CYP1A2

Gene Summary

Gene:CYP1A2; cytochrome P450 family 1 subfamily A member 2
Aliases: CP12, P3-450, P450(PA)
Location:15q24.1
Summary:This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism and synthesis of cholesterol, steroids and other lipids. The protein encoded by this gene localizes to the endoplasmic reticulum and its expression is induced by some polycyclic aromatic hydrocarbons (PAHs), some of which are found in cigarette smoke. The enzyme's endogenous substrate is unknown; however, it is able to metabolize some PAHs to carcinogenic intermediates. Other xenobiotic substrates for this enzyme include caffeine, aflatoxin B1, and acetaminophen. The transcript from this gene contains four Alu sequences flanked by direct repeats in the 3' untranslated region. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:cytochrome P450 1A2
Source:NCBIAccessed: 11 March, 2017

Ontology:

What does this gene/protein do?
Show (35)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Testicular Cancer
  • Single Nucleotide Polymorphism
  • Aryl Hydrocarbon Hydroxylases
  • CYP1B1
  • Statistics, Nonparametric
  • Colorectal Cancer
  • beta Carotene
  • Breast Cancer
  • Cytochrome P-450 CYP1A2
  • RTPCR
  • Publication Bias
  • Xanthines
  • Tissue Embedding
  • Estrogens
  • Tunisia
  • Case-Control Studies
  • Genotype
  • Prostate Cancer
  • Stomach Cancer
  • Thyroid Diseases
  • Promoter Regions
  • Arylamine N-Acetyltransferase
  • Chromosome 15
  • Genetic Predisposition
  • Xenobiotics
  • Cytochrome P-450 Enzyme System
  • Risk Assessment
  • Smoking
  • Neoplasms, Experimental
  • Surveys and Questionnaires
  • Thailand
  • Transfection
  • Carcinogens
  • Glutathione Transferase
  • Sweden
  • Cytochrome P-450 CYP1A1
  • Lung Cancer
  • Practice Guidelines as Topic
  • Risk Factors
  • Urban Population
Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: CYP1A2 (cancer-related)

Karakurt S
Modulatory effects of rutin on the expression of cytochrome P450s and antioxidant enzymes in human hepatoma cells.
Acta Pharm. 2016; 66(4):491-502 [PubMed] Related Publications
Expression of a drug and xenobiotic metabolizing enzymes, cytochrome P450s (CYPs), and antioxidant enzymes can be modulated by various factors. The flavonoid rutin was investigated for its anti-carcinogen and protective effects as well as modulatory action on CYPs and phase II enzymes in human hepatocellular carcinoma cells. Rutin inhibited proliferation of HEPG2 cells in a dose-dependent manner with the IC50 value of 52.7 μmol L-1 and invasion of HEPG2 cells (21.6 %, p = 0.0018) and colony formation of those invaded cells (57.4 %, p < 0.0001). Rutin treatment also significantly increased early/late-stage apoptosis in HEPG2 cells (28.9 %, p < 0.001). Treatment by rutin significantly inhibited protein expressions of cytochrome P450-dependent CYP3A4 (75.3 %, p < 0.0001), elevated CYP1A1 enzymes (1.7-fold, p = 0.0084) and increased protein expressions of antioxidant and phase II reaction catalyzing enzymes, NQO1 (2.42-fold, p < 0.0001) and GSTP1 (2.03-fold, p < 0.0001). Besides, rutin treatment significantly inhibited mRNA expression of CYP3A4 (73.2 %, p=0.0014). Also, CYP1A1, NQO1 and GSTP1 mRNA expressions were significantly increased 2.77-fold (p = 0.029), 4.85- fold (p = 0.0051) and 9.84-fold (p < 0.0001), respectively.

Ibrahim MH, Rashed RA, Hassan NM, et al.
ssociation of Cytochrome P450-1B1 Gene Polymorphisms with Risk of Breast Cancer: an Egyptian Study.
Asian Pac J Cancer Prev. 2016; 17(6):2861-6 [PubMed] Related Publications
It is thought that population characteristics of breast cancer may be due to a variation in the frequency of different alleles of genes such as CYP1B1. We aimed to determine the association of CYP1B1 polymorphisms in 200 breast cancer cases and 40 controls by PCR-RFLP. Frequencies were assessed with clinical and risk factors in Egyptian patients. The genotype LV and the Leu allele frequencies for patients and controls were 42.9% and 50%, and 52.9% and 53.3%, respectively), with no significant differences observed (P values = 0.8 and 0.6, respectively). There was also no significant association between genotypes and any risk factors for cases (>0.05) except laterality and metastasis of the tumor (P values=0.006 and 0.06, respectively). The CYP1B1 polymorphism Val432Leu was not associated with breast cancer in Egypt, but may provide clues for future studies into early detection of the disease.

Xi XP, Zhuang J, Teng MJ, et al.
MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer.
Int J Mol Med. 2016; 38(2):499-506 [PubMed] Related Publications
MicroRNA-17 (miRNA-17/miR‑17) expression has been confirmed to be significantly higher in colorectal cancer tissues than in normal tissues. However, its exact role in colorectal cancer has not yet been fully elucidated. In this study, we found that miR-17 not only promoted epithelial-mesenchymal transition (EMT), but also promoted the formation of a stem cell-like population in colon cancer DLD1 cells. We also wished to determine the role of cytochrome P450, family 7, subfamily B, polypeptide 1 (CYP7B1) in CRC. miR-17 was overexpressed using a recombinant plasmid and CYP7B1 was silenced by transfection with shRNA. Western blot analysis was used to determine protein expression in the DLD1 cells and in tumor tissues obtained from patients with colon cancer. Our results revealed that miR‑17 overexpression led to the degradation of CYP7B1 mRNA expression in DLD1 cells. In addition, we found that the silencing of CYB7B1 promoted EMT and the formation of a stem cell-like population in the cells. Thus, our findings demonstrate that miR‑17 induces EMT consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer.

Abo-Hashem EM, El-Emshaty WM, Farag Rel S, et al.
Genetic Polymorphisms of Cytochrome P4501A1 (CYP1A1) and Glutathione S-Transferase P1 (GSTP1) and Risk of Hepatocellular Carcinoma Among Chronic Hepatitis C Patients in Egypt.
Biochem Genet. 2016; 54(5):696-713 [PubMed] Related Publications
Cytochrome P450 1A1 (CYP1A1) and Glutathione S-transferase P1 (GSTP1) genes are involved in the metabolism of many carcinogens. Polymorphisms in these genes with altered enzyme activity have been reported. The present study evaluated the synergistic effect between CYP1A1 and GSTP1 gene polymorphisms and smoking on development of HCV-related liver disease and hepatocellular carcinoma (HCC). The patients group comprised 40 patients with HCC and 40 patients with liver cirrhosis. The control group comprised 40 healthy subjects having no history of malignancy. The genetic polymorphisms were studied using polymerase chain reaction restriction fragment length polymorphism (PCR RFLP) technique on blood samples. The number of current or former smoker among HCC and cirrhotic patients as well as the median Pack/year of cigarette smoked were significantly higher in HCC and liver cirrhotic patients than in control group. Subjects with CYP1A1 gene variants (m1 and m3) had no significant risk to develop cirrhosis or HCC compared to control group. Individuals carrying the Ile/Val genotype of GSTP1 had a significant increased risk of HCC (OR of 2.2, 95 % CI 1.143-4.261) and had larger tumor size. No significant risk was observed on combining both genes variants or on combining smoking with variants of both genes. In conclusion, the GSTP1 Ile/Val genotype and Val allele are associated with an increased risk of HCC. CYP1A1 and GSTP1 genes variants interaction did not increase the risk of HCC.

Yamauchi K, Kokuryo T, Yokoyama Y, et al.
Prediction of Early Recurrence After Curative Resection of Colorectal Liver Metastasis and Subsequent S-1 Chemotherapy.
Anticancer Res. 2016; 36(5):2175-9 [PubMed] Related Publications
BACKGROUND: S-1, an oral 5-fluorouracil (5-FU)-based medicine that combines tegafur, gimeracil and oteracil potassium is commonly used as an adjuvant chemotherapeutic drug for the treatment of colorectal cancer.
PATIENTS AND METHODS: We enrolled 53 patients who underwent curative resection for colorectal cancer and liver metastasis (synchronous, n=24; metachronous, n=29). The subsequent adjuvant chemotherapy with oral S-1 administration was initiated within 56 days after liver resection. Recurrence was evaluated by imaging studies, that were performed during the first year after liver resection. Of the 53 patients, 25 who did not recur within 1 year were defined as being in the no-recurrence (NREC) group and the remaining 18 patients were defined as being in the early-recurrence (EREC) group. There were no significant differences in gene expression profiling for drug resistance and metabolism between the NREC group and the EREC group.
RESULTS: In synchronous liver metastasis, there was no significant difference in early recurrence between serum carcinoembryonic antigen (CEA) ≤5 ng/ml and serum CEA >5 ng/ml (8/24 vs. 16/24, respectively). In metachronous liver metastasis, the early recurrence rate was significantly higher in patients with CEA >5 ng/ml compared to patients with CEA ≤5 ng/ml (15/29 vs. 14/29, p=0.05). The expression of cytochrome P450 2C19 (CYP2C19) and ATP-binding cassette, sub-family B member 1 (ABCB1) were significantly lower in the EREC group (6/15) compared to the NREC group (9/15) in colorectal cancer with metachronous liver metastasis and with serum CEA >5 ng/ml.
CONCLUSION: Although the exact reason for down-regulation of these genes in the group with poor prognosis is unknown, the information obtained in this study may be useful in clinical practice for colorectal cancer.

Simonsson M, Veerla S, Markkula A, et al.
CYP1A2--a novel genetic marker for early aromatase inhibitor response in the treatment of breast cancer patients.
BMC Cancer. 2016; 16:256 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Endocrine resistance is a major obstacle to optimal treatment effect in breast cancer. Some genetic markers have been proposed to predict response to aromatase inhibitors (AIs) but the data is insufficient. The aim of the study was to find new genetic treatment predictive markers of AIs.
METHODS: The ongoing population-based BC-blood study in Lund, Sweden includes women with primary breast cancer. This paper is based on AI-treated patients with estrogen receptor positive tumors who underwent breast cancer surgery in 2002-2008. First, an exploratory analysis of 1931 SNPs in 227 genes involved in absorption, distribution, metabolism, and elimination of multiple medications, using DMET™ chips, was conducted in a subset of the cohort with last follow-up in December 31st 2011 (13 cases, 11 controls). Second, selected SNPs from the first analysis were re-analyzed concerning risk for early breast cancer events in the extended cohort of 201 AI-treated with last follow-up in June 30th 2014. Clinical data were obtained from medical records and population registries.
RESULTS: Only CYP1A2 rs762551 C-allele was significantly associated with increased risk for early events in the 24 patients (P = 0.0007) and in the extended cohort, adjusted Hazard ratio (HR) 2.22 (95% CI 1.03-4.80). However, the main prognostic impact was found within five years, adjusted HR 7.88 (95% CI 2.13-29.19). The impact of the CYP1A2 rs762551 C-allele was modified by a functional polymorphism in the regulator gene AhR Arg554Lys (G > A). Compared to patients who were homozygous for the major allele in both genes (CYP1A2 A/A and AhR G/G), a 9-fold risk for early events was found in patients who had at least one minor allele in both genes, adjusted HR 8.95 (95% CI 2.55-31.35), whereas patients with at least one minor allele in either but not both genes had a 3-fold risk for early events, adjusted HR 2.81 (95% CI 1.07-7.33). The impact of CYP1A2 rs762551 C-allele was also modified by the CYP19A1 rs4646 C/C, adjusted HR 3.39 (95% CI 1.60-7.16) for this combination. This association was strongest within the first five years, adjusted HR 10.42 (95% CI 3.45-31.51).
CONCLUSION: CYP1A2 rs762551 was identified as a new potential predictive marker for early breast cancer events in AI-treated breast cancer patients. Moreover, combined genotypes of CYP1A2 rs762551 and CYP19A1 rs4646 or AhR Arg554Lys could further improve prediction of early AI-treatment response. If confirmed, these results may provide a way to more personalized medicine.

Ren L, Thompson JD, Cheung M, et al.
Selective suppression of the human aryl hydrocarbon receptor function can be mediated through binding interference at the C-terminal half of the receptor.
Biochem Pharmacol. 2016; 107:91-100 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
The human aryl hydrocarbon receptor is a cytosolic signaling molecule which affects immune response and aberrant cell growth. Canonical signaling of the receptor requires the recruitment of coactivators to the promoter region to remodel local chromatin structure. We predicted that interference of this recruitment would block the aryl hydrocarbon receptor function. To prove that, we employed phage display to identify nine peptides of twelve-amino-acid in length which target the C-terminal half of the human aryl hydrocarbon receptor, including the region where coactivators bind. Eight 12mer peptides, in the form of GFP fusion, suppressed the ligand-dependent transcription of six AHR target genes (cyp1a1, cyp1a2, cyp1b1, ugt1a1, nqo1, and ahrr) in different patterns in Hep3B cells, whereas the AHR antagonist CH-223191 suppressed all these target genes similarly. Three of the 12mer peptides (namely 11-3, 1-7, and 7-3) suppressed the 3MC-induced, CYP1A1-dependent EROD activity and the ROS production caused by benzo[a]pyrene. These 12mer peptides suppressed the AHR function synergistically with CH-223191. In conclusion, we provide evidence that targeting the C-terminal half of the human aryl hydrocarbon receptor is a viable, new approach to selectively block the receptor function.

Johnson N, De Ieso P, Migliorini G, et al.
Cytochrome P450 Allele CYP3A7*1C Associates with Adverse Outcomes in Chronic Lymphocytic Leukemia, Breast, and Lung Cancer.
Cancer Res. 2016; 76(6):1485-93 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
CYP3A enzymes metabolize endogenous hormones and chemotherapeutic agents used to treat cancer, thereby potentially affecting drug effectiveness. Here, we refined the genetic basis underlying the functional effects of a CYP3A haplotype on urinary estrone glucuronide (E1G) levels and tested for an association between CYP3A genotype and outcome in patients with chronic lymphocytic leukemia (CLL), breast, or lung cancers. The most significantly associated SNP was rs45446698, an SNP that tags the CYP3A7*1C allele; this SNP was associated with a 54% decrease in urinary E1G levels. Genotyping this SNP in 1,008 breast cancer, 1,128 lung cancer, and 347 CLL patients, we found that rs45446698 was associated with breast cancer mortality (HR, 1.74; P = 0.03), all-cause mortality in lung cancer patients (HR, 1.43; P = 0.009), and CLL progression (HR, 1.62; P = 0.03). We also found borderline evidence of a statistical interaction between the CYP3A7*1C allele, treatment of patients with a cytotoxic agent that is a CYP3A substrate, and clinical outcome (Pinteraction = 0.06). The CYP3A7*1C allele, which results in adult expression of the fetal CYP3A7 gene, is likely to be the functional allele influencing levels of circulating endogenous sex hormones and outcome in these various malignancies. Further studies confirming these associations and determining the mechanism by which CYP3A7*1C influences outcome are required. One possibility is that standard chemotherapy regimens that include CYP3A substrates may not be optimal for the approximately 8% of cancer patients who are CYP3A7*1C carriers.

Vukovic V, Ianuale C, Leoncini E, et al.
Lack of association between polymorphisms in the CYP1A2 gene and risk of cancer: evidence from meta-analyses.
BMC Cancer. 2016; 16:83 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Polymorphisms in the CYP1A2 genes have the potential to affect the individual capacity to convert pre-carcinogens into carcinogens. With these comprehensive meta-analyses, we aimed to provide a quantitative assessment of the association between the published genetic association studies on CYP1A2 single nucleotide polymorphisms (SNPs) and the risk of cancer.
METHODS: We searched MEDLINE, ISI Web of Science and SCOPUS bibliographic online databases and databases of genome-wide association studies (GWAS). After data extraction, we calculated Odds Ratios (ORs) and 95% confidence intervals (CIs) for the association between the retrieved CYP1A2 SNPs and cancer. Random effect model was used to calculate the pooled ORs. Begg and Egger tests, one-way sensitivity analysis were performed, when appropriate. We conducted stratified analyses by study design, sample size, ethnicity and tumour site.
RESULTS: Seventy case-control studies and one GWA study detailing on six different SNPs were included. Among the 71 included studies, 42 were population-based case-control studies, 28 hospital-based case-control studies and one genome-wide association study, including total of 47,413 cancer cases and 58,546 controls. The meta-analysis of 62 studies on rs762551, reported an OR of 1.03 (95% CI, 0.96-1.12) for overall cancer (P for heterogeneity < 0.01; I(2) = 50.4%). When stratifying for tumour site, an OR of 0.84 (95% CI, 0.70-1.01; P for heterogeneity = 0.23, I(2) = 28.5%) was reported for bladder cancer for those homozygous mutant of rs762551. An OR of 0.79 (95% CI, 0.65-0.95; P for heterogeneity = 0.09, I(2) = 58.1%) was obtained for the bladder cancer from the hospital-based studies and on Caucasians.
CONCLUSIONS: This large meta-analysis suggests no significant effect of the investigated CYP1A2 SNPs on cancer overall risk under various genetic models. However, when stratifying according to the tumour site, our results showed a borderline not significant OR of 0.84 (95% CI, 0.70-1.01) for bladder cancer for those homozygous mutant of rs762551. Due to the limitations of our meta-analyses, the results should be interpreted with attention and need to be further confirmed by high-quality studies, for all the potential CYP1A2 SNPs.

Noll EM, Eisen C, Stenzinger A, et al.
CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma.
Nat Med. 2016; 22(3):278-87 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Although subtypes of pancreatic ductal adenocarcinoma (PDAC) have been described, this malignancy is clinically still treated as a single disease. Here we present patient-derived models representing the full spectrum of previously identified quasi-mesenchymal (QM-PDA), classical and exocrine-like PDAC subtypes, and identify two markers--HNF1A and KRT81--that enable stratification of tumors into different subtypes by using immunohistochemistry. Individuals with tumors of these subtypes showed substantial differences in overall survival, and their tumors differed in drug sensitivity, with the exocrine-like subtype being resistant to tyrosine kinase inhibitors and paclitaxel. Cytochrome P450 3A5 (CYP3A5) metabolizes these compounds in tumors of the exocrine-like subtype, and pharmacological or short hairpin RNA (shRNA)-mediated CYP3A5 inhibition sensitizes tumor cells to these drugs. Whereas hepatocyte nuclear factor 4, alpha (HNF4A) controls basal expression of CYP3A5, drug-induced CYP3A5 upregulation is mediated by the nuclear receptor NR1I2. CYP3A5 also contributes to acquired drug resistance in QM-PDA and classical PDAC, and it is highly expressed in several additional malignancies. These findings designate CYP3A5 as a predictor of therapy response and as a tumor cell-autonomous detoxification mechanism that must be overcome to prevent drug resistance.

Schmidt M, Scholz CJ, Polednik C, Roller J
Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer.
Oncol Rep. 2016; 35(4):2431-40 [PubMed] Related Publications
In the present study a panel of 12 head and neck cancer (HNSCC) cell lines were tested for spheroid formation. Since the size and morphology of spheroids is dependent on both cell adhesion and proliferation in the 3-dimensional (3D) context, morphology of HNSCC spheroids was related to expression of E-cadherin and the proliferation marker Ki67. In HNSCC cell lines the formation of tight regular spheroids was dependent on distinct E-cadherin expression levels in monolayer cultures, usually resulting in upregulation following aggregation into 3D structures. Cell lines expressing only low levels of E-cadherin in monolayers produced only loose cell clusters, frequently decreasing E-cadherin expression further upon aggregation. In these cell lines no epidermal growth factor receptor (EGFR) upregulation occurred and proliferation generally decreased in spheroids/aggregates independent of E-cadherin expression. In a second approach a global gene expression analysis of the larynx carcinoma cell line HLaC78 monolayer and the corresponding spheroids was performed. A global upregulation of gene expression in HLaC78 spheroids was related to genes involved in cell adhesion, cell junctions and cytochrome P450-mediated metabolism of xenobiotics. Downregulation was associated with genes controlling cell cycle, DNA-replication and DNA mismatch repair. Analyzing the expression of selected genes of each functional group in monolayer and spheroid cultures of all 12 cell lines revealed evidence for common gene expression shifts in genes controlling cell junctions, cell adhesion, cell cycle and DNA replication as well as genes involved in the cytochrome P450-mediated metabolism of xenobiotics.

Choquet H, Trapani E, Goitre L, et al.
Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1.
Free Radic Biol Med. 2016; 92:100-9 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease.
METHODS: Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually.
RESULTS: The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity.
CONCLUSIONS: Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment.

Pellé L, Cipollini M, Tremmel R, et al.
Association between CYP2E1 polymorphisms and risk of differentiated thyroid carcinoma.
Arch Toxicol. 2016; 90(12):3099-3109 [PubMed] Related Publications
Differentiated thyroid carcinoma (DTC) results from complex interactions between genetic and environmental factors. Known etiological factors include exposure to ionizing radiations, previous thyroid diseases, and hormone factors. It has been speculated that dietary acrylamide (AA) formed in diverse foods following the Maillard's reaction could be a contributing factor for DTC in humans. Upon absorption, AA is biotransformed mainly by cytochrome P450 2E1 (CYP2E1) to glycidamide (GA). Considering that polymorphisms within CYP2E1 were found associated with endogenous levels of AA-Valine and GA-Valine hemoglobin adducts in humans, we raised the hypothesis that specific CYP2E1 genotypes could be associated with the risk of DTC. Analysis of four haplotype tagging SNPs (ht-SNPs) within the locus in a discovery case-control study (N = 350/350) indicated an association between rs2480258 and DTC risk. This ht-SNP resides within a linkage disequilibrium block spanning intron VIII and the 3'-untranslated region. Extended analysis in a large replication set (2429 controls and 767 cases) confirmed the association, with odds ratios for GA and AA genotypes of 1.24 (95 % confidence interval (CI) 1.03-1.48) and 1.56 (95 % CI, 1.06-2.30), respectively. Functionally, the minor allele was associated with low levels of CYP2E1 mRNA and protein expression as well as lower enzymatic activity in a series of 149 human liver samples. Our data support the hypothesis that inter-individual differences in CYP2E1 activity could modulate the risk of developing DTC suggesting that the exposure to specific xenobiotics, such as AA, could play a role in this process.

Ohashi K, Hayashi T, Sakamoto M, et al.
Aldosterone-producing adrenocortical carcinoma with prominent hepatic metastasis diagnosed by liver biopsy: a case report.
BMC Endocr Disord. 2016; 16:3 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Aldosterone-producing adrenocortical carcinoma is a rare malignancy, which is usually diagnosed by histopathological examination of the excised tumor. In inoperable cases, aldosterone-producing ACC diagnosed by immunohistochemical staining of the metastatic tumor for Cytochrome P450 (CYP) 11β has not previously been reported and even in that case staining for adrenocortical-specific adrenal 4 binding protein/steroidogenic factor1 (Ad4BP/SF1) and steroidogenic enzymes has not been reported.
CASE PRESENTATION: We report the case of a 67-year-old Japanese woman with aldosterone-producing adrenocortical carcinoma. Laboratory findings showed severe hypopotassemia. Endocrinological examination revealed an increased plasma aldosterone concentration and suppressed plasma renin activity. Plasma dehydroepiandrosterone sulfate (DHEA-S) was elevated. Diurnal variation in serum cortisol was lost and administration of 1 mg and 8 mg dexamethasone did not suppress serum cortisol levels. From the 24-h urine collection sample, urine aldosterone and urine cortisol levels were greatly increased. Therefore, autonomous excess production was observed for the three adrenal cortex hormones. Abdominal computed tomography and magnetic resonance imaging showed a right adrenal tumor and a huge liver tumor. Adrenocortical carcinoma with metastatic liver cancer was strongly suggested, however surgery could not be considered due to stage IV disease: the liver tumor was too large and cardiac ultrasonography indicated that her cardiac function was poor. Therefore, a liver biopsy was taken to properly determine the diagnosis. Immunohistochemical stains for Ad4BP/SF1 and steroidogenic enzymes were positive. Ad4BP/SF-1 was originally identified as a steroidogenic, tissue-specific transcription factor implicated in the expression of the steroidogenic CYP gene encoding cytochrome P450s. Hence we could diagnose the patient as having adrenocortical carcinoma with metastatic liver cancer.
CONCLUSION: This rare case had severe hypopotassemia accompanied with not only increased cortisol and DHEA-S but also aldosterone. We reached the diagnosis of adrenocortical carcinoma with metastatic liver cancer based on positive immunohistochemical staining of Ad4BP/SF1 in the liver biopsy specimen. We have reported the first case of aldosterone-producing adrenocortical carcinoma diagnosed solely by immunohistochemical staining for adrenocortical-specific Ad4BP/SF1 and steroidogenic enzymes in a metastatic liver tumor.

He X, Feng S
Role of Metabolic Enzymes P450 (CYP) on Activating Procarcinogen and their Polymorphisms on the Risk of Cancers.
Curr Drug Metab. 2015; 16(10):850-63 [PubMed] Related Publications
Cytochrome P450 (CYP450) enzymes are the most important metabolizing enzyme family exists among all organs. Apart from their role in the deactivation of most endogenous compounds and xenobiotics, they also mediate most procarcinogens oxidation to ultimate carcinogens. There are several modes of CYP450s activation of procarcinogens. 1) Formation of epoxide and diol-epoxides intermediates, such as CYP1A1 and CYP1B1 mediates PAHs oxidation to epoxide intermediates; 2) Formation of diazonium ions, such as CYP2A6, CYP2A13 and CYP2E1 mediates activation of most nitrosamines to unstable metabolites, which can rearrange to give diazonium ions. 3) Formation of reactive semiquinones and quinines, such as CYP1A1 and CYP1B1 transformation of estradiol to catechol estrogens, subsequently formation semiquinones; 4) Formation of toxic O-esterification, such as CYP1A1 and CYP1A2 metabolizes PhIP to N(2)-acetoxy-PhIP and N(2)-sulfonyloxy-PhIP, which are carcinogenic metabolites. 5) Formation of free radical, such as CYP2E1 is involved in activation tetrachloromethane to free radicals. While for CYP2B6 and CYP2D6, only a minor role has been found in procarcinogens activation. In addition, as the gene polymorphisms reflected, the polymorphisms of CYP1A1 (-3801T/C and -4889A/G), CYP1A2 (- 163C/A and -2467T/delT), CYP1B1 (-48G/C, -119G/T and -432G/C), CYP2E1 (-1293G/C and -1053 C/T) have been associated with an increased risk of lung cancer. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), and CYP2E1 (PstI/Rsa and 9-bp insertion) have an association with higher risk colon cancers, whereas CYP1A2 (-163C/A and -3860G/A) polymorphism is found to be among the protective factors. The polymorphisms CYP1A1 (-3801T/C and -4889A/G), CYP1B1 -432G/C, CYP2B6 (-516G/T and -785A/G) may increase the risk of breast cancer. In conclusion, CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2E1 are responsible for most of the procarcinogens activation, and their gene polymorphisms are associated with the risk of cancers.

Mitsui Y, Chang I, Fukuhara S, et al.
CYP1B1 promotes tumorigenesis via altered expression of CDC20 and DAPK1 genes in renal cell carcinoma.
BMC Cancer. 2015; 15:942 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
BACKGROUND: Cytochrome P450 1B1 (CYP1B1) has been shown to be up-regulated in many types of cancer including renal cell carcinoma (RCC). Several reports have shown that CYP1B1 can influence the regulation of tumor development; however, its role in RCC has not been well investigated. The aim of the present study was to determine the functional effects of CYP1B1 gene on tumorigenesis in RCC.
METHODS: Expression of CYP1B1 was determined in RCC cell lines, and tissue microarrays of 96 RCC and 25 normal tissues. To determine the biological significance of CYP1B1 in RCC progression, we silenced the gene in Caki-1 and 769-P cells by RNA interference and performed various functional analyses.
RESULTS: First, we confirmed that CYP1B1 protein expression was significantly higher in RCC cell lines compared to normal kidney tissue. This trend was also observed in RCC samples (p < 0.01). Interestingly, CYP1B1 expression was associated with tumor grade and stage. Next, we silenced the gene in Caki-1 and 769-P cells by RNA interference and performed various functional analyses to determine the biological significance of CYP1B1 in RCC progression. Inhibition of CYP1B1 expression resulted in decreased cell proliferation, migration and invasion of RCC cells. In addition, reduction of CYP1B1 induced cellular apoptosis in Caki-1. We also found that these anti-tumor effects on RCC cells caused by CYP1B1 depletion may be due to alteration of CDC20 and DAPK1 expression based on gene microarray and confirmed by real-time PCR. Interestingly, CYP1B1 expression was associated with CDC20 and DAPK1 expression in clinical samples.
CONCLUSIONS: CYP1B1 may promote RCC development by inducing CDC20 expression and inhibiting apoptosis through the down-regulation of DAPK1. Our results demonstrate that CYP1B1 can be a potential tumor biomarker and a target for anticancer therapy in RCC.

Wang SM, Sun ZQ, Li HY, et al.
Temporal Identification of Dysregulated Genes and Pathways in Clear Cell Renal Cell Carcinoma Based on Systematic Tracking of Disrupted Modules.
Comput Math Methods Med. 2015; 2015:313740 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
OBJECTIVE: The objective of this work is to identify dysregulated genes and pathways of ccRCC temporally according to systematic tracking of the dysregulated modules of reweighted Protein-Protein Interaction (PPI) networks.
METHODS: Firstly, normal and ccRCC PPI network were inferred and reweighted based on Pearson correlation coefficient (PCC). Then, we identified altered modules using maximum weight bipartite matching and ranked them in nonincreasing order. Finally, gene compositions of altered modules were analyzed, and pathways enrichment analyses of genes in altered modules were carried out based on Expression Analysis Systematic Explored (EASE) test.
RESULTS: We obtained 136, 576, 693, and 531 disrupted modules of ccRCC stages I, II, III, and IV, respectively. Gene composition analyses of altered modules revealed that there were 56 common genes (such as MAPK1, CCNA2, and GSTM3) existing in the four stages. Besides pathway enrichment analysis identified 5 common pathways (glutathione metabolism, cell cycle, alanine, aspartate, and glutamate metabolism, arginine and proline metabolism, and metabolism of xenobiotics by cytochrome P450) across stages I, II, III, and IV.
CONCLUSIONS: We successfully identified dysregulated genes and pathways of ccRCC in different stages, and these might be potential biological markers and processes for treatment and etiology mechanism in ccRCC.

Yan T, Lu L, Xie C, et al.
Severely Impaired and Dysregulated Cytochrome P450 Expression and Activities in Hepatocellular Carcinoma: Implications for Personalized Treatment in Patients.
Mol Cancer Ther. 2015; 14(12):2874-86 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
This study aims to systematically determine the activities and expressions of cytochrome P450s (CYP) in hepatocellular carcinoma (HCC) patients to support their optimal use in personalized treatment of HCC. Activities of seven major drug-metabolizing CYP enzymes (CYP1A2, 2A6, 2C8, 2C9, 2D6, 2E1, and 3A4) were determined in tumors and pericarcinomatous tissues harvested from 26 patients with hepatitis B virus-positive HCC using probe substrates. Protein and mRNA levels of these CYPs were also measured using isotope label-free LC/MS-MS method and real-time PCR, respectively. Maximal metabolic velocity (Vmax) of CYP probe substrates was decreased by 2.5- to 30-fold in tumor microsomes, accompanied by a corresponding decrease in their protein and mRNA expression levels. However, Km values and turnover numbers of substrates in tumor microsomes were not changed. High correlations between activities and CYP protein levels were also observed, but the correlation between activities and mRNA levels was often poor. There was a major decrease in the degree of correlation in CYP expression in tumor tissues, suggesting that CYP expression levels are greatly disrupted by the tumorigenic process. Our unprecedented systemic study of the effects of HCC on CYPs demonstrated that activities of CYPs were seriously impaired and their expression patterns were severely altered by HCC. We proposed that determination of the CYP protein expression profile by LC/MS-MS in each patient is a promising approach that can be clinically used for individualized treatment of HCC.

Ronnekleiv-Kelly SM, Nukaya M, Díaz-Díaz CJ, et al.
Aryl hydrocarbon receptor-dependent apoptotic cell death induced by the flavonoid chrysin in human colorectal cancer cells.
Cancer Lett. 2016; 370(1):91-9 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
The polyphenolic flavone chrysin has been evaluated as a natural chemopreventive agent due to its anti-cancer effects in a variety of cancer cell lines. However, the mechanism of the chemopreventive effect has been not well established, especially in human colorectal cancer cells. We evaluated the chemopreventive effect of chrysin in three different human colorectal cancer cell lines. We found that chrysin treatment consequently reduced cell viability via induction of apoptosis. We identified that the involvement of up-regulation of pro-apoptotic cytokines tumor necrosis factor (Tnf) α and β genes and consequent activation of the TNF-mediated transcriptional pathway in chrysin-induced apoptosis. Using our generated AHR siRNA expressing colorectal cancer cells, we demonstrated that the chrysin-induced up-regulation of Tnfα and β gene expression was dependent on the aryl hydrocarbon receptor (AHR), which is a ligand-receptor for chrysin. Subsequently, we found that the AHR siRNA expressing colorectal cancer cells were resistant to chrysin-induced apoptosis. Therefore, we concluded that AHR is required for the chrysin-induced apoptosis and the up-regulation of Tnfα and β gene expression in human colorectal cancer cells.

Chin FW, Chan SC, Abdul Rahman S, et al.
CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.
Breast J. 2016 Jan-Feb; 22(1):54-62 [PubMed] Related Publications
The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the clinical outcome of the patients.

Clendenen TV, Ge W, Koenig KL, et al.
Genetic Polymorphisms in Vitamin D Metabolism and Signaling Genes and Risk of Breast Cancer: A Nested Case-Control Study.
PLoS One. 2015; 10(10):e0140478 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Genetic polymorphisms in vitamin D metabolism and signaling genes have been inconsistently associated with risk of breast cancer, though few studies have examined SNPs in vitamin D-related genes other than the vitamin D receptor (VDR) gene and particularly have not examined the association with the retinoid X receptor alpha (RXRA) gene which may be a key vitamin D pathway gene. We conducted a nested case-control study of 734 cases and 1435 individually matched controls from a population-based prospective cohort study, the Northern Sweden Mammary Screening Cohort. Tag and functional SNPs were genotyped for the VDR, cytochrome p450 24A1 (CYP24A1), and RXRA genes. We also genotyped specific SNPs in four other genes related to vitamin D metabolism and signaling (GC/VDBP, CYP2R1, DHCR7, and CYP27B1). SNPs in the CYP2R1, DHCR7, and VDBP gene regions that were associated with circulating 25(OH)D concentration in GWAS were also associated with plasma 25(OH)D in our study (p-trend <0.005). After taking into account the false discovery rate, these SNPs were not significantly associated with breast cancer risk, nor were any of the other SNPs or haplotypes in VDR, RXRA, and CYP24A1. We observed no statistically significant associations between polymorphisms or haplotypes in key vitamin D-related genes and risk of breast cancer. These results, combined with the observation in this cohort and most other prospective studies of no association of circulating 25(OH)D with breast cancer risk, do not support an association between vitamin D and breast cancer risk.

Awan FM, Naz A, Obaid A, et al.
Identification of Circulating Biomarker Candidates for Hepatocellular Carcinoma (HCC): An Integrated Prioritization Approach.
PLoS One. 2015; 10(9):e0138913 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Hepatocellular carcinoma (HCC) is the world's third most widespread cancer. Currently available circulating biomarkers for this silently progressing malignancy are not sufficiently specific and sensitive to meet all clinical needs. There is an imminent and pressing need for the identification of novel circulating biomarkers to increase disease-free survival rate. In order to facilitate the selection of the most promising circulating protein biomarkers, we attempted to define an objective method likely to have a significant impact on the analysis of vast data generated from cutting-edge technologies. Current study exploits data available in seven publicly accessible gene and protein databases, unveiling 731 liver-specific proteins through initial enrichment analysis. Verification of expression profiles followed by integration of proteomic datasets, enriched for the cancer secretome, filtered out 20 proteins including 6 previously characterized circulating HCC biomarkers. Finally, interactome analysis of these proteins with midkine (MDK), dickkopf-1 (DKK-1), current standard HCC biomarker alpha-fetoprotein (AFP), its interacting partners in conjunction with HCC-specific circulating and liver deregulated miRNAs target filtration highlighted seven novel statistically significant putative biomarkers including complement component 8, alpha (C8A), mannose binding lectin (MBL2), antithrombin III (SERPINC1), 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1), alcohol dehydrogenase 6 (ADH6), beta-ureidopropionase (UPB1) and cytochrome P450, family 2, subfamily A, polypeptide 6 (CYP2A6). Our proposed methodology provides a swift assortment process for biomarker prioritization that eventually reduces the economic burden of experimental evaluation. Further dedicated validation studies of potential putative biomarkers on HCC patient blood samples are warranted. We hope that the use of such integrative secretome, interactome and miRNAs target filtration approach will accelerate the selection of high-priority biomarkers for other diseases as well, that are more amenable to downstream clinical validation experiments.

Rudolph A, Fasching PA, Behrens S, et al.
A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density.
Breast Cancer Res. 2015; 17:110 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
INTRODUCTION: Mammographic density is an established breast cancer risk factor with a strong genetic component and can be increased in women using menopausal hormone therapy (MHT). Here, we aimed to identify genetic variants that may modify the association between MHT use and mammographic density.
METHODS: The study comprised 6,298 postmenopausal women from the Mayo Mammography Health Study and nine studies included in the Breast Cancer Association Consortium. We selected for evaluation 1327 single nucleotide polymorphisms (SNPs) showing the lowest P-values for interaction (P int) in a meta-analysis of genome-wide gene-environment interaction studies with MHT use on risk of breast cancer, 2541 SNPs in candidate genes (AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF) and ten SNPs (AREG-rs10034692, PRDM6-rs186749, ESR1-rs12665607, ZNF365-rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556, 12q24-rs1265507, TMEM184B-rs7289126, and SGSM3-rs17001868) associated with mammographic density in genome-wide studies. We used multiple linear regression models adjusted for potential confounders to evaluate interactions between SNPs and current use of MHT on mammographic density.
RESULTS: No significant interactions were identified after adjustment for multiple testing. The strongest SNP-MHT interaction (unadjusted P int <0.0004) was observed with rs9358531 6.5kb 5' of PRL. Furthermore, three SNPs in PLCG2 that had previously been shown to modify the association of MHT use with breast cancer risk were found to modify also the association of MHT use with mammographic density (unadjusted P int <0.002), but solely among cases (unadjusted P int SNP×MHT×case-status <0.02).
CONCLUSIONS: The study identified potential interactions on mammographic density between current use of MHT and SNPs near PRL and in PLCG2, which require confirmation. Given the moderate size of the interactions observed, larger studies are needed to identify genetic modifiers of the association of MHT use with mammographic density.

Xu YC, Zhang FC, Li JJ, et al.
RRM1, TUBB3, TOP2A, CYP19A1, CYP2D6: Difference between mRNA and protein expression in predicting prognosis of breast cancer patients.
Oncol Rep. 2015; 34(4):1883-94 [PubMed] Related Publications
The study investigated the clinical significance of RRM1 (ribonucleoside reductase subunit M1), TUBB3 (tubulin-β-III), TOP2A (DNA topoisomerase II), CYP19A1 (cytochrome P450, family 19, subfamily A, polypeptide 1) and CYP2D6 (cytochrome P450, family 2, subfamily D, polypeptide 6) for the diagnosis and possible predictive roles in breast cancer. Tissue microarray detected the expression of RRM1, tubulin-β-III, Topo IIα, CYP19A1 and CYP2D6 protein in breast cancer tissue and tissue adjacent to tumors (TATs). In addition, a publically available tool, was used to assess the prognostic value of their gene expression in breast cancer (http://kmplot.com). Analysis for relapse-free survival (RFS), disease-free survival (DFS) and overall survival (OS) was performed. Cytoplasmic RRM1, tubulin-β-III, CYP19A1 and Topo IIα staining were significantly higher in breast cancer tissues compared with TATs (P<0.050). Significant correlation occurred between RRM1 expression with pathological classification (P=0.018), lymph node involvement (P=0.035) and ER status (P=0.003). Tubulin-β-III and CYP2D6 expression correlated significantly with tumor grade (P=0.021 for tubulin-β-III and P=0.029 for CYP2D6, respectively). Cox analysis showed that the protein expression of CYP2D6, CYP19A1, RRM1, Topo IIα or tubulin-β-III was not an independent prognostic factor. A significant association occurred between RFS and TUBB3, TOP2A, CYP19A1, and CYP2D6 mRNA expression. With CYP19A1 (P<0.001) and CYP2D6 (P<0.001), a high expression was associated with good clinical outcome. Conversely, a low expression of TUBB3 (P<0.001) and TOP2A (P<0.001) was associated with good clinical outcome. TUBB3 (P=0.0004) and TOP2A (P<0.001) were significant prognostic factors in predicting the patient OS. The expression of RRM1, tubulin-β-III, Topo IIα and CYP19A1 in tumor tissues was significantly higher than that in TATs. TUBB3, TOP2A, CYP19A1 and CYP2D6 gene expression, but not protein expression, was associated with patient survival.

Ribeiro MP, Santos AE, Custódio JB
Rethinking tamoxifen in the management of melanoma: New answers for an old question.
Eur J Pharmacol. 2015; 764:372-8 [PubMed] Related Publications
The use of the antiestrogen tamoxifen in melanoma therapy is controversial due to the unsuccessful outcomes and a still rather unclarified mechanism of action. It seemed that the days of tamoxifen in malignant melanoma therapy were close to an end, but new evidence may challenge this fate. On one hand, it is now believed that metabolism is a major determinant of tamoxifen clinical outcomes in breast cancer patients, which is a variable that has yet to be tested in melanoma patients, since the tamoxifen active metabolite endoxifen demonstrated superior cytostatic activity over the parent drug in melanoma cells; on the other hand, new evidence has emerged regarding estrogen-mediated signaling in melanoma cells, including the methylation of the estrogen receptor-α gene promoter and the expression of the G protein coupled estrogen receptor. The expression of estrogen receptor-α and G protein coupled estrogen receptor, as well as the cytochrome P450 (CYP) 2D6 genotype, may be used as predictive biomarkers to select the patients that may respond to antiestrogens based on specific traits of their tumors. This review focused on these new evidences and how they may contribute to shed new light on this long-lasting controversy, as well as their possible implications for future investigations.

Hosono H, Kumondai M, Arai T, et al.
CYP2A6 genetic polymorphism is associated with decreased susceptibility to squamous cell lung cancer in Japanese smokers.
Drug Metab Pharmacokinet. 2015; 30(4):263-8 [PubMed] Related Publications
Cytochrome P450 2A6 (CYP2A6) is an enzyme involved in the metabolism of tobacco carcinogens, which are important risk factors in lung cancer. We and others have previously reported that CYP2A6*4, a whole-gene deletion polymorphism, is associated with lower risk of lung cancer than the wild-type allele. However, the genotyping method used in these previous studies considered only the CYP2A6*4 allele; this lead to insufficient classification of the CYP2A6 genotype, thereby underestimating the frequencies of the deficient alleles. In this study, CYP2A6 genotypes of Japanese smokers (110 individuals with squamous cell lung cancer (SQCC) and 132 sex-matched cancer-free controls) were determined using a sequencing-based approach to determine CYP2A6 haplotypes. The risk of SQCC was evaluated using the activity score (AS) system to predict CYP2A6 phenotype from its genotype. The risk of developing SQCC was significantly lower in the poor metabolizers assigned as AS 0.5 (adjusted odds ratio [OR] = 0.13, 95% CI = 0.04-0.45, P = 0.001) and AS 0 (adjusted OR = 0.15, 95% CI = 0.03-0.82, P = 0.028) than in the extensive metabolizers assigned as AS 2.0. In conclusion, CYP2A6 genetic polymorphisms may play important roles in the development of SQCC in Japanese smokers.

Wang Y, Zhang Z, Wang H, et al.
miR-138-1* regulates aflatoxin B1-induced malignant transformation of BEAS-2B cells by targeting PDK1.
Arch Toxicol. 2016; 90(5):1239-49 [PubMed] Related Publications
Environmental carcinogens-induced lung cancer and potential mechanisms have attracted widespread attention. Currently, microRNAs (miRNAs) have been recognized as key players in development of cancer, among which guide strand of miRNA has been well documented rather than its passenger strand (miRNA*). Our previous study showed that treatment of 0.1 nM AFB1 for 50 passages could induce malignant transformation of immortalized human bronchial epithelial cells stably expressing CYP2A13 (P50 B-2A13 cells). However, the role of miRNAs in this carcinogenic proceeding is still unclear. In present study, 36 upregulated and 27 downregulated miRNAs in P50 B-2A13 cells were first identified by miRNA microarray, and miR-138-1* was selected as a candidate miRNA by RT-qPCR and pilot experiments. Functional studies revealed that miR-138-1* could inhibit proliferation, colony formation, migration and invasion of P50 B-2A13 cells. Further, target analysis and dual-luciferase reporter gene assay identified that miR-138-1(*) was consequentially paired with 3'-UTR of 3-phosphoinositide-dependent protein kinase-1 (PDK1) and decreased the luciferase activity. miR-138-1* could decrease the expressions of PDK1 and its downstream proteins in PI3K/PDK/Akt pathway but not vice versa, indicating that miR-138-1* might affect AFB1-induced malignant transformation through targeting PDK1. As predicted, interference of PDK1 showed the similar effects to miR-138-1* in the proliferation, colony formation, migration and invasion of P50 B-2A13 cells. Our study demonstrated that miR-138-1* played a critical role in AFB-induced malignant transformation of B-2A13 cells by targeting PDK1. Still, the study provides a novel insight into the roles of miRNA* during carcinogenesis, particularly airborne carcinogens-induced lung cancer.

Korobkova EA
Effect of Natural Polyphenols on CYP Metabolism: Implications for Diseases.
Chem Res Toxicol. 2015; 28(7):1359-90 [PubMed] Related Publications
Cytochromes P450 (CYPs) are a large group of hemeproteins located on mitochondrial membranes or the endoplasmic reticulum. They play a crucial role in the metabolism of endogenous and exogenous molecules. The activity of CYP is associated with a number of factors including redox potential, protein conformation, the accessibility of the active site by substrates, and others. This activity may be potentially modulated by a variety of small molecules. Extensive experimental data collected over the past decade point at the active role of natural polyphenols in modulating the catalytic activity of CYP. Polyphenols are widespread micronutrients present in human diets of plant origin and in medicinal herbs. These compounds may alter the activity of CYP either via direct interactions with the enzymes or by affecting CYP gene expression. The polyphenol-CYP interactions may significantly alter the pharmacokinetics of drugs and thus influence the effectiveness of chemical therapies used in the treatment of different types of cancers, diabetes, obesity, and cardiovascular diseases (CVD). CYPs are involved in the oxidation and activation of external carcinogenic agents, in which case the inhibition of the CYP activity is beneficial for health. CYPs also support detoxification processes. In this case, it is the upregulation of CYP genes that would be favorable for the organism. A CYP enzyme aromatase catalyzes the formation of estrone and estradiol from their precursors. CYPs also catalyze multiple reactions leading to the oxidation of estrogen. Estrogen signaling and oxidative metabolism of estrogen are associated with the development of cancer. Thus, polyphenol-mediated modulation of the CYP's activity also plays a vital role in estrogen carcinogenesis. The aim of the present review is to summarize the data collected over the last five to six years on the following topics: (1) the mechanisms of the interactions of CYP with food constituents that occur via the direct binding of polyphenols to the enzymes and (2) the mechanisms of the regulation of CYP gene expression mediated by polyphenols. The structure-activity relationship relevant to the ability of polyphenols to affect the activity of CYP is analyzed. The application of polyphenol-CYP interactions to diseases is discussed.

Shi Y, Huang A
Effects of sorafenib on lung metastasis in rats with hepatocellular carcinoma: the role of microRNAs.
Tumour Biol. 2015; 36(11):8455-63 [PubMed] Related Publications
Many patients with advanced hepatocellular carcinoma (HCC) develop lung metastasis and available treatments are limited. The anticancer drug sorafenib has opened a window of hope for patients with advanced hepatocellular carcinoma. However, the effect of sorafenib is limited by drug resistance. MicroRNAs have been reported to play an important role in HCC, but the effect of sorafenib on microRNAs (miRNAs) and on lung metastasis is not clear. This report employed a high-throughput deep sequencing technique to detect the difference of miRNAs and immunohistochemical technique to detect the difference of protein in implanted primary tumors and in metastatic HCC tumors after treatment with sorafenib. Among the detected miRNAs, we identified rno-miR-122-3p and rmo-miR-122-5p that were downregulated and rno-miR-383-5p and rno-miR-34a-5p that were upregulated and one novel miRNAs is reported as downregulated here for the first time. Immunohistochemical analysis of known miRNAs identified CMYC protein expression as inhibited, MDM2 protein was expressed, and NM23 and GST protein were upregulated. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of novel miRNA found that the targeted genes were concentrated in pathways of metabolism, especially in cytochrome P450. These results indicate that these miRNAs are likely to be involved in the treatment response of lung metastases of HCC to sorafenib. They may be useful as biomarkers to predict the clinical treatment response of sorafenib.

Alonso S, Su M, Jones JW, et al.
Human bone marrow niche chemoprotection mediated by cytochrome P450 enzymes.
Oncotarget. 2015; 6(17):14905-12 [PubMed] Article available free on PMC after 01/05/2017 Related Publications
Substantial evidence now demonstrates that interactions between the tumor microenvironment and malignant cells are a critical component of clinical drug resistance. However, the mechanisms responsible for microenvironment-mediated chemoprotection remain unclear. We showed that bone marrow (BM) stromal cytochrome P450 (CYP)26 enzymes protect normal hematopoietic stem cells (HSCs) from the pro-differentiation effects of retinoic acid. Here, we investigated if stromal expression of CYPs is a general mechanism of chemoprotection. We found that similar to human hepatocytes, human BM-derived stromal cells expressed a variety of drug-metabolizing enzymes. CYP3A4, the liver's major drug-metabolizing enzyme, was at least partially responsible for BM stroma's ability to protect multiple myeloma (MM) and leukemia cells from bortezomib and etoposide, respectively, both in vitro and in vivo. Moreover, clarithromycin overcame stromal-mediated MM resistance to dexamethasone, suggesting that CYP3A4 inhibition plays a role in its ability to augment the activity of lenalidomide and dexamethasone as part of the BiRd regimen. We uncovered a novel mechanism of microenvironment-mediated drug resistance, whereby the BM niche creates a sanctuary site from drugs. Targeting these sanctuaries holds promise for eliminating minimal residual tumor and improving cancer outcomes.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CYP1A2, Cancer Genetics Web: http://www.cancer-genetics.org/CYP1A2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999