic instability linked to helicase-like transcription factor deregulation, and strongly suggest a tumor suppressor function of the SWI/SNF protein in acute myeloid leukemia.

Eto H, Hyodo F, Nakano K, Utsumi H
Selective Imaging of Malignant Ascites in a Mouse Model of Peritoneal Metastasis Using in Vivo Dynamic Nuclear Polarization-Magnetic Resonance Imaging.
Anal Chem. 2016; 88(4):2021-7 [PubMed] Related Publications
The presence of malignant ascites in advanced cancer patients is associated with both a poor prognosis and quality of life with a risk of abdominal infection and sepsis. Contemporary noninvasive visualization methods such as ultrasound, computed tomography, and magnetic resonance imaging (MRI) often struggle to differentiate malignant ascites from surrounding tissues. This study aimed to determine the utility of selective H2O imaging in the abdominal cavity with a free radical probe and deuterium oxide (D2O) contrast agent using in vivo dynamic nuclear polarization-MRI (DNP-MRI). Phantom imaging experiments established a linear relationship between H2O volume and image intensity using in vivo DNP-MRI. Similar results were obtained when the radical-D2O probe was used to determine selective and spatial information on H2O in vivo, modeled by the injection of saline into the abdominal cavity of mice. To demonstrate the utility of this method for disease, malignant ascites in peritoneal metastasis animal model was selected as one of the typical examples. In vivo DNP-MRI of peritoneal metastasis animal model was performed 7-21 days after intraperitoneal injection of luciferase, stably expressing the human pancreatic carcinoma (SUIT-2). The image intensity with increasing malignant ascites was significantly increased at days 7, 16, and 21. This increase corresponded to in vivo tumor progression, as measured by bioluminescent imaging. These results suggest that H2O signal enhancement in DNP-MRI using radical-D2O contrast is positively associated with the progression of dissemination and could be a useful biomarker for malignant ascites with cancer metastasis.

Pan FP, Zhou HK, Bu HQ, et al.
Emodin enhances the demethylation by 5-Aza-CdR of pancreatic cancer cell tumor-suppressor genes P16, RASSF1A and ppENK.
Oncol Rep. 2016; 35(4):1941-9 [PubMed] Free Access to Full Article Related Publications
5-Aza-2'-deoxycytidine (5-Aza-CdR) is currently acknowledged as a demethylation drug, and causes a certain degree of demethylation in a variety of cancer cells, including pancreatic cancer cells. Emodin, a traditional Chinese medicine (TCM), is an effective monomer extracted from rhubarb and has been reported to exhibit antitumor activity in different manners in pancreatic cancer. In the present study, we examined whether emodin caused demethylation and increased the demethylation of three tumor-suppressor genes P16, RASSF1A and ppENK with a high degree of methylation in pancreatic cancer when combined with 5-Aza-CdR. Our research showed that emodin inhibited the growth of pancreatic cancer Panc-1 cells in a dose- and time-dependent manner. Dot-blot results showed that emodin combined with 5-Aza-CdR significantly suppressed the expression of genome 5mC in PANC-1 cells. In order to verify the effect of methylation, methylation-specific PCR (MSP) and bisulfite genomic sequencing PCR (BSP) combined with TA were selected for the cloning and sequencing. Results of MSP and BSP confirmed that emodin caused faint demethylation, and 5-Aza-CdR had a certain degree of demethylation. When emodin was combined with 5-Aza-CdR, the demethylation was more significant. At the same time, fluorescent quantitative PCR and western blot analysis results confirmed that when emodin was combined with 5-Aza-CdR, the expression levels of P16, RASSF1A and ppENK were increased more significantly compared to either treatment alone. In contrast, the expression levels of DNA methyltransferase 1 (DNMT1) and DNMT3a were more significantly reduced with the combination treatment than the control or either agent alone, further proving that emodin in combination with 5-Aza-CdR enhanced the demethylation effect of 5-Aza-CdR by reducing the expression of methyltransferases. In conclusion, the present study confirmed that emodin in combination with 5-Aza-CdR enhanced the demethylation by 5-Aza-CdR of tumor-suppressor genes p16, RASSF1A and ppENK by reducing the expression of methyltransferases DNMT1 and DNMT3a.

Wang MD, Wu H, Huang S, et al.
HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress.
Oncotarget. 2016; 7(6):6711-26 [PubMed] Free Access to Full Article Related Publications
Due to a high rate of nutrient consumption and inadequate vascularization, hepatocellular carcinoma (HCC) cells constantly undergo metabolic stress during tumor development. Hepatitis B virus (HBV) X protein (HBx) has been implicated in the pathogenesis of HBV-induced HCC. In this study, we investigated the functional roles of HBx in HCC adaptation to metabolic stress. Up-regulation of HBx increased the intracellular ATP and NADPH generation, and induced the resistance to glucose deprivation, whereas depletion of HBx via siRNA abolished these effects and conferred HCC cells sensitive to glucose restriction. Though HBx did not affect the glycolysis and oxidative phosphorylation capacity of HCC cells under normal culture conditions, it facilitated fatty acid oxidation (FAO) in the absence of glucose, which maintained NADPH and ATP levels. Further investigation showed that HBx expression, under glucose deprivation, stimulated phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) via a calcium/CaMKK-dependent pathway, which was required for the activation of FAO. Conversely, inhibition of FAO by etomoxir (ETO) restored the sensitivity of HBx-expressing cells to glucose deficiency in vitro and retarded xenograft tumor formation in vivo. Finally, HBx-induced activation of the AMPK and FAO pathways were also observed in xenograft tumors and HBV-associated HCC specimens. Our data suggest that HBx plays a key role in the maintenance of redox and energy homeostasis by activating FAO, which is critical for HCC cell survival under conditions of metabolic stress and might be exploited for therapeutic benefit.

Yang B, Yang ZG, Gao B, et al.
5-Aza-CdR can reverse gefitinib resistance caused by DAPK gene promoter methylation in lung adenocarcinoma cells.
Int J Clin Exp Pathol. 2015; 8(10):12961-6 [PubMed] Free Access to Full Article Related Publications
To explore the relationship between death associated protein kinase (DAPK) gene promoter methylation and gefitinib resistance in Lung adenocarcinoma cell lines. EGFR-mutation lung adenocarcinoma cell lines PC9 and the gefitinib-resistant with T790M Mutation cell lines PC9/GR were chosen as cell models, and PC9/GR were treated with 5-aza-CdR (1 μmol/L). The experiments were divided into three groups: PC9 group, PC9/GR group and PC9/GR with 5-Aza-CdR pretreatment group. Treat three groups cell with different concentrations gefitinib, the cell proliferation was determined by MTT assay. The apoptotic rates were detected by flow cytometry. The methylation of DAPK gene promoter region was examined by methylation-specific PCR (MSP). The expressions of DAPK protein were detected by Western blot. MTT results showed that the half maximal inhibitory concentration (IC50) of PC9 and PC9/GR cell lines increase from 0.12 μmol/L to 8.52 μmol/L. But after treated with 5-aza-CdR, the IC50 of PC9/GR cell lines decrease to 4.35 μmol/L, and the resistance index (RI) decrease from 71 to 36 (P<0.05). Flow cytometry results showed that the apoptosis rate were 24.80% ± 0.28%, 12.70% ± 0.31%, 19.8% ± 0.15% respectively. MSP results showed that DAPK gene promoter region was un-methylated in PC9 cells and methylated in PC9/GR cells, when treated with 5-aza-CdR, DAPK gene promoter region was partly methylated in PC9/GR cells (P<0.05). Western blot results showed that the levels of DAPK protein were reduced significantly in PC9/GR cell lines compared with PC9, and after treated with 5-aza-CdR, the expression levels of DAPK protein in PC9/GR were increased (P<0.05). In conclusion, DAPK gene promoter methylation may contribute to the downregulation of DAPK gene and protein, and consequently affect the sensitivity of gefitinib in lung adenocarcinoma lines, induced gefitinib resistance. But 5-Aza-CdR can reverse gefitinib resistance by demethylation of DAPK gene promoter.

Gao X, Tang C, Shi W, et al.
Semaphorin-3F functions as a tumor suppressor in colorectal cancer due to regulation by DNA methylation.
Int J Clin Exp Pathol. 2015; 8(10):12766-74 [PubMed] Free Access to Full Article Related Publications
Semaphorin-3F (SEMA3F) is a member of the class III semaphorin family, and is seen as a candidate tumor suppressor gene. The aims of this study were to evaluate the effect of SEMA3F in colorectal cancer (CRC) patients, and to explore the mechanism for that SEMA3F suppresses tumor progression and metastasis. The expression levels of SEMA3F in the colorectal cancer tissues and corresponding non-tumor colorectal tissues were determined by Western blotting and real-time quantitative PCR (qRT-PCR). In addition, we evaluate the effects of SEMA3F on CRC cell migration and colony formation in vitro. Subsequently, quantitative methylation-specific PCR (qMSP) was used to detect the DNA methylation status in the CpG islands of SEMA3F gene promoter in normal colon and colorectal cancer cell lines, colorectal cancer tissues and corresponding non-tumor colorectal tissues. We found that SEMA3F was downregulated in the protein (P < 0.01) and mRNA (P < 0.001) levels in CRC tissues as compared to matched adjacent non-tumor tissues. Moreover, MSP assay showed high levels of SEMA3F gene promoter methylation in the CpG islands in some CRC cell lines and tissue samples. Furthermore, SEMA3F expression was reactivated in CRC cell lines after treatment with 5-Aza-CdR, demethylation of SW620 cells resulted in cell colony formation and invasion inhibition. These findings suggest DNA methylation of promoter CpG island-mediated silencing of the tumor suppressor SEMA3F gene plays an important role in the carcinogenesis of CRC.

Hatlen MA, Arora K, Vacic V, et al.
Integrative genetic analysis of mouse and human AML identifies cooperating disease alleles.
J Exp Med. 2016; 213(1):25-34 [PubMed] Free Access to Full Article Related Publications
t(8;21) is one of the most frequent chromosomal abnormalities observed in acute myeloid leukemia (AML). However, expression of AML1-ETO is not sufficient to induce transformation in vivo. Consistent with this observation, patients with this translocation harbor additional genetic abnormalities, suggesting a requirement for cooperating mutations. To better define the genetic landscape in AML and distinguish driver from passenger mutations, we compared the mutational profiles of AML1-ETO-driven mouse models of leukemia with the mutational profiles of human AML patients. We identified TET2 and PTPN11 mutations in both mouse and human AML and then demonstrated the ability of Tet2 loss and PTPN11 D61Y to initiate leukemogenesis in concert with expression of AML1-ETO in vivo. This integrative genetic profiling approach allowed us to accurately predict cooperating events in t(8;21)(+) AML in a robust and unbiased manner, while also revealing functional convergence in mouse and human AML.

Gao Y, Lu X
Decreased expression of MEG3 contributes to retinoblastoma progression and affects retinoblastoma cell growth by regulating the activity of Wnt/β-catenin pathway.
Tumour Biol. 2016; 37(2):1461-9 [PubMed] Related Publications
The aberrant expression of MEG3 has been found in some types of cancers; however, little is known concerning the function of MEG3 in retinoblastoma. To elucidate the roles of MEG3 in retinoblastoma, MEG3 expression was quantified in 63 retinoblastoma samples and corresponding nontumor tissues in this work. Moreover, retinoblastoma cell lines were transfected with pcDNA3.1-MEG3 or si-MEG3, after which proliferation, apoptosis, and expression of β-catenin were assayed. TOP-Flash reporter assay was also used to investigate the activity of the Wnt/β-catenin pathway. The results showed that MEG3 was downregulated in retinoblastoma tissues, and the level of MEG3 was negatively associated with IIRC stages and nodal or distant metastasis. More importantly, Kaplan-Meier survival analysis demonstrated that patients with low MEG3 expression had poorer survival and multivariate Cox regression analysis revealed that MEG3 was an independent prognostic factor in retinoblastoma patients. We also observed that MEG3 expression can be modulated by DNA methylation by using 5-aza-CdR treatment. In addition, overexpression of MEG3 suppressed proliferation, promoted apoptosis, and influences the activity of the Wnt/β-catenin pathway in retinoblastoma cell lines. Furthermore, we found that Wnt/β-catenin pathway activator rescued the anticancer effect of MEG3 in retinoblastoma. In conclusion, our study for the first time demonstrated that MEG3 was a tumor suppressor by negatively regulating the activity of the Wnt/β-catenin pathway in the progression of retinoblastoma and might serve as a prognostic biomarker and molecular therapeutic target.

Gao XZ, Zhao WG, Wang GN, et al.
Inhibitor of DNA binding 4 functions as a tumor suppressor and is targetable by 5-aza-2'-deoxycytosine with potential therapeutic significance in Burkitt's lymphoma.
Mol Med Rep. 2016; 13(2):1269-74 [PubMed] Related Publications
Epigenetic gene silencing due to promoter methylation is observed in human neoplasia, including lymphoma and certain cancer types. One important target for gene methylation analysis in non-Hodgkin lymphoma (NHL) is inhibitor of DNA binding 4 (ID4). The present study aimed to investigate the gene methylation status of ID4, the expression of ID4 protein and the effect of demethylating agent 5-aza-2'-deoxycytosine (CdR) in the Raji human Burkitt's lymphoma cell line in vitro. Following assessment of the inhibition of Raji cell growth by various concentrations of CdR, the effects of CdR on the expression of ID4 protein were assessed using the immunocytochemical streptavidin-peroxidase method and semi-quantitative analysis, while apoptosis and cell cycle were determined by flow cytometry. The ID4 gene methylation status of Raji cells was tested using methylation-specific polymerase chain reaction analysis. ID4 was methylated and its protein expression was low in the control group, while ID4 was partly or completely demethylated and its protein expression was upregulated in Raji cells treated with CdR. In addition, CdR induced apoptosis and cell cycle arrest in Raji cells in a dose- and time-dependent manner. These results demonstrated that ID4 is hypermethylated and its protein expression is low in Burkitt's lymphoma cells, while CdR reversed the abnormal DNA methylation and induced re-expression of ID4 protein. Hypermethylation of ID4 promotes the proliferation of Burkitt's lymphoma cells; ID4 may function as a tumor suppressor and can be targeted with demethylating compounds such as CdR for the treatment of Burkitt's lymphoma.

Liu LX, Deng W, Zhou XT, et al.
The mechanism of adenosine-mediated activation of lncRNA MEG3 and its antitumor effects in human hepatoma cells.
Int J Oncol. 2016; 48(1):421-9 [PubMed] Related Publications
Long non-coding RNA MEG3 is suggested to function as a tumor suppressor. However, the activation mechanism of MEG3 is still not well understood and data are not available on its role under adenosine-induced apoptosis. In this study, HepG2 cells were treated with adenosine or 5-Aza‑cdR. Methylation status of MEG3 promoter was detected by methylation specific PCR (MSP) and MEG3 expression was determined by qRT-PCR. PcDNA3.1-MEG3 recombinant plasmid was constructed and transfected to hepatoma HepG2 and Huh7 cells. Cell growth, morphological changes, cell-cycle distribution and apoptosis were analyzed by MTT assay, fluorescence microscopy and flow cytometry. The mRNA and protein expression levels were detected by qRT-PCR and western blot analysis. MEG3 binding proteins were screened by the improved MS2 biotin tagged RNA affinity purification method. The co-expression network of MEG3 was generated by GO analysis and ILF3 was identified as MEG3 binding protein by RNA pulldown and western blot analysis. Both adenosine and 5-Aza-CdR increased MEG3 mRNA expression and the CpG island of MEG3 gene in HepG2 cells was typical hypermethylation. Ectopic expression of MEG3 inhibited hepatoma cell growth in a time-dependent manner, resulted in cell cycle arrest and induced apoptosis. Ectopic expression of MEG3 increased p53, caspase-3 mRNA and protein levels, decreased MDM2 and cyclin D1 mRNA and protein levels, as well as ILF3 protein expression in HepG2 cells. These findings are the first to identify that adenosine increases MEG3 expression by inhibition of DNA methylation and its antitumor effects is involved in MEG3 activation. ILF3 may participate in the anticancer regulation of MEG3 by interacting with MEG3.

Willekens C, Blanchet O, Renneville A, et al.
Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial.
Haematologica. 2016; 101(3):328-35 [PubMed] Free Access to Full Article Related Publications
In t(8;21)(q22;q22) acute myeloid leukemia, the prognostic value of early minimal residual disease assessed with real-time quantitative polymerase chain reaction is the most important prognostic factor, but how long-term minimal residual disease monitoring may contribute to drive individual patient decisions remains poorly investigated. In the multicenter CBF-2006 study, a prospective monitoring of peripheral blood and bone marrow samples was performed every 3 months and every year, respectively, for 2 years following intensive chemotherapy in 94 patients in first complete remission. A complete molecular remission was defined as a (RUNX1-RUNX1T1/ABL1)×100 ≤ 0.001%. After the completion of consolidation therapy, a bone marrow complete molecular remission was observed in 30% of the patients, but was not predictive of subsequent relapse. Indeed, 8 patients (9%) presented a positive bone marrow minimal residual disease for up to 2 years of follow-up while still remaining in complete remission. Conversely, a peripheral blood complete molecular remission was statistically associated with a lower risk of relapse whatever the time-point considered after the completion of consolidation therapy. During the 2-year follow-up, the persistence of peripheral blood complete molecular remission was associated with a lower risk of relapse (4-year cumulative incidence, 8.2%), while molecular relapse confirmed on a subsequent peripheral blood sample predicted hematological relapse (4-year cumulative incidence, 86.9%) within a median time interval of 3.9 months. In t(8;21)(q22;q22) acute myeloid leukemia, minimal residual disease monitoring on peripheral blood every 3 months allows for the prediction of hematological relapse, and to identify patients who could potentially benefit from intervention therapy. (ClinicalTrials.gov ID #NCT00428558).

Sheng Y, Wang H, Liu D, et al.
Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma.
Gynecol Oncol. 2016; 140(1):145-51 [PubMed] Related Publications
OBJECTIVE: Epigenetic changes in cancer and precancerous lesions could be utilized as biomarkers for cancer early detection. This study aims to investigate the novel biomarkers in endometrial carcinoma, and explore their epigenetic regulation.
METHODS: Methylation of six tumor suppressor genes (CDH13, SHP1, HIN1, DKK3, CTNNA1 and PCDH8) was evaluated in 155 endometrium samples. Changes of methylation and mRNA expression after treatment with 5-Aza-2'-deoxycytidine (5-Aza-CdR) or/and trichostatin A (TSA) were investigated by MSP and qRT-PCR respectively. Co-immunoprecipitation was used to detect the interactions between UHRF1 and PRMT5 proteins.
RESULTS: CDH13 and SHP1 promoters were highly methylated (81.36% and 86.44%, respectively) in endometrial carcinoma, while CDH13 promoter methylation was also present in complex hyperplasia and atypical hyperplasia (51.72% and 50.00%, respectively). Methylation of CDH13 and SHP1 promoters was associated with age and tumor differentiation or muscular infiltration depth. CDH13 and SHP1 promoters were completely methylated in endometrial carcinoma cell lines and were partially reversed by 5-Aza-CdR or TSA to induce mRNA levels (P<0.01). After combined treatment with these two agents, methylation of CDH13 and SHP1 promoters was completely reversed and expression of their mRNA was significantly increased (P<0.01). Moreover, PRMT5 could bind to UHRF1 and down-regulated by 5-Aza-CdR and/or TSA treatment (P<0.05).
CONCLUSIONS: Our data demonstrate for the first time that SHP1 methylation has high specificity for diagnosis of endometrial carcinoma, while CDH13 promoter methylation plays a role in the earlier stage. Furthermore, UHRF1 could form a complex with PRMT5 to contribute to the endometrial carcinogenesis.

Further References

Andrieu V, Radford-Weiss I, Troussard X, et al.
Molecular detection of t(8;21)/AML1-ETO in AML M1/M2: correlation with cytogenetics, morphology and immunophenotype.
Br J Haematol. 1996; 92(4):855-65 [PubMed] Related Publications
The t(8;21) identifies a subgroup of acute myeloid leukaemia (AML) with a relatively good prognosis which may merit different treatment. It is associated predominantly, but not exclusively, with AML M2, and corresponds to rearrangements involving the AML1 and ETO genes. AML1-ETO positive, t(8;21) negative cases are well recognized but their incidence is unknown. In order to determine optimal prospective AML1-ETO RT-PCR screening strategies, we analysed 64 unselected AML M1 and M2 cases and correlated the results with other biological parameters. Molecular screening increased the overall detection rate from 8% to 14%. AML1-ETO was found in 3% (1/32) of AML M1 and 25% (8/32) of M2, including three patients without a classic (8;21) but with chromosome 8 abnormalities. It was more common in younger patients. Correlation with morphology enabled development of a scoring system which detected all nine AML1-ETO-positive cases with a false positive rate of 7% (4/55). Although certain AML1-ETO-positive cases demonstrated characteristic immunological features (CD19 and CD34 expression, CD33 negativity), each of these markers was insufficiently specific to permit prediction in an individual case. We conclude that initial routine prospective molecular screening for AML1-ETO in all AMLs, combined with standardized morphological and immunological analysis, is desirable in order to produce improved prognostic stratification and to determine whether screening can ultimately be restricted to appropriate subgroups.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CBFA2T1, Cancer Genetics Web: http://www.cancer-genetics.org/CBFA2T1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999