Gene Summary

Gene:FGF9; fibroblast growth factor 9
Aliases: GAF, FGF-9, SYNS3, HBFG-9, HBGF-9
Summary:The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities, and are involved in a variety of biological processes, including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This protein was isolated as a secreted factor that exhibits a growth-stimulating effect on cultured glial cells. In nervous system, this protein is produced mainly by neurons and may be important for glial cell development. Expression of the mouse homolog of this gene was found to be dependent on Sonic hedgehog (Shh) signaling. Mice lacking the homolog gene displayed a male-to-female sex reversal phenotype, which suggested a role in testicular embryogenesis. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:fibroblast growth factor 9
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (34)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FGF9 (cancer-related)

Yin H, Frontini MJ, Arpino JM, et al.
Fibroblast Growth Factor 9 Imparts Hierarchy and Vasoreactivity to the Microcirculation of Renal Tumors and Suppresses Metastases.
J Biol Chem. 2015; 290(36):22127-42 [PubMed] Free Access to Full Article Related Publications
Tumor vessel normalization has been proposed as a therapeutic paradigm. However, normal microvessels are hierarchical and vasoreactive with single file transit of red blood cells through capillaries. Such a network has not been identified in malignant tumors. We tested whether the chaotic tumor microcirculation could be reconfigured by the mesenchyme-selective growth factor, FGF9. Delivery of FGF9 to renal tumors in mice yielded microvessels that were covered by pericytes, smooth muscle cells, and a collagen-fortified basement membrane. This was associated with reduced pulmonary metastases. Intravital microvascular imaging revealed a haphazard web of channels in control tumors but a network of arterioles, bona fide capillaries, and venules in FGF9-expressing tumors. Moreover, whereas vasoreactivity was absent in control tumors, arterioles in FGF9-expressing tumors could constrict and dilate in response to adrenergic and nitric oxide releasing agents, respectively. These changes were accompanied by reduced hypoxia in the tumor core and reduced expression of the angiogenic factor VEGF-A. FGF9 was found to selectively amplify a population of PDGFRβ-positive stromal cells in the tumor and blocking PDGFRβ prevented microvascular differentiation by FGF9 and also worsened metastases. We conclude that harnessing local mesenchymal stromal cells with FGF9 can differentiate the tumor microvasculature to an extent not observed previously.

Zhang L, Yu H, Badzio A, et al.
Fibroblast Growth Factor Receptor 1 and Related Ligands in Small-Cell Lung Cancer.
J Thorac Oncol. 2015; 10(7):1083-90 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Small-cell lung cancer (SCLC) accounts for 15% of all lung cancers and has been understudied for novel therapies. Signaling through fibroblast growth factors (FGF2, FGF9) and their high-affinity receptor has recently emerged as a contributing factor in the pathogenesis and progression of non-small-cell lung cancer. In this study, we evaluated fibroblast growth factor receptor 1 (FGFR1) and ligand expression in primary SCLC samples.
METHODS: FGFR1 protein expression, messenger RNA (mRNA) levels, and gene copy number were determined by immunohistochemistry (IHC), mRNA in situ hybridization, and silver in situ hybridization, respectively, in primary tumors from 90 patients with SCLC. Protein and mRNA expression of the FGF2 and FGF9 ligands were determined by IHC and mRNA in situ hybridization, respectively. In addition, a second cohort of 24 SCLC biopsy samples with known FGFR1 amplification by fluorescence in situ hybridization was assessed for FGFR1 protein expression by IHC. Spearman correlation analysis was performed to evaluate associations of FGFR1, FGF2 and FGF9 protein levels, respective mRNA levels, and FGFR1 gene copy number.
RESULTS: FGFR1 protein expression by IHC demonstrated a significant correlation with FGFR1 mRNA levels (p < 0.0001) and FGFR1 gene copy number (p = 0.03). The prevalence of FGFR1 mRNA positivity was 19.7%. FGFR1 mRNA expression correlated with both FGF2 (p = 0.0001) and FGF9 (p = 0.002) mRNA levels, as well as with FGF2 (p = 0.01) and FGF9 (p = 0.001) protein levels. There was no significant association between FGFR1 and ligands with clinical characteristics or prognosis. In the second cohort of specimens with known FGFR1 amplification by fluorescence in situ hybridization, 23 of 24 had adequate tumor by IHC, and 73.9% (17 of 23) were positive for FGFR1 protein expression.
CONCLUSIONS: A subset of SCLCs is characterized by potentially activated FGF/FGFR1 pathways, as evidenced by positive FGF2, FGF9, and FGFR1 protein and/or mRNA expression. FGFR1 protein expression is correlated with FGFR1 mRNA levels and FGFR1 gene copy number. Combined analysis of FGFR1 and ligand expression may allow selection of patients with SCLC to FGFR1 inhibitor therapy.

Yin Y, Castro AM, Hoekstra M, et al.
Fibroblast Growth Factor 9 Regulation by MicroRNAs Controls Lung Development and Links DICER1 Loss to the Pathogenesis of Pleuropulmonary Blastoma.
PLoS Genet. 2015; 11(5):e1005242 [PubMed] Free Access to Full Article Related Publications
Pleuropulmonary Blastoma (PPB) is the primary neoplastic manifestation of a pediatric cancer predisposition syndrome that is associated with several diseases including cystic nephroma, Wilms tumor, neuroblastoma, rhabdomyosarcoma, medulloblastoma, and ovarian Sertoli-Leydig cell tumor. The primary pathology of PPB, epithelial cysts with stromal hyperplasia and risk for progression to a complex primitive sarcoma, is associated with familial heterozygosity and lesion-associated epithelial loss-of-heterozygosity of DICER1. It has been hypothesized that loss of heterozygosity of DICER1 in lung epithelium is a non-cell autonomous etiology of PPB and a critical pathway that regulates lung development; however, there are no known direct targets of epithelial microRNAs (miRNAs) in the lung. Fibroblast Growth Factor 9 (FGF9) is expressed in the mesothelium and epithelium during lung development and primarily functions to regulate lung mesenchyme; however, there are no known mechanisms that regulate FGF9 expression during lung development. Using mouse genetics and molecular phenotyping of human PPB tissue, we show that FGF9 is overexpressed in lung epithelium in the initial multicystic stage of Type I PPB and that in mice lacking epithelial Dicer1, or induced to overexpress epithelial Fgf9, increased Fgf9 expression results in pulmonary mesenchymal hyperplasia and a multicystic architecture that is histologically and molecularly indistinguishable from Type I PPB. We further show that miR-140 is expressed in lung epithelium, regulates epithelial Fgf9 expression, and regulates pseudoglandular stages of lung development. These studies identify an essential miRNA-FGF9 pathway for lung development and a non-cell autonomous signaling mechanism that contributes to the mesenchymal hyperplasia that is characteristic of Type I PPB.

Sun C, Fukui H, Hara K, et al.
FGF9 from cancer-associated fibroblasts is a possible mediator of invasion and anti-apoptosis of gastric cancer cells.
BMC Cancer. 2015; 15:333 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer-associated fibroblasts (CAFs), which reside around tumor cells, are suggested to play a pivotal role in tumor progression. Here we performed microarray analyses to compare gene expression profiles between CAFs and non-cancerous gastric fibroblasts (NGFs) from a patient with gastric cancer and found that fibroblast growth factor 9 (FGF9) was a novel growth factor overexpressed in CAFs. We then examined the biological effects of FGF9 during progression of gastric cancer.
METHODS: Expression of FGF9 in CAFs and NGFs, and their secreted products, were examined by Western blotting. The effects of FGF9 on AGS and MKN28 gastric cancer cells in terms of proliferation, invasion and anti-apoptosis were assessed by WST-1 assay, invasion chamber assay and FACS, respectively. Furthermore, the intracellular signaling by which FGF9 exerts its biological roles was examined in vitro.
RESULTS: FGF9 was strongly expressed in CAFs in comparison with NGFs, being compatible with microarray data indicating that FGF9 was a novel growth factor overexpressed in CAFs. Treatment with FGF9 promoted invasion and anti-apoptosis through activation of the ERK and Akt signaling pathways in AGS and MKN28 cells, whereas these effects were attenuated by treatment with anti-FGF9 neutralizing antibody. In addition, FGF9 treatment significantly enhanced the expression of matrix metalloproteinase 7 (MMP7) in both cell lines.
CONCLUSIONS: FGF9 is a possible mediator secreted by CAFs that promotes the anti-apoptosis and invasive capability of gastric cancer cells.

Chen H, Ren C, Han C, et al.
Expression and prognostic value of miR-486-5p in patients with gastric adenocarcinoma.
PLoS One. 2015; 10(3):e0119384 [PubMed] Free Access to Full Article Related Publications
MicroRNA (miR)-486-5p expression is often reduced in human cancers. However, its expression in gastric carcinoma and its relation to clinicopathological features and prognosis are unclear. Tissue microarrays were constructed from 84 patients with gastric adenocarcinoma (GC) who were undergoing radical resection. miR-486-5p expression was detected by miRNA-locked nucleic acid in situ hybridization, and its correlations with clinicopathological features and overall survival were analyzed. Bioinformatic studies predict that fibroblast growth factor 9 (FGF9) is a potential target gene of miR-486-5p. miR-486-5p was mainly located in the cytoplasm of GC cells and neighboring normal tissues. Compared with paracancerous normal tissue, miR-486-5p expression was decreased in 63.1% (53/84) of the GC samples, increased in 32.1% (27/84) and unchanged in 4.8% (4/84). FGF9 expression was decreased in 69.0% (58/84) of GC samples and increased in 31.0% (26/84) compared with normal paracancerous tissues using immunohistochemical analysis. Low or unchanged miR-486-5p expression (P = 0.002), tumor stage (P = 0.001), tumor status (P = 0.001), node status (P = 0.001), tumor size (P = 0.004), and depth of tumor invasion (P = 0.013) were significant negative prognostic predictors for overall survival in patients with GC. After stratification according to American Joint Committee on Cancer (AJCC) stage, low/unchanged miR-486-5p expression remained a significant predictor of poor survival in stage II (P = 0.024) and stage III (P = 0.003). Cox regression analysis identified the following predictors of poor prognosis: tumor status (hazard ratio [HR], 7.19; 95% confidence interval [CI], 1.75-29.6; P = 0.006), stage (HR, 2.62; 95%CI, 1.50-4.59; P = 0.001), lymph node metastasis (HR, 2.52; 95% CI, 1.27-4.99; P = 0.008), low/unchanged miR-486-5p (HR, 2.47; 95% CI, 1.35-4.52; P = 0.003), high level of FGF9 (HR, 2.41; 95% CI, 1.42-4.09; P = 0.001) and tumor size (HR, 2.50; 95% CI, 1.30-4.82; P = 0.006). Low or unchanged expression of miR-486-5p compared with neighboring normal tissues was associated with a poor prognosis, while high expression was associated with a good prognosis in GC. miR-486-5p may thus be useful for evaluating prognosis and may provide a novel target treatment in patients with GC.

Guillaud-Bataille M, Ragazzon B, de Reyniès A, et al.
IGF2 promotes growth of adrenocortical carcinoma cells, but its overexpression does not modify phenotypic and molecular features of adrenocortical carcinoma.
PLoS One. 2014; 9(8):e103744 [PubMed] Free Access to Full Article Related Publications
Insulin-like growth factor 2 (IGF2) overexpression is an important molecular marker of adrenocortical carcinoma (ACC), which is a rare but devastating endocrine cancer. It is not clear whether IGF2 overexpression modifies the biology and growth of this cancer, thus more studies are required before IGF2 can be considered as a major therapeutic target. We compared the phenotypical, clinical, biological, and molecular characteristics of ACC with or without the overexpression of IGF2, to address these issues. We also carried out a similar analysis in an ACC cell line (H295R) in which IGF2 expression was knocked down with si- or shRNA. We found no significant differences in the clinical, biological and molecular (transcriptomic) traits between IGF2-high and IGF2-low ACC. The absence of IGF2 overexpression had little influence on the activation of tyrosine kinase pathways both in tumors and in H295 cells that express low levels of IGF2. In IGF2-low tumors, other growth factors (FGF9, PDGFA) are more expressed than in IGF2-high tumors, suggesting that they play a compensatory role in tumor progression. In addition, IGF2 knock-down in H295R cells substantially impaired growth (>50% inhibition), blocked cells in G1 phase, and promoted apoptosis (>2-fold). Finally, analysis of the 11p15 locus showed a paternal uniparental disomy in both IGF2-high and IGF2-low tumors, but low IGF2 expression could be explained in most IGF2-low ACC by an additional epigenetic modification at the 11p15 locus. Altogether, these observations confirm the active role of IGF2 in adrenocortical tumor growth, but also suggest that other growth promoting pathways may be involved in a subset of ACC with low IGF2 expression, which creates opportunities for the use of other targeted therapies.

Wynes MW, Hinz TK, Gao D, et al.
FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies.
Clin Cancer Res. 2014; 20(12):3299-309 [PubMed] Free Access to Full Article Related Publications
PURPOSE: FGFR1 gene copy number (GCN) is being evaluated as a biomarker for FGFR tyrosine kinase inhibitor (TKI) response in squamous cell lung cancers (SCC). The exclusive use of FGFR1 GCN for predicting FGFR TKI sensitivity assumes increased GCN is the only mechanism for biologically relevant increases in FGFR1 signaling. Herein, we tested whether FGFR1 mRNA and protein expression may serve as better biomarkers of FGFR TKI sensitivity in lung cancer.
EXPERIMENTAL DESIGN: Histologically diverse lung cancer cell lines were submitted to assays for ponatinib sensitivity, a potent FGFR TKI. A tissue microarray composed of resected lung tumors was submitted to FGFR1 GCN, and mRNA analyses and the results were validated with The Cancer Genome Atlas (TCGA) lung cancer data.
RESULTS: Among 58 cell lines, 14 exhibited ponatinib sensitivity (IC50 values ≤ 50 nmol/L) that correlated with FGFR1 mRNA and protein expression, but not with FGFR1 GCN or histology. Moreover, ponatinib sensitivity associated with mRNA expression of the ligands, FGF2 and FGF9. In resected tumors, 22% of adenocarcinomas and 28% of SCCs expressed high FGFR1 mRNA. Importantly, only 46% of SCCs with increased FGFR1 GCN expressed high mRNA. Lung cancer TCGA data validated these findings and unveiled overlap of FGFR1 mRNA positivity with KRAS and PIK3CA mutations.
CONCLUSIONS: FGFR1 dependency is frequent across various lung cancer histologies, and FGFR1 mRNA may serve as a better biomarker of FGFR TKI response in lung cancer than FGFR1 GCN. The study provides important and timely insight into clinical testing of FGFR TKIs in lung cancer and other solid tumor types.

Chen TM, Shih YH, Tseng JT, et al.
Overexpression of FGF9 in colon cancer cells is mediated by hypoxia-induced translational activation.
Nucleic Acids Res. 2014; 42(5):2932-44 [PubMed] Free Access to Full Article Related Publications
Human fibroblast growth factor 9 (FGF9) is a potent mitogen involved in many physiological processes. Although FGF9 messenger RNA (mRNA) is ubiquitously expressed in embryos, FGF9 protein expression is generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in human malignancies including cancers, but the mechanism remains largely unknown. Here, we report that FGF9 protein, but not mRNA, was increased in hypoxia. Two sequence elements, the upstream open reading frame (uORF) and the internal ribosome entry site (IRES), were identified in the 5' UTR of FGF9 mRNA. Functional assays indicated that FGF9 protein synthesis was normally controlled by uORF-mediated translational repression, which kept the protein at a low level, but was upregulated in response to hypoxia through a switch to IRES-dependent translational control. Our data demonstrate that FGF9 IRES functions as a cellular switch to turn FGF9 protein synthesis 'on' during hypoxia, a likely mechanism underlying FGF9 overexpression in cancer cells. Finally, we provide evidence to show that hypoxia-induced translational activation promotes FGF9 protein expression in colon cancer cells. Altogether, this dynamic working model may provide a new direction in anti-tumor therapies and cancer intervention.

Deng M, Tang HL, Lu XH, et al.
miR-26a suppresses tumor growth and metastasis by targeting FGF9 in gastric cancer.
PLoS One. 2013; 8(8):e72662 [PubMed] Free Access to Full Article Related Publications
The role of miR-26a in cancer cells seemed controversial in previous studies. Until now, the role of miR-26a in gastric cancer remains undefined. In this study, we found that miR-26a was strongly downregulated in gastric cancer (GC) tissues and cell lines, and its expression levels were associated with lymph node metastasis and clinical stage, as well as overall survival and replase-free survival of GC. We also found that ectopic expression of miR-26a inhibited GC cell proliferation and GC metastasis in vitro and in vivo. We further identified a novel mechanism of miR-26a to suppress GC growth and metastasis. FGF9 was proved to be a direct target of miR-26a, using luciferase assay and western blot. FGF9 overexpression in miR-26a-expressing cells could rescue invasion and growth defects of miR-26a. In addition, miR-26a expression inversely correlated with FGF9 protein levels in GC. Taken together, our data suggest that miR-26a functions as a tumor suppressor in GC development and progression, and holds promise as a prognostic biomarker and potential therapeutic target for GC.

De Martino MC, Al Ghuzlan A, Aubert S, et al.
Molecular screening for a personalized treatment approach in advanced adrenocortical cancer.
J Clin Endocrinol Metab. 2013; 98(10):4080-8 [PubMed] Related Publications
CONTEXT: Adrenocortical cancer (ACC) is a rare cancer with poor prognosis and scant treatment options. In ACC, no personalized approach has emerged but no extensive molecular screening has been performed to date.
OBJECTIVE: The objective of the study was to evaluate the presence of a large number of potentially targetable molecular events in a large cohort of advanced ACC.
DESIGN, SETTING, AND PARTICIPANTS: We used hot spot gene sequencing (Ion Torrent, 40 patients) and comparative genomic hybridization (CGH; 28 patients; a subset of the entire cohort) in adult stage III-IV ACC samples to screen for mutations and copy number abnormalities of potential interest for therapeutic use in 46 and 130 genes, respectively.
RESULTS: At least one copy number alteration or mutation was found in 19 patients (47.5%). The most frequent mutations were detected on TP53, ATM, and CTNNB1 [6 of 40 (15%), 5 of 40 (12.5%), and 4 of 40 (10%), respectively]. The most frequent copy number alterations identified were: amplification of the CDK4 oncogene (5 of 28; 17.9%) and deletion of the CDKN2A (4 of 28; 14.3%) and CDKN2B (3 of 28; 10.7%) tumor suppressor genes. Amplifications of FGFR1, FGF9, or FRS2 were discovered in three subjects (10.7%). Associated alterations were: deletions of CDKN2A, CDKN2B with ATM mutations, and TP53 mutations with CTNNB1 mutations.
CONCLUSIONS: No simple targetable molecular event emerged. Drugs targeting the cell cycle could be the most relevant new therapeutic approach for patients with advanced ACC. Inhibitors of the fibroblast growth factor receptor pathway could also be a therapeutic option in a subset of patients, whereas other targeted therapies should be considered on a case-by-case basis.

Ishigami T, Hida Y, Matsudate Y, et al.
The involvement of fibroblast growth factor receptor signaling pathways in dermatofibroma and dermatofibrosarcoma protuberans.
J Med Invest. 2013; 60(1-2):106-13 [PubMed] Related Publications
Fibroblast growth factors (FGFs) and their receptors (FGFRs) control a wide range of biological functions; however, their involvement in the pathogenesis of dermatofibroma (DF) and dermatofibrosarcoma protuberans (DFSP) is currently unknown. In this study, we first confirmed the histological diagnosis by detecting fusion COL1A1-PDGFB transcripts in DFSP, and examined the expression of all FGFRs (FGFR1-4), some of their ligands (FGF1, 2, 9), and forkhead box N1 (FOXN1) as a downstream target of FGFR3 in DF and DFSP by immunohistochemical analysis. Although we failed to detect the expression of FGF1 and FGF9 as specific ligands for FGFR3 in DF, overexpression of FGFR3 and FOXN1 was observed in the epidermal regions of DF, suggesting that the epidermal regions of DF were similar to seborrhoeic keratosis both in terms of histological features and the activation of FGFR3/FOXN1. In addition, strong expression of FGF2 and FGFR4 was observed in the tumor lesions of DF. Expression patterns of FGFR3/FOXN1 and FGF2/FGFR4 in DF were in contrast with those of DFSP. The activation of FGFR signaling pathways may be not only relevant to the pathogenesis of DF, but also very useful in the differential diagnosis of DF and DFSP.

Forrester HB, Temple-Smith P, Ham S, et al.
Genome-wide analysis using exon arrays demonstrates an important role for expression of extra-cellular matrix, fibrotic control and tissue remodelling genes in Dupuytren's disease.
PLoS One. 2013; 8(3):e59056 [PubMed] Free Access to Full Article Related Publications
Dupuytren's disease (DD) is a classic example of pathological fibrosis which results in a debilitating disorder affecting a large sector of the human population. It is characterized by excessive local proliferation of fibroblasts and over-production of collagen and other components of extracellular matrix (ECM) in the palmar fascia. The fibrosis progressively results in contracture of elements between the palmar fascia and skin causing flexion deformity or clawing of the fingers and a severe reduction in hand function. While much is known about the pathogenesis and surgical treatment of DD, little is known about the factors that cause its onset and progression, despite many years of research. Gene expression patterns in DD patients now offers the potential to identify genes that direct the pathogenesis of DD. In this study we used primary cultures of fibroblasts derived from excisional biopsies of fibrotic tissue from DD patients to compare the gene expression profiles on a genome-wide basis with normal control fibroblasts. Our investigations have identified genes that may be involved with DD pathogenesis including some which are directly relevant to fibrosis. In particular, these include significantly reduced expression levels of three matrix metallopeptidases (MMP1, MMP3, MMP16), follistatin, and STAT1, and significantly increased expression levels of fibroblast growth factors (FGF9, FGF11), a number of collagen genes and other ECM genes in DD patient samples. Many of these gene products are known to be involved in fibrosis, tumour formation and in the normal processes of tissue remodelling. In addition, alternative splicing was identified in some DD associated genes. These highly sensitive genomic investigations provide new insight into the molecular mechanisms that may underpin the development and progression of DD.

Chan DW, Mak CS, Leung TH, et al.
Down-regulation of Sox7 is associated with aberrant activation of Wnt/b-catenin signaling in endometrial cancer.
Oncotarget. 2012; 3(12):1546-56 [PubMed] Free Access to Full Article Related Publications
Although the mortality rate of endometrial cancer is comparatively low in gynecologic malignancies, a rising trend of this cancer has been observed for the past decade. The understanding of the molecular mechanism will favor for the clinical management of this disease. Aberrant activation of Wnt/β-catenin signaling pathway plays a major role in the pathogenesis of endometrioid adenocarcinoma including this cancer type. In this study, we reported that Sox7, one of Sox transcriptional factors, was frequently underexpressed in endometrial cancer and importantly, it was associated with dysregulation of the Wnt/β-catenin signaling activity. Immunohistochemical and quantitative RT-PCR analyses showed that Sox7 was underexpressed and was associated with high-grade tumor (P=0.021), increased expressions of β-catenin (P=0.038) and its downstream targets; CyclinD1 (P less than 0.001) and FGF9 (P less than 0.001). In addition, using HEK293T cell model, we found that Sox7 was able to inhibit TCF/LEF-1-dependent luciferase activity induced by Wnt-1. This was further proved by that Sox7 could significantly suppress the expressions of Wnt targets; Cyclin D1 and C-myc in endometrial cells. Immuno-fluorescent microscopy revealed that Sox7 was co-localizaed with either mutant β-catenin or TCF4 protein in nucleus, while co-immunopreciptation assay demonstrated that Sox7 could physically interact with not only wild-type but also mutant β-catenin, as well as TCF4 proteins. Functionally, enforced expression of Sox7 could significantly inhibit endometrial or endometrioid ovarian cancer cells (OEA) harboring either wild-type or mutant β-catenin. These data suggest Sox7 is a negative regulator of Wnt/β-catenin signaling pathway through impeding the transcriptional machinery of β-catenin/TCF/LEF-1 transcriptional complex, and the loss of expression may be involved in the pathogenesis of endometrial cancer.

Tang H, Bian Y, Tu C, et al.
The miR-183/96/182 cluster regulates oxidative apoptosis and sensitizes cells to chemotherapy in gliomas.
Curr Cancer Drug Targets. 2013; 13(2):221-31 [PubMed] Related Publications
Many microRNAs reside in clusters in the genome, are generally similar in sequence, are transcribed in the same direction, and usually function synergistically. The miR-183/96/182 cluster is composed of 3 miRNA genes, and increased expression of miR-183, 96 and 182 are implicated in glioma carcinogenesis. Knockdown of individual components or of the entire miR-183/96/182 cluster inhibits the survival of glioma cells by regulating the ROS-induced apoptosis pathway. Furthermore, inhibition of the miR-183/96/182 cluster induced ROS-mediated AKT/survival independent of three target genes FGF9, CPEB1, and FOXO1, and inhibition of the miRNA cluster induced p53/apoptosis signaling, which was dependent on these same genes. In addition, knockdown of the miR-183/96/182 cluster enhanced the anticancer effect of Temozolomide on glioma cells by the ROS-mediated apoptosis pathway. Therefore, the miR-183/96/182 cluster may be a pleiotropic target for glioma therapy.

Fritz V, Brondello JM, Gordeladze JO, et al.
Bone-metastatic prostate carcinoma favors mesenchymal stem cell differentiation toward osteoblasts and reduces their osteoclastogenic potential.
J Cell Biochem. 2011; 112(11):3234-45 [PubMed] Related Publications
Bone homeostasis is achieved by the balance between osteoclast-dependent bone resorption and osteoblastic events involving differentiation of adult mesenchymal stem cells (MSCs). Prostate carcinoma (PC) cells display the propensity to metastasize to bone marrow where they disrupt bone homeostasis as a result of mixed osteolytic and osteoblastic lesions. The PC-dependent activation of osteoclasts represents the initial step of tumor engraftment into bone, followed by an accelerated osteoblastic activity and exaggerated bone formation. However, the interactions between PC cells and MSCs and their participation in the disease progression remain as yet unclear. In this study, we show that bone metastatic PC-3 carcinoma cells release factors that increase the expression by human (h)MSCs of several known pro-osteoblastic commitment factors, such as α5/β1 integrins, fibronectin, and osteoprotegerin. As a consequence, as shown in an osteogenesis assay, hMSCs treated with conditioned medium (C(ed) M) derived from PC-3 cells have an enhanced potential to differentiate into osteoblasts, as compared to hMSCs treated with control medium or with C(ed) M from non-metastatic 22RV1 cells. We demonstrate that FGF-9, one of the factors produced by PC-3 cells, is involved in this process. Furthermore, we show that PC-3 C(ed) M decreases the pro-osteoclastic activity of hMSCs. Altogether, these findings allow us to propose clues to understand the mechanisms by which PC favors bone synthesis by regulating MSC outcome and properties.

Leushacke M, Spörle R, Bernemann C, et al.
An RNA interference phenotypic screen identifies a role for FGF signals in colon cancer progression.
PLoS One. 2011; 6(8):e23381 [PubMed] Free Access to Full Article Related Publications
In tumor cells, stepwise oncogenic deregulation of signaling cascades induces alterations of cellular morphology and promotes the acquisition of malignant traits. Here, we identified a set of 21 genes, including FGF9, as determinants of tumor cell morphology by an RNA interference phenotypic screen in SW480 colon cancer cells. Using a panel of small molecular inhibitors, we subsequently established phenotypic effects, downstream signaling cascades, and associated gene expression signatures of FGF receptor signals. We found that inhibition of FGF signals induces epithelial cell adhesion and loss of motility in colon cancer cells. These effects are mediated via the mitogen-activated protein kinase (MAPK) and Rho GTPase cascades. In agreement with these findings, inhibition of the MEK1/2 or JNK cascades, but not of the PI3K-AKT signaling axis also induced epithelial cell morphology. Finally, we found that expression of FGF9 was strong in a subset of advanced colon cancers, and overexpression negatively correlated with patients' survival. Our functional and expression analyses suggest that FGF receptor signals can contribute to colon cancer progression.

Schmid S, Bieber M, Zhang F, et al.
Wnt and hedgehog gene pathway expression in serous ovarian cancer.
Int J Gynecol Cancer. 2011; 21(6):975-80 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Ovarian cancer has very heterogeneous histological classification, and response to therapy of the same grade and type varies. We studied genes in the Wnt and hedgehog (Hh) pathways, which are essential for embryonic development and which play critical roles in proliferation in a variety of human cancers. Variations in these pathway genes causing proliferation could play a role in the variation in tumor progression and response to therapy.
METHODS/MATERIALS: Using real-time polymerase chain reaction, we studied 16 primary grade 3 International Federation of Gynecology and Obstetrics stage III serous ovarian cancer samples for expression of the Wnt pathway gene AXIN2, fibroblast growth factor 9, and Hh pathway gene expressions of glioma-associated oncogene 1, glioma-associated oncogene 2, patched homolog 1, patched homolog 2, Indian Hedgehog (HH), sonic HH, and Smoothened, a G protein-coupled receptor protein. Normal ovary epithelial cell line was used as control.
RESULTS: We found wide variation of up-regulation of pathway component and target genes in the primary tumor samples and apparent cross talk between the pathways. AXIN2, a Wnt target gene, showed increased expression in all serous ovarian cancer samples. Fibroblast growth factor 9 was also overexpressed in all tumors with greater than 1000-fold increase in gene expression in 4 tumors. Expression of Hh pathway genes varied greatly. More than half of the tumor samples showed involvement of Hh signaling or pathway activation either by expression of transcription factors and Hh ligands or by overexpression of Indian HH/sonic HH and the receptor-encoding patched homolog 1/patched homolog 2.
CONCLUSION: We found a wide variation in fold expression of genes involved in the Wnt and Hh pathway between patient samples.

Fillmore CM, Gupta PB, Rudnick JA, et al.
Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling.
Proc Natl Acad Sci U S A. 2010; 107(50):21737-42 [PubMed] Free Access to Full Article Related Publications
Many tumors contain heterogeneous populations of cells, only some of which exhibit increased tumorigenicity and resistance to anticancer therapies. Evidence suggests that these aggressive cancer cells, often termed "cancer stem cells" or "cancer stem-like cells" (CSCs), rely upon developmental signaling pathways that are important for survival and expansion of normal stem cells. Here we report that, in analogy to embryonic mammary epithelial biology, estrogen signaling expands the pool of functional breast CSCs through a paracrine FGF/FGFR/Tbx3 signaling pathway. Estrogen or FGF9 pretreatment induced CSC properties of breast cancer cell lines and freshly isolated breast cancer cells, whereas cotreatment of cells with tamoxifen or a small molecule inhibitor of FGFR signaling was sufficient to prevent the estrogen-induced expansion of CSCs. Furthermore, reduction of FGFR or Tbx3 gene expression was able to abrogate tumorsphere formation, whereas ectopic Tbx3 expression increased tumor seeding potential by 100-fold. These findings demonstrate that breast CSCs are stimulated by estrogen through a signaling pathway that similarly controls normal mammary epithelial stem cell biology.

Krejci P, Prochazkova J, Bryja V, et al.
Molecular pathology of the fibroblast growth factor family.
Hum Mutat. 2009; 30(9):1245-55 [PubMed] Free Access to Full Article Related Publications
The human fibroblast growth factor (FGF) family contains 22 proteins that regulate a plethora of physiological processes in both developing and adult organism. The mutations in the FGF genes were not known to play role in human disease until the year 2000, when mutations in FGF23 were found to cause hypophosphatemic rickets. Nine years later, seven FGFs have been associated with human disorders. These include FGF3 in Michel aplasia; FGF8 in cleft lip/palate and in hypogonadotropic hypogonadism; FGF9 in carcinoma; FGF10 in the lacrimal/salivary glands aplasia, and lacrimo-auriculo-dento-digital syndrome; FGF14 in spinocerebellar ataxia; FGF20 in Parkinson disease; and FGF23 in tumoral calcinosis and hypophosphatemic rickets. The heterogeneity in the functional consequences of FGF mutations, the modes of inheritance, pattern of involved tissues/organs, and effects in different developmental stages provide fascinating insights into the physiology of the FGF signaling system. We review the current knowledge about the molecular pathology of the FGF family.

Falvella FS, Frullanti E, Galvan A, et al.
FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung.
Int J Cancer. 2009; 124(12):2880-5 [PubMed] Related Publications
The association of the fibroblast growth factor receptor 4 (FGFR4) Gly388Arg polymorphism with clinical stage and overall survival in a series of 541 Italian lung adenocarcinoma (ADCA) patients indicated a significantly decreased survival in patients carrying the rare Arg388 allele as compared to that in Gly/Gly homozygous patients [hazard ratio (HR) = 1.5; 95% confidence interval (CI) 1.1-1.9], with the decrease related to the association of the same polymorphism with clinical stage (HR = 1.8, 95% CI 1.3-2.6). By contrast, no significant association was detected in small series of either Norwegian lung ADCA patients or Italian lung squamous cell carcinoma (SQCC) patients. Single nucleotide polymorphisms of known FGFR4 ligands expressed in lung (FGF9, FGF18 and FGF19) were not associated with clinical stage or survival and showed no interaction with FGFR4. Analysis of gene expression profile in normal lungs according to FGFR4 genotype indicated a specific transcript pattern associated with the allele carrier status, suggesting a functional role for the FGFR4 polymorphism already detectable in normal lung. These findings confirm the significant association of the FGFR4 Gly388Arg polymorphism with clinical stage and overall survival in an Italian lung ADCA population and demonstrate a FGFR4 genotype-dependent transcriptional profile present in normal lung tissue.

Marek L, Ware KE, Fritzsche A, et al.
Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells.
Mol Pharmacol. 2009; 75(1):196-207 [PubMed] Free Access to Full Article Related Publications
Despite widespread expression of epidermal growth factor (EGF) receptors (EGFRs) and EGF family ligands in non-small-cell lung cancer (NSCLC), EGFR-specific tyrosine kinase inhibitors (TKIs) such as gefitinib exhibit limited activity in this cancer. We propose that autocrine growth signaling pathways distinct from EGFR are active in NSCLC cells. To this end, gene expression profiling revealed frequent coexpression of specific fibroblast growth factors (FGFs) and FGF receptors (FGFRs) in NSCLC cell lines. It is noteworthy that FGF2 and FGF9 as well as FGFR1 IIIc and/or FGFR2 IIIc mRNA and protein are frequently coexpressed in NSCLC cell lines, especially those that are insensitive to gefitinib. Specific silencing of FGF2 reduced anchorage-independent growth of two independent NSCLC cell lines that secrete FGF2 and coexpress FGFR1 IIIc and/or FGFR2 IIIc. Moreover, a TKI [(+/-)-1-(anti-3-hydroxy-cyclopentyl)-3-(4-methoxy-phenyl)-7-phenylamino-3,4-dihydro-1H-pyrimido-[4,5-d]pyrimidin-2-one (RO4383596)] that targets FGFRs inhibited basal FRS2 and extracellular signal-regulated kinase phosphorylation, two measures of FGFR activity, as well as proliferation and anchorage-independent growth of NSCLC cell lines that coexpress FGF2 or FGF9 and FGFRs. By contrast, RO4383596 influenced neither signal transduction nor growth of NSCLC cell lines lacking FGF2, FGF9, FGFR1, or FGFR2 expression. Thus, FGF2, FGF9 and their respective high-affinity FGFRs comprise a growth factor autocrine loop that is active in a subset of gefitinib-insensitive NSCLC cell lines.

Katoh M
Cancer genomics and genetics of FGFR2 (Review).
Int J Oncol. 2008; 33(2):233-7 [PubMed] Related Publications
FGFR2 gene encodes FGFR2b in epithelial cells, and FGFR2c in mesenchymal cells. FGFR2b is a high affinity receptor for FGF1, FGF3, FGF7, FGF10 and FGF22, while FGFR2c for FGF1, FGF2, FGF4, FGF6, FGF9, FGF16 and FGF20. Here genomics and genetics of FGFR2, and therapeutics targeted to FGFR2 will be reviewed. Single nucleotide polymorphisms (SNPs) of FGFR2 are associated with increased risk of breast cancer. Gene amplification or missense mutation of FGFR2 occurs in gastric cancer, lung cancer, breast cancer, ovarian cancer, and endometrial cancer. Genetic alterations of FGFR2 induce aberrant FGFR2 signaling activation due to release of FGFR2 from autoinhibition, or creation of FGF signaling autocrine loop. Class switch of FGFR2b to FGFR2c is associated with more malignant phenotype. FGF and canonical WNT signals synergize during mammary carcinogenesis, but counteract during osteogenesis and adipogenesis. Among PD173074, SU5402, and AZD2171 functioning as FGFR inhibitors, AZD2171 is the most promising anti-cancer drug. Cancer genomics and genetics are utilized to predict cancer-driving pathway for therapeutic optimization. FGFR2ome is defined as a complete data set of SNP, copy number variation (CNV), missense mutation, gene amplification, and predominant isoform of FGFR2. FGFR2ome analyses in patients with several tumor types among various populations should be carried out to establish integrative database of FGFR2 for the rational clinical application of FGFR2-targeted cancer therapy.

Li ZG, Mathew P, Yang J, et al.
Androgen receptor-negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms.
J Clin Invest. 2008; 118(8):2697-710 [PubMed] Free Access to Full Article Related Publications
In prostate cancer, androgen blockade strategies are commonly used to treat osteoblastic bone metastases. However, responses to these therapies are typically brief, and the mechanism underlying androgen-independent progression is not clear. Here, we established what we believe to be the first human androgen receptor-negative prostate cancer xenografts whose cells induced an osteoblastic reaction in bone and in the subcutis of immunodeficient mice. Accordingly, these cells grew in castrated as well as intact male mice. We identified FGF9 as being overexpressed in the xenografts relative to other bone-derived prostate cancer cells and discovered that FGF9 induced osteoblast proliferation and new bone formation in a bone organ assay. Mice treated with FGF9-neutralizing antibody developed smaller bone tumors and reduced bone formation. Finally, we found positive FGF9 immunostaining in prostate cancer cells in 24 of 56 primary tumors derived from human organ-confined prostate cancer and in 25 of 25 bone metastasis cases studied. Collectively, these results suggest that FGF9 contributes to prostate cancer-induced new bone formation and may participate in the osteoblastic progression of prostate cancer in bone. Androgen receptor-null cells may contribute to the castration-resistant osteoblastic progression of prostate cancer cells in bone and provide a preclinical model for studying therapies that target these cells.

Knower KC, Sim H, McClive PJ, et al.
Characterisation of urogenital ridge gene expression in the human embryonal carcinoma cell line NT2/D1.
Sex Dev. 2007; 1(2):114-26 [PubMed] Related Publications
The study of the mammalian sex-determining pathway has been hampered by the lack of cell culture systems to investigate the underlying molecular relationships between sex-determining genes. Recent approaches using high-throughput genome-wide studies have revealed a number of sexually dimorphic genes expressed in the developing mouse gonad. Here, we investigated a human testicular cell line in terms of its expression of known sex-determining genes and newly identified candidates. The human embryonal carcinoma cell line NT2/D1 was screened for the expression of 46 genes with known or potential roles in the sex-determining and differentiation pathway. Forty genes tested were expressed in NT2/D1 cells including the testis-determining genes SRY, SOX9, SF-1, DHH and FGF9. Genes not expressed included WT1, DAX1 and the ovary-specific genes FOXL2 and WNT4. Cell-specific markers demonstrate that NT2/D1 cells reflect a number of cell types in the gonad including Sertoli, Leydig and germ cells. Our results suggest that male pathways initiated by SRY, SOX9 and SF-1 remain intact in these cells. Lack of expression of ovary-specific genes is consistent with a commitment of these cells to the male lineage. Manipulation of gene expression in this cell line could be an important new in vitro tool for the discovery of new human sex-determining genes.

Abdel-Rahman WM, Kalinina J, Shoman S, et al.
Somatic FGF9 mutations in colorectal and endometrial carcinomas associated with membranous beta-catenin.
Hum Mutat. 2008; 29(3):390-7 [PubMed] Related Publications
We previously described striking molecular features including high frequency of membranous beta-catenin in subsets of familial colon cancers with as yet unknown predisposition. We hypothesized that such tumors might carry mutations in Wnt/beta-catenin target genes. Fibroblast growth factor 9 (FGF9) was an attractive target, as it maps to a common area of loss of heterozygosity (LOH) in colorectal carcinomas on 13q12.11. Here, we report, for the first time, the occurrence of FGF9 mutations in human cancers. We found a total of six distinct FGF9 mutations including one frameshift, four missense, and one nonsense, in 10 (six colorectal and four endometrial) out of 203 tumors and cell lines. The frameshift mutation was detected in five different tumors. Mapping of these mutations onto the crystal structure of FGF9 predicted that they should all lead to loss of function albeit through variable mechanisms. The p.R173K mutation should diminish ligand affinity for heparin/heparan sulfate, the p.V192M, p.D203G, and p.L188YfsX18 (FGF9(Delta205-208)) mutations should negatively impact ligand's interaction with receptor, while p.G84E and p.E142X (FGF9(Delta142-208)) mutations should interfere with ligand folding. Consistent with these structural predictions, the p.V192M, p.D203G, and p.L188YfsX18 (FGF9(Delta205-208)) mutations impaired the ability of ligand to activate mitogen-activated protein kinase (MAPK) cascade in cultured cells expressing FGF receptors. LOH was observed in seven out of nine FGF9 mutant tumors, supporting the predicted loss of function. Interestingly, eight out of 10 (80%) of the FGF9 mutant tumors showed normal membranous beta-catenin expression and the absence of mutation in the beta-catenin gene (CTNNB1). These data suggest that FGF9 plays a role in colorectal and endometrial carcinogenesis.

Kathpalia VP, Mussak EN, Chow SS, et al.
Genome-wide transcriptional profiling in human squamous cell carcinoma of the skin identifies unique tumor-associated signatures.
J Dermatol. 2006; 33(5):309-18 [PubMed] Related Publications
The elucidation of specific genetic changes associated with human cancer pathogenesis has focused efforts to relate such changes to the neoplastic phenotype. To further our understanding of the genetic basis of human squamous cell carcinoma (SCC) of the skin, this study used a genome-wide (12 627 sequences) approach to determine transcriptional signatures in lesional and nonlesional sites from five SCC patients. Several novel genes involving the p53 pathway, anti-apoptotic pathways, signal transduction, structural loss and DNA replication, including BCL2A1, MUC4, PTPN11 (SHP2) and FGF9, are upregulated in SCC and could warrant further study regarding their role in disease pathogenesis. SCC pathology is likely combinatorial in nature involving the compounded changes from several cellular processes.

Hendrix ND, Wu R, Kuick R, et al.
Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas.
Cancer Res. 2006; 66(3):1354-62 [PubMed] Related Publications
Wnt signaling plays a key role in development and adult tissues via effects on cell proliferation, motility, and differentiation. The cellular response to Wnt ligands largely depends on their ability to stabilize beta-catenin and the ability of beta-catenin to bind and activate T-cell factor (TCF) transcription factors. Roughly 40% of ovarian endometrioid adenocarcinomas (OEA) have constitutive activation of Wnt signaling as a result of oncogenic mutations in the beta-catenin protein or inactivating mutations in key negative regulators of beta-catenin, such as the adenomatous polyposis coli and Axin tumor suppressor proteins. We used oligonucleotide microarrays to identify genes of which expression was activated in OEAs with beta-catenin dysregulation compared with OEAs lacking Wnt/beta-catenin pathway defects. Using microarray and quantitative PCR-based approaches, we found that fibroblast growth factor (FGF9) expression was increased >6-fold in primary OEAs with Wnt/beta-catenin pathway defects compared with OEAs lacking such defects. Evidence that beta-catenin and TCFs regulate FGF9 expression in several epithelial cell lines was obtained. We found FGF9 was mitogenic for epithelial cells and fibroblasts and FGF9 could stimulate invasion of epithelial and endothelial cells through Matrigel in transwell assays. Furthermore, FGF9 could promote neoplastic transformation of the E1A-immortalized RK3E epithelial cell line, and short hairpin RNA-mediated inhibition of endogenous FGF9 expression in the OEA cell line TOV112D, which carries a beta-catenin mutation, inhibited neoplastic growth properties of the cells. Our findings support the notion that FGF9 is a key factor contributing to the cancer phenotype of OEAs carrying Wnt/beta-catenin pathway defects.

Martínez-Torrecuadrada J, Cifuentes G, López-Serra P, et al.
Targeting the extracellular domain of fibroblast growth factor receptor 3 with human single-chain Fv antibodies inhibits bladder carcinoma cell line proliferation.
Clin Cancer Res. 2005; 11(17):6280-90 [PubMed] Related Publications
PURPOSE: Previous gene expression studies have shown that fibroblast growth factor receptor 3 (FGFR3) is overexpressed in early stages of bladder cancer. To study the potential use of therapeutic antibodies against FGFR3, we have produced a collection of human single-chain Fv (scFv) antibody fragments by using phage display libraries.
EXPERIMENTAL DESIGN: Two "naïve" semi-synthetic human scFv libraries were used to select antibodies against the extracellular domain of FGFR3alpha(IIIc). The reactivity of the selected scFvs with a recombinant FGFR3 was characterized by an enzyme immunoassay and surface plasmon resonance analysis and with RT112 bladder carcinoma cells by a fluorescence-activated cell sorter. The capacity of the selected scFvs to block RT112 cell proliferation was determined.
RESULTS: We have isolated six human scFv antibody fragments directed against FGFR3. These human scFvs specifically bound FGFR3, but not the homologous molecule FGFR1. Biacore analysis was used to determine the affinity constants, which ranged from 12 to 40 nmol/L. Competition analysis showed that the FGF9 ligand was able to block the binding of two scFvs, 3C and 7D, to FGFR3, whereas FGF1 only blocked 7D. Immunoprecipitation and flow cytometric analysis confirmed the specificity of the antibodies to native membrane FGFR3. Two scFvs, 3C and 7D, gave an strong immunofluorescence staining of RT112 cells. Moreover, they recognized equally well wild-type and mutant FGFR3 containing the activating mutation S249C. Furthermore, they blocked proliferation of RT112 cells in a dose- and FGF-dependent manner.
CONCLUSION: Our results suggest that these human anti-FGFR3 scFv antibodies may have potential applications as antitumoral agents in bladder cancer.

Ueng TH, Hung CC, Kuo ML, et al.
Induction of fibroblast growth factor-9 and interleukin-1alpha gene expression by motorcycle exhaust particulate extracts and benzo(a)pyrene in human lung adenocarcinoma cells.
Toxicol Sci. 2005; 87(2):483-96 [PubMed] Related Publications
Motorcycle exhaust particulates (MEP) contain carcinogenic polycyclic aromatic hydrocarbons including benzo(a)pyrene. This study has determined the ability of MEP to alter the expression of select genes from drug metabolism, cytokine, oncogene, tumor suppressor, and estrogen signaling families of human lung adenocarcinoma CL5 cells. cDNA microarray analyses and confirmation studies were performed using CL5 cells treated with 100 microg/ml MEP extract for 6 h. The results showed that MEP increased the mRNA levels of metabolic enzymes CYP1A1 and CYP1B1, proinflammatory cytokines interleukin (IL)-1alpha, IL-6, and IL-11, fibroblast growth factor (FGF)-6 and FGF-9, vascular endothelial growth factor (VEGF)-D, oncogene fra-1, and tumor suppressor p21. In contrast, MEP decreased tumor suppressor Rb mRNA in CL5 lung epithelial cells. Treatment with 10 microM benzo(a)pyrene for 6 h altered gene expression profiles, in a manner similar to those by MEP. Induction of IL-1alpha, IL-6, IL-11, and FGF-9 mRNA by MEP and benzo(a)pyrene was concentration and time dependent. Cotreatment with 2 mM N-acetylcysteine blocked the MEP- and benzo(a)pyrene-mediated induction. Treatment with MEP or benzo(a)pyrene increased IL-6 and IL-11 releases to CL5 cell medium. Incubation of human lung fibroblast WI-38 with MEP- or benzo(a)pyrene-induced CL5 conditioned medium for 4 days stimulated cell growth of the fibroblasts. Inhalation exposure of rats to 1:10 diluted motorcycle exhaust 2 h daily for 4 weeks increased CYP1A1, FGF-9, and IL-1alpha mRNA in lung. This present study shows that MEP and benzo(a)pyrene can induce metabolic enzyme, inflammatory cytokine, and growth factor gene expression in CL5 cells and stimulate lung epithelium-fibroblast interaction.

Kim SW, Ho SC, Hong SJ, et al.
A novel mechanism of thyroid hormone-dependent negative regulation by thyroid hormone receptor, nuclear receptor corepressor (NCoR), and GAGA-binding factor on the rat cD44 promoter.
J Biol Chem. 2005; 280(15):14545-55 [PubMed] Related Publications
CD44 is an adhesion molecule in the extracellular matrix that shows various functions, including tumor genesis and metastasis. A recent study showed that CD44 expression level was strongly correlated with the generation of papillary thyroid carcinomas, the most prevalent malignancy of the thyroid gland. We report here that CD44 is negatively regulated by thyroid hormone (T(3)) through a novel mechanism. We demonstrate that nuclear receptor corepressor (NCoR) enhances thyroid hormone receptor (TR)-mediated basal transactivation by a weak TR.DNA interaction in the absence of T(3), which is repressed by T(3) through a transient TR .DNA interaction. Initially, we identified that CD44 was negatively directly transcriptionally T(3) -responsive. Deletion and mutation analysis indicated that both a weak TR and a GAGA-binding factor (GAF) binding sites on the CD44 promoter were required for negative regulation by T(3). The weak TR.DNA interaction was further confirmed by electrophoretic gel mobility shift assay, chromatin immunoprecipitation, and transfection assays using a non-DNA-binding TRalpha1 mutant. More interestingly, NCoR acted as a co-activator to enhance TR-mediated basal transactivation in the absence of T(3). This effect was eliminated by removal of TR or NCoR binding. Most strikingly, T(3) induced a remarkable increase in TR.DNA binding at 40-60 min after T(3) exposure that rapidly returned to basal levels, suggesting a T(3)-induced remodeling of chromatin structure at the early stage of T(3) stimulation resulting in repression. Therefore, we propose a mechanism by which NCoR, GAF, and TR interact with the CD44 negative T(3)-responsive element to enhance basal transactivation, whereas T(3) induces the remodeling of chromatin structure for repression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FGF9, Cancer Genetics Web: http://www.cancer-genetics.org/FGF9.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999