Gene Summary

Gene:GPRC6A; G protein-coupled receptor class C group 6 member A
Aliases: GPCR, bA86F4.3
Summary:Members of family C of the G protein-coupled receptor (GPCR) superfamily, such as GPRC6A, are characterized by an evolutionarily conserved amino acid-sensing motif linked to an intramembranous 7-transmembrane loop region. Several members of GPCR family C, including GPRC6A, also have a long N-terminal domain (summary by Pi et al., 2005 [PubMed 16199532]).[supplied by OMIM, Nov 2010]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:G-protein coupled receptor family C group 6 member A
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • African Americans
  • China
  • Genetic Variation
  • Exons
  • Linkage Disequilibrium
  • Haplotypes
  • G-Protein-Coupled Receptors
  • Proteins
  • Chromosome Mapping
  • Neoplasm Grading
  • Genetic Predisposition
  • DNA-Binding Proteins
  • Genome-Wide Association Study
  • Asian Americans
  • Single Nucleotide Polymorphism
  • Case-Control Studies
  • European Continental Ancestry Group
  • Genotype
  • Asian Continental Ancestry Group
  • Chromosome 13
  • GPRC6A
  • Chromosome 5
  • Chromosome 8
  • Genetic Loci
  • THADA protein, human
  • Messenger RNA
  • Carcinoma
  • Genetics, Population
  • Breast Cancer
  • Forkhead Transcription Factors
  • Neoplasm Proteins
  • Prostate Cancer
  • Transcription Factors
  • Alleles
  • Odds Ratio
  • C2orf43
  • regulatory factor X transcription factors
  • Chromosome 6
  • FOXP4
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GPRC6A (cancer-related)

Michna A, Schötz U, Selmansberger M, et al.
Transcriptomic analyses of the radiation response in head and neck squamous cell carcinoma subclones with different radiation sensitivity: time-course gene expression profiles and gene association networks.
Radiat Oncol. 2016; 11:94 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Acquired and inherent radioresistance of tumor cells is related to tumor relapse and poor prognosis - not only in head and neck squamous cell carcinoma (HNSCC). The underlying molecular mechanisms are largely unknown. Therefore, systemic in-depth analyses are needed to identify key regulators of radioresistance. In the present study, subclones of the CAL-33 HNSCC cell line with different radiosensitivity were analyzed to identify signaling pathways related to the different phenotypes.
METHODS: Subclones with altered radiosensitivity were generated by fractionated irradiation of the parental CAL-33 cells. Differences in radiosensitivity were confirmed in colony formation assays. Selected subclones were characterized at the genomic and transcriptomic level by SKY, array CGH, and mRNA-microarray analyses. Time-course gene expression analyses upon irradiation using a natural cubic spline regression model identified temporally differentially expressed genes. Moreover, early and late responding genes were identified. Gene association networks were reconstructed using partial correlation. The Reactome pathway database was employed to conduct pathway enrichment analyses.
RESULTS: The characterization of two subclones with enhanced radiation resistance (RP) and enhanced radiosensitivity (SP) revealed distinct genomic and transcriptomic changes compared to the parental cells. Differentially expressed genes after irradiation shared by both subclones pointed to important pathways of the early and late radiation response, including senescence, apoptosis, DNA repair, Wnt, PI3K/AKT, and Rho GTPase signaling. The analysis of the most important nodes of the gene association networks revealed pathways specific to the radiation response in different phenotypes of radiosensitivity. Exemplarily, for the RP subclone the senescence-associated secretory phenotype (SASP) together with GPCR ligand binding were considered as crucial. Also, the expression of endogenous retrovirus ERV3-1in response to irradiation has been observed, and the related gene association networks have been identified.
CONCLUSIONS: Our study presents comprehensive gene expression data of CAL-33 subclones with different radiation sensitivity. The resulting networks and pathways associated with the resistant phenotype are of special interest and include the SASP. The radiation-associated expression of ERV3-1 also appears highly attractive for further studies of the molecular mechanisms underlying acquired radioresistance. The identified pathways may represent key players of radioresistance, which could serve as potential targets for molecularly designed, therapeutical intervention.

Kishimoto R, Oki K, Yoneda M, et al.
Gonadotropin-Releasing Hormone Stimulate Aldosterone Production in a Subset of Aldosterone-Producing Adenoma.
Medicine (Baltimore). 2016; 95(20):e3659 [PubMed] Free Access to Full Article Related Publications
We aimed to detect novel genes associated with G protein-coupled receptors (GPCRs) in aldosterone-producing adenoma (APA) and elucidate the mechanisms underlying aldosterone production.Microarray analysis targeting GPCR-associated genes was conducted using APA without known mutations (APA-WT) samples (n = 3) and APA with the KCNJ5 mutation (APA-KCNJ5; n = 3). Since gonadotropin-releasing hormone receptor (GNRHR) was the highest expression in APA-WT by microarray analysis, we investigated the effect of gonadotropin-releasing hormone (GnRH) stimulation on aldosterone production.The quantitative polymerase chain reaction assay results revealed higher GNRHR expression levels in APA-WT samples those in APA-KCNJ5 samples (P < 0.05). LHCGR levels were also significantly elevated in APA-WT samples, and there was a significant and positive correlation between GNRHR and LHCGR expression in all APA samples (r = 0.476, P < 0.05). Patients with APA-WT (n = 9), which showed higher GNRHR and LHCGR levels, had significantly higher GnRH-stimulated aldosterone response than those with APA-KCNJ5 (n = 13) (P < 0.05). Multiple regression analysis revealed that the presence of the KCNJ5 mutation was linked to GNRHR mRNA expression (β = 0.94 and P < 0.01). HAC15 cells with KCNJ5 gene carrying T158A mutation exhibited a significantly lower GNRHR expression than that in control cells (P < 0.05).We clarified increased expression of GNRHR and LHCGR in APA-WT, and the molecular analysis including the receptor expression associated with clinical findings of GnRH stimulation.

Ahlers KE, Chakravarti B, Fisher RA
RGS6 as a Novel Therapeutic Target in CNS Diseases and Cancer.
AAPS J. 2016; 18(3):560-72 [PubMed] Article available free on PMC after 22/03/2017 Related Publications
Regulator of G protein signaling (RGS) proteins are gatekeepers regulating the cellular responses induced by G protein-coupled receptor (GPCR)-mediated activation of heterotrimeric G proteins. Specifically, RGS proteins determine the magnitude and duration of GPCR signaling by acting as a GTPase-activating protein for Gα subunits, an activity facilitated by their semiconserved RGS domain. The R7 subfamily of RGS proteins is distinguished by two unique domains, DEP/DHEX and GGL, which mediate membrane targeting and stability of these proteins. RGS6, a member of the R7 subfamily, has been shown to specifically modulate Gαi/o protein activity which is critically important in the central nervous system (CNS) for neuronal responses to a wide array of neurotransmitters. As such, RGS6 has been implicated in several CNS pathologies associated with altered neurotransmission, including the following: alcoholism, anxiety/depression, and Parkinson's disease. In addition, unlike other members of the R7 subfamily, RGS6 has been shown to regulate G protein-independent signaling mechanisms which appear to promote both apoptotic and growth-suppressive pathways that are important in its tumor suppressor function in breast and possibly other tissues. Further highlighting the importance of RGS6 as a target in cancer, RGS6 mediates the chemotherapeutic actions of doxorubicin and blocks reticular activating system (Ras)-induced cellular transformation by promoting degradation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) to prevent its silencing of pro-apoptotic and tumor suppressor genes. Together, these findings demonstrate the critical role of RGS6 in regulating both G protein-dependent CNS pathology and G protein-independent cancer pathology implicating RGS6 as a novel therapeutic target.

Barbazan J, Dunkel Y, Li H, et al.
Prognostic Impact of Modulators of G proteins in Circulating Tumor Cells from Patients with Metastatic Colorectal Cancer.
Sci Rep. 2016; 6:22112 [PubMed] Article available free on PMC after 22/03/2017 Related Publications
The consequence of a loss of balance between G-protein activation and deactivation in cancers has been interrogated by studying infrequently occurring mutants of trimeric G-protein α-subunits and GPCRs. Prior studies on members of a newly identified family of non-receptor guanine nucleotide exchange factors (GEFs), GIV/Girdin, Daple, NUCB1 and NUCB2 have revealed that GPCR-independent hyperactivation of trimeric G proteins can fuel metastatic progression in a variety of cancers. Here we report that elevated expression of each GEF in circulating tumor cells (CTCs) isolated from the peripheral circulation of patients with metastatic colorectal cancer is associated with a shorter progression-free survival (PFS). The GEFs were stronger prognostic markers than two other markers of cancer progression, S100A4 and MACC1, and clustering of all GEFs together improved the prognostic accuracy of the individual family members; PFS was significantly lower in the high-GEFs versus the low-GEFs groups [H.R = 5, 20 (95% CI; 2,15-12,57)]. Because nucleotide exchange is the rate-limiting step in cyclical activation of G-proteins, the poor prognosis conferred by these GEFs in CTCs implies that hyperactivation of G-protein signaling by these GEFs is an important event during metastatic progression, and may be more frequently encountered than mutations in G-proteins and/or GPCRs.

Salaga M, Storr M, Martemyanov KA, Fichna J
RGS proteins as targets in the treatment of intestinal inflammation and visceral pain: New insights and future perspectives.
Bioessays. 2016; 38(4):344-54 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Regulators of G protein signaling (RGS) proteins provide timely termination of G protein-coupled receptor (GPCR) responses. Serving as a central control point in GPCR signaling cascades, RGS proteins are promising targets for drug development. In this review, we discuss the involvement of RGS proteins in the pathophysiology of the gastrointestinal inflammation and their potential to become a target for anti-inflammatory drugs. Specifically, we evaluate the emerging evidence for modulation of selected receptor families: opioid, cannabinoid and serotonin by RGS proteins. We discuss how the regulation of RGS protein level and activity may modulate immunological pathways involved in the development of intestinal inflammation. Finally, we propose that RGS proteins may serve as a prognostic factor for survival rate in colorectal cancer. The ideas introduced in this review set a novel conceptual framework for the utilization of RGS proteins in the treatment of gastrointestinal inflammation, a growing major concern worldwide.

Kang W, Cheng AS, Yu J, To KF
Emerging role of Hippo pathway in gastric and other gastrointestinal cancers.
World J Gastroenterol. 2016; 22(3):1279-88 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
More evidence has underscored the importance of Hippo signaling pathway in gastrointestinal tissue homeostasis, whereas its deregulation induces tumorigenesis. Yes-associated protein 1 (YAP1) and its close paralog TAZ, transcriptional co-activator with a PDZ-binding motif, function as key effectors negatively controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In various cancers, Hippo pathway cross-talks with pro- or anti-tumorigenic pathways such as GPCR, Wnt/β-catenin, Notch and TGF-β signaling and is deregulated by multiple factors including cell density/junction and microRNAs. As YAP1 expression is significantly associated with poor prognosis of gastric and other gastrointestinal cancers, detailed delineation of Hippo regulation in tumorigenesis provides novel insight for therapeutic intervention. In current review, we summarized the recent research progresses on the deregulation of Hippo pathway in the gastrointestinal tract including stomach and discuss the molecular consequences leading to tumorigenesis.

Vitali E, Cambiaghi V, Zerbi A, et al.
Filamin-A is required to mediate SST2 effects in pancreatic neuroendocrine tumours.
Endocr Relat Cancer. 2016; 23(3):181-90 [PubMed] Related Publications
Somatostatin receptor type 2 (SST2) is the main pharmacological target of somatostatin (SS) analogues widely used in patients with pancreatic neuroendocrine tumours (P-NETs), this treatment being ineffective in a subset of patients. Since it has been demonstrated that Filamin A (FLNA) is involved in mediating GPCR expression, membrane anchoring and signalling, we investigated the role of this cytoskeleton protein in SST2 expression and signalling, angiogenesis, cell adhesion and cell migration in human P-NETs and in QGP1 cell line. We demonstrated that FLNA silencing was not able to affect SST2 expression in P-NET cells in basal conditions. Conversely, a significant reduction in SST2 expression (-43 ± 21%, P < 0.05 vs untreated cells) was observed in FLNA silenced QGP1 cells after long term SST2 activation with BIM23120. Moreover, the inhibitory effect of BIM23120 on cyclin D1 expression (-46 ± 18%, P < 0.05 vs untreated cells), P-ERK1/2 levels (-42 ± 14%; P < 0.05 vs untreated cells), cAMP accumulation (-24 ± 3%, P < 0.05 vs untreated cells), VEGF expression (-31 ± 5%, P < 0.01 vs untreated cells) and in vitro release (-40 ± 24%, P < 0.05 vs untreated cells) was completely lost after FLNA silencing. Interestingly, BIM23120 promoted cell adhesion (+86 ± 45%, P < 0.05 vs untreated cells) and inhibited cell migration (-24 ± 2%, P < 0.00001 vs untreated cells) in P-NETs cells and these effects were abolished in FLNA silenced cells. In conclusion, we demonstrated that FLNA plays a crucial role in SST2 expression and signalling, angiogenesis, cell adhesion and cell migration in P-NETs and in QGP1 cell line, suggesting a possible role of FLNA in determining the different responsiveness to SS analogues observed in P-NET patients.

Li XH, Xu Y, Yang K, et al.
Association of THADA, FOXP4, GPRC6A/RFX6 genes and 8q24 risk alleles with prostate cancer in Northern Chinese men.
J BUON. 2015 Sep-Oct; 20(5):1223-8 [PubMed] Related Publications
PURPOSE: Prostate cancer (PCa) is one of the most common malignancies in males, and multiple genetic studies have confirmed association with susceptibility to PCa. However, the risk conferred in men living in China is unkown. We selected 6 previously identified variants as candidates to define their association with PCa in Chinese men.
METHODS: We genotyped 6 single nucleotide polymorphisms (SNPs) (rs1465618, rs1983891, rs339331, rs16901966, rs1447295 and rs10090154) using high resolution melting (HRM) analysis and assessed their association with PCa risk in a case-control study of 481 patients and 480 controls in a Chinese population. In addition, the individual and cumulative contribution for the risk of PCa and clinical covariates were analysed.
RESULTS: We found that 5 of the 6 genetic variants were associated with PCa risk. The T allele of rs339331 and the G allele of rs16901966 showed a significant association with PCa susceptibility: OR (95%CI)= 0.78 (0.64-0.94), p<0.009 and OR (95%CI)= 0.66 (0.54-0.81), p<0.0001, as well as A allele of rs1447295 (OR [95%CI]=1.46 (1.17-1.84), p<0.001) and T allele of rs10090154 (OR [95%CI]= 0.58 (0.46-0.74), p<0.0001). rs339331(T) was associated with a 0.71-fold and 1.42-fold increase of PCa risk by dominant model (p=0.007) and recessive model (p=0.007). rs16901966 (G) was associated with a 0.51-fold and 1.98-fold increase of PCa risk by dominant model (p=0.006) and recessive model (p=0.0058). rs10090154 (T) was associated with a 1.89-fold and 0.53-fold increase of PCa risk by dominant model (p=0.000006) and recessive model (p=0.000006). And, rs1983891(C) was associated with a 0.77-fold increase of PCa risk by recessive model (p=0.045). rs1447295 was associated with a 1.57-fold increase of PCa risk by dominant model (p=0.008). rs1465618 showed no significant association with PCa. The cumulative effects test of risk alleles (rs rs1983891, rs339331, rs16901966, rs1447295 and rs10090154) showed an increasing risk to PCa in a frequency-dependent manner (ptrend=0.001), and men with more than 3 risk alleles had the most significant susceptibility to PCa (OR=1.99, p=0.001), compared with those who had one risk allele (OR=1.17, p=0.486).
CONCLUSION: Our results provide further support for association of the THADA, FOXP4, GPRC6A/RFX6 and 8q24 genes with Pca in Asian populations. Further work is still required to determine the functional variations and finally clarify the underlying biological mechanisms.

Ocal O, Pashkov V, Kollipara RK, et al.
A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics.
Dis Model Mech. 2015; 8(10):1201-11 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48(Cre);LSL-Kras(G12D);Cdkn2a(f/f)) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice with KIC mice and show that the Rgs16::GFP transgene is a Kras(G12D)-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers.

Burns KE, Thévenin D
Down-regulation of PAR1 activity with a pHLIP-based allosteric antagonist induces cancer cell death.
Biochem J. 2015; 472(3):287-95 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Even though abnormal expression of G protein-coupled receptors (GPCRs) and of their ligands is observed in many cancer cells of various origins, only a few anti-cancer compounds directly act on their signalling. One promising approach to modulate their activity consists of targeting the receptor cytoplasmic surfaces interacting with the associated G-proteins using peptides mimicking the intracellular loops of the receptor. Thus, to be fully effective, the peptide mimics must be selectively targeted to the tumour while sparing healthy tissues, translocated across the cell membrane and stay anchored to the cytoplasmic leaflet of the plasma membrane. In the present study, we introduce a novel way to selectively target and inhibit the activity of a GPCR in cancer cells under acidic conditions, such as those found in solid tumours. We find that the conjugation of a peptide fragment derived from the third intracellular loop (i3) of the protease-activated receptor 1 (PAR1) to a peptide that can selectively target tumours solely based on their acidity [pH(Low) Insertion Peptide (pHLIP)], produces a construct capable of effectively down-regulating PAR1 activity in a concentration- and pH-dependent manner and of inducing a potent cytotoxic effect in a panel of cancer cells that is proportional to the relative level of receptor expression at the cell surface. This strategy not only allows for a more selective targeting and specific intracellular delivery than current approaches, but also offers new possibilities for developing novel anti-cancer drugs targeting GPCRs.

Hu M, Wang C, Li W, et al.
A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling.
PLoS Pathog. 2015; 11(9):e1005171 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Kaposi's sarcoma (KS) is a highly disseminated angiogenic tumor of endothelial cells linked to infection by Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced tumor dissemination and metastasis remain unknown. Here, we found that ectopic expression of miR-K12-3 (miR-K3) promoted endothelial cell migration and invasion. Bioinformatics and luciferase reporter analyses showed that miR-K3 directly targeted G protein-coupled receptor (GPCR) kinase 2 (GRK2, official gene symbol ADRBK1). Importantly, overexpression of GRK2 reversed miR-K3 induction of cell migration and invasion. Furthermore, the chemokine receptor CXCR2, which was negatively regulated by GRK2, was upregulated in miR-K3-transduced endothelial cells. Knock down of CXCR2 abolished miR-K3-induced cell migration and invasion. Moreover, miR-K3 downregulation of GRK2 relieved its direct inhibitory effect on AKT. Both CXCR2 induction and the release of AKT from GRK2 were required for miR-K3 maximum activation of AKT and induction of cell migration and invasion. Finally, deletion of miR-K3 from the KSHV genome abrogated its effect on the GRK2/CXCR2/AKT pathway and KSHV-induced migration and invasion. Our data provide the first-line evidence that, by repressing GRK2, miR-K3 facilitates cell migration and invasion via activation of CXCR2/AKT signaling, which likely contribute to the dissemination of KSHV-induced tumors.

Kang S, Kim B, Kang HS, et al.
SCTR regulates cell cycle-related genes toward anti-proliferation in normal breast cells while having pro-proliferation activity in breast cancer cells.
Int J Oncol. 2015; 47(5):1923-31 [PubMed] Related Publications
Secretin receptor (SCTR), the G-protein coupled receptor (GPCR) for secretin, has been observed to be upregulated in a few tumor types while downregulated in others, promoting or suppressing the proliferation of tumor cells, respectively. However, little is known about the molecular regulatory mechanism of dysregulation in cancer. In the present study, an analysis of the biological pathways affected by methylation in breast cancer using the methylome databases revealed that GPCRs played a major part in the affected pathway. SCTR, one of the dysregulated GPCRs, showed hypermethylation (p<0.01) and downregulation (p<0.05) in breast cancer tissues. Pathway analysis after the downregulation of SCTR by siRNA in MCF-10A cells identified the G2/M stage checkpoint as the top-scored pathway. Cell cycle-related genes were all upregulated or downregulated suppressing cell proliferation. However, the overexpression of SCTR in MCF-7 cells led to a 35% increase of the cell proliferation index and 2.1-fold increase of cellular migration. Our findings indicate that SCTR suppresses the proliferation of normal breast cells, while the gene stimulates the proliferation and migration of cancer cells being downregulated by promoter methylation.

Pan D, Zhu Y, Zhou Z, et al.
The CBM Complex Underwrites NF-κB Activation to Promote HER2-Associated Tumor Malignancy.
Mol Cancer Res. 2016; 14(1):93-102 [PubMed] Related Publications
UNLABELLED: The HER2/Neu protein is overexpressed in a large fraction of human breast cancers. NF-κB is one of several transcription factors that are aberrantly activated in HER2-positive breast cancers; however, the molecular mechanism by which HER2 activates NF-κB remains unclear. The CARMA3-BCL10-MALT1 (CBM) complex is required for GPCR- and EGFR-induced NF-κB activation. In the current study, the role of the CBM complex in HER2-mediated NF-κB activation and HER2-positive breast cancer was investigated. Interestingly, HER2-mediated NF-κB activation requires protein kinase C (PKC) activity rather than AKT activity. Using biochemical and genetic approaches, it was shown that the CBM complex is required for HER2-induced NF-κB activation and functionally contributes to multiple properties of malignancy, such as proliferation, avoidance of apoptosis, migration, and invasion, both in vitro and in vivo. In addition, CARMA3-mediated NF-κB activity was required for the upregulation of two matrix metalloproteinases (MMP), MMP1 and MMP13, both of which contribute to tumor metastasis. To further access the physiologic role of CBM complex-mediated NF-κB activation in HER2-positive breast cancer progression, Malt1 knockout mice (Malt1(-/-)) were crossed with MMTV-Neu mice, in which mammary tumors spontaneously developed with HER2 overexpression. We observed delayed onset and prolonged progression time in mammary tumors in Malt1 knockout mice compared with control mice. In summary, these data demonstrate that the CBM complex is a crucial component mediating HER2-induced NF-κB signaling and tumor malignancy in HER2-positive breast cancer.
IMPLICATIONS: The CBM complex bridges key signaling pathways to confer malignant phenotypes and metastatic potential in HER2-associated breast cancer.

Cho-Clark M, Larco DO, Zahn BR, et al.
GnRH-(1-5) activates matrix metallopeptidase-9 to release epidermal growth factor and promote cellular invasion.
Mol Cell Endocrinol. 2015; 415:114-25 [PubMed] Related Publications
In the extracellular space, the gonadotropin-releasing hormone (GnRH) is metabolized by the zinc metalloendopeptidase EC3.4.24.15 (EP24.15) to form the pentapeptide, GnRH-(1-5). GnRH-(1-5) diverges in function and mechanism of action from GnRH in the brain and periphery. GnRH-(1-5) acts on the orphan G protein-coupled receptor 101 (GPR101) to sequentially stimulate epidermal growth factor (EGF) release, phosphorylate the EGF receptor (EGFR), and facilitate cellular migration. These GnRH-(1-5) actions are dependent on matrix metallopeptidase (MMP) activity. Here, we demonstrated that these GnRH-(1-5) effects are dependent on increased MMP-9 enzymatic activity in the Ishikawa and ECC-1 cell lines. Furthermore, the effects of GnRH-(1-5) mediated by GPR101 and the subsequent increase in MMP-9 enzymatic activity lead to an increase in cellular invasion. These results suggest that GnRH-(1-5) and GPR101 regulation of MMP-9 may have physiological relevance in the metastatic potential of endometrial cancer cells.

Bai H, Li H, Li W, et al.
The PI3K/AKT/mTOR pathway is a potential predictor of distinct invasive and migratory capacities in human ovarian cancer cell lines.
Oncotarget. 2015; 6(28):25520-32 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
OBJECTIVES: To explore the genetic and molecular events that control subclones exhibiting distinct invasive/migratory capacities derived from human epithelial ovarian cancer (EOC) cell line A2780 and SKOV3.
METHODS: Single-cell subclones were isolated and established that were derived from the SKOV3 and A2780 cell lines through limiting dilution methodology. Transwell insert assays and MTT assays were performed to screen and identify the subclones exhibiting the highest and the lowest invasive/migratory capacities, and the selected subclones were renamed as A-H (A2780 high), A-L (A2780 low), S-H (SKOV3 high), and S-L (SKOV3 low). Their biological characteristics were evaluated. RNA-Seq was conducted on the targeted subclones.
RESULTS: Compared with their corresponding counterparts, A-H/S-H cells exhibited significantly higher invasive/migratory capacities (P < 0.001 and = 0.001, respectively). A-H/S-H cells displayed a clear reduction in doubling time (P = 0.004 and 0.001, respectively), and a significant increase in the percentage of cells in S phase (P = 0.004 and 0.022, respectively). Additionally, the apoptotic rates of A-H/S-H cells were significantly lower than those of A-L/S-L cells (P = 0.002 and 0.026, respectively). At both mRNA and protein levels, caspase-3 and caspase-7 expression were reduced but Bcl-2 expression was increased in A-H/S-H cells. The TrkB (anoikis-related) and Beclin1 (autophagy-related) levels were consistently high and low, respectively, in both A-H/S-H cells. Resistance to chemotherapy in vitro and higher capacities on tumor formation in vivo was presented in both A-H/S-H cells. PI3K/AKT/mTOR pathway components, PIK3CA, PIK3CD, AKT3, ECM1, GPCR, mTOR and PRKCB were increased but that the Nur77 and PTEN were decreased in A-H/S-H cells, identified by RNA-Seq and consistently confirmed by RT-PCR and Western blot analyses.
CONCLUSIONS: Heterogeneous cell subpopulations exhibiting distinct invasive and migratory capacities co-exist within the SKOV3 and A2780 cell lines. PI3K/AKT/mTOR pathway activation is associated with higher invasive and migratory capacities in subpopulations of human ovarian cancer cell lines. Inhibiting this pathway may be useful for the chemoprevention or treatment of EOC.

Mohamed AD, Tremblay AM, Murray GI, Wackerhage H
The Hippo signal transduction pathway in soft tissue sarcomas.
Biochim Biophys Acta. 2015; 1856(1):121-9 [PubMed] Related Publications
Sarcomas are rare cancers (≈1% of all solid tumours) usually of mesenchymal origin. Here, we review evidence implicating the Hippo pathway in soft tissue sarcomas. Several transgenic mouse models of Hippo pathway members (Nf2, Mob1, LATS1 and YAP1 mutants) develop various types of sarcoma. Despite that, Hippo member genes are rarely point mutated in human sarcomas. Instead, WWTR1-CAMTA1 and YAP1-TFE3 fusion genes are found in almost all cases of epithelioid haemangioendothelioma. Also copy number gains of YAP1 and other Hippo members occur at low frequencies but the most likely cause of perturbed Hippo signalling in sarcoma is the cross-talk with commonly mutated cancer genes such as KRAS, PIK3CA, CTNNB1 or FBXW7. Current Hippo pathway-targeting drugs include compounds that target the interaction between YAP and TEAD G protein-coupled receptors (GPCR) and the mevalonate pathway (e.g. statins). Given that many Hippo pathway-modulating drugs are already used in patients, this could lead to early clinical trials testing their efficacy in different types of sarcoma.

El Ghorayeb N, Bourdeau I, Lacroix A
Multiple aberrant hormone receptors in Cushing's syndrome.
Eur J Endocrinol. 2015; 173(4):M45-60 [PubMed] Related Publications
The mechanisms regulating cortisol production when ACTH of pituitary origin is suppressed in primary adrenal causes of Cushing's syndrome (CS) include diverse genetic and molecular mechanisms. These can lead either to constitutive activation of the cAMP system and steroidogenesis or to its regulation exerted by the aberrant adrenal expression of several hormone receptors, particularly G-protein coupled hormone receptors (GPCR) and their ligands. Screening for aberrant expression of GPCR in bilateral macronodular adrenal hyperplasia (BMAH) and unilateral adrenal tumors of patients with overt or subclinical CS demonstrates the frequent co-expression of several receptors. Aberrant hormone receptors can also exert their activity by regulating the paracrine secretion of ACTH or other ligands for those receptors in BMAH or unilateral tumors. The aberrant expression of hormone receptors is not limited to adrenal CS but can be implicated in other endocrine tumors including primary aldosteronism and Cushing's disease. Targeted therapies to block the aberrant receptors or their ligands could become useful in the future.

Teng Y, Radde BN, Litchfield LM, et al.
Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.
J Biol Chem. 2015; 290(25):15799-811 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction.

Arreola R, Becerril-Villanueva E, Cruz-Fuentes C, et al.
Immunomodulatory effects mediated by serotonin.
J Immunol Res. 2015; 2015:354957 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins; and (c) enzymes controlling 5-HT metabolism, such as IDO and MAO, which can generate biologically active catabolites, including melatonin, kynurenines, and kynurenamines. This review covers the clinical and experimental mechanisms involved in 5-HT-induced immunomodulation. These mechanisms are cell-specific and depend on the expression of serotonergic components in immune cells. Consequently, 5-HT can modulate several immunological events, such as chemotaxis, leukocyte activation, proliferation, cytokine secretion, anergy, and apoptosis. The effects of 5-HT on immune cells may be relevant in the clinical outcome of pathologies with an inflammatory component. Major depression, fibromyalgia, Alzheimer disease, psoriasis, arthritis, allergies, and asthma are all associated with changes in the serotonergic system associated with leukocytes. Thus, pharmacological regulation of the serotonergic system may modulate immune function and provide therapeutic alternatives for these diseases.

Sangeetha M, Deepa PR, Rishi P, et al.
Global gene deregulations in FASN silenced retinoblastoma cancer cells: molecular and clinico-pathological correlations.
J Cell Biochem. 2015; 116(11):2676-94 [PubMed] Related Publications
Activation of fatty acid synthase (FASN) enzyme in the de novo lipogenic pathway has been reported in various cancers including retinoblastoma (RB), a pediatric ocular cancer. The present study investigates lipogenesis-dependent survival of RB cancer cells and the associated molecular pathways in FASN silenced RB cells. The siRNA-mediated FASN gene knockdown in RB cancer cells (Y79, WERI RB1) repressed FASN mRNA and protein expressions, and decreased cancer cell viability. Global gene expression microarray analysis was performed in optimized FASN siRNA transfected and untransfected RB cells. Deregulation of various downstream cell signaling pathways such as EGFR (n = 55 genes), TGF-beta (n = 45 genes), cell cycle (n = 41 genes), MAPK (n = 39 genes), lipid metabolism (n = 23 genes), apoptosis (n = 21 genes), GPCR signaling (n = 21 genes), and oxidative phosporylation (n = 18 genes) were observed. The qRT-PCR validation in FASN knockdown RB cells revealed up-regulation of ANXA1, DAPK2, and down-regulation of SKP2, SREBP1c, RXRA, ACACB, FASN, HMGCR, USP2a genes that favored the anti-cancer effect of lipogenic inhibition in RB. The expression of these genes in primary RB tumor tissues were correlated with FASN expression, based on their clinico-pathological features. The differential phosphorylation status of the various PI3K/AKT pathway proteins (by western analysis) indicated that the FASN gene silencing indeed mediated apoptosis in RB cells through the PI3K/AKT pathway. Scratch assay clearly revealed that FASN silencing reduced the invading property of RB cancer cells. Dependence of RB cancer cells on lipid metabolism for survival and progression is implicated. Thus targeting FASN is a promising strategy in RB therapy.

Yu OM, Brown JH
G Protein-Coupled Receptor and RhoA-Stimulated Transcriptional Responses: Links to Inflammation, Differentiation, and Cell Proliferation.
Mol Pharmacol. 2015; 88(1):171-80 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
The low molecular weight G protein RhoA (rat sarcoma virus homolog family member A) serves as a node for transducing signals through G protein-coupled receptors (GPCRs). Activation of RhoA occurs through coupling of G proteins, most prominently, G12/13, to Rho guanine nucleotide exchange factors. The GPCR ligands that are most efficacious for RhoA activation include thrombin, lysophosphatidic acid, sphingosine-1-phosphate, and thromboxane A2. These ligands also stimulate proliferation, differentiation, and inflammation in a variety of cell and tissues types. The molecular events underlying these responses are the activation of transcription factors, transcriptional coactivators, and downstream gene programs. This review describes the pathways leading from GPCRs and RhoA to the regulation of activator protein-1, NFκB (nuclear factor κ-light-chain-enhancer of activated B cells), myocardin-related transcription factor A, and Yes-associated protein. We also focus on the importance of two prominent downstream transcriptional gene targets, the inflammatory mediator cyclooxygenase 2, and the matricellular protein cysteine-rich angiogenic inducer 61 (CCN1). Finally, we describe the importance of GPCR-induced activation of these pathways in the pathophysiology of cancer, fibrosis, and cardiovascular disease.

Liang J, Lv J, Liu Z
Identification of stage-specific biomarkers in lung adenocarcinoma based on RNA-seq data.
Tumour Biol. 2015; 36(8):6391-9 [PubMed] Related Publications
Tumorigenesis is a multistep process that attributes to the sequential accumulation of abnormal expression in key oncogenes or tumor suppressors. We aimed to identify stage-specific biomarkers to distinguish lung adenocarcinoma (LAC) stages in cancer progression. RNA-sequencing data of LAC and matched adjacent non-cancer tissues were downloaded from the Cancer Genome Atlas, including 29 pairs of samples from LAC at stage I, 14 from LAC at stage II, 13 from LAC at stage III, and 1 from LAC at stage IV. Differentially expressed genes (DEGs) were analyzed for each case at different stages of LAC. DEGs were further annotated based on transcription factor data information, tumor-associated gene database, and protein-protein interaction database. Functional annotation was performed for genes in PPI network by DAVID online tool. Our analysis identified 11 high-frequency DEGs in the stage I, 29 in the stage II, and 90 in the stage III of LAC. Among them, eight genes were significantly correlated with LAC stages and identified as biomarkers in LAC progression. ANGPTL5, C7orf16, EDN3, LOC150622, HOXA11AS, IL1F5, and USH1G significantly distinguished stage III from stages I and II. GJB6 was significantly enriched in the gap junction trafficking pathway, while C7orf16 and EDN3 were enriched in Wnt signaling pathway, cell cycle, and G protein-coupled receptor (GPCR) signaling. Up-regulated GJB6 especially in LAC stage II and down-regulated C7orf16 and EDN3 specifically in stage III were identified as biomarkers for distinguishing cancer stage in tumor progression through dysregulating gap junction, Wnt signaling, and GPCR signaling pathways.

Zhang J, He S, Wang Y, et al.
Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase.
PLoS Pathog. 2015; 11(3):e1004768 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT) pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi's sarcoma-associated herpesvirus (kGPCR) and cytomegalovirus (US28) shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA), which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of "constitutive" NFAT activation by viral GPCRs.

Sharpe HJ, Wang W, Hannoush RN, de Sauvage FJ
Regulation of the oncoprotein Smoothened by small molecules.
Nat Chem Biol. 2015; 11(4):246-55 [PubMed] Related Publications
The Hedgehog pathway is critical for animal development and has been implicated in multiple human malignancies. Despite great interest in targeting the pathway pharmacologically, many of the principles underlying the signal transduction cascade remain poorly understood. Hedgehog ligands are recognized by a unique receptor system that features the transporter-like protein Patched and the G protein-coupled receptor (GPCR)-like Smoothened (SMO). The biochemical interaction between these transmembrane proteins is the subject of intensive efforts. Recent structural and functional studies have provided great insight into the small-molecule regulation of SMO through identification of two distinct ligand-binding sites. In this Perspective, we review these recent findings and relate them to potential mechanisms for the endogenous regulation of SMO.

Telford BJ, Chen A, Beetham H, et al.
Synthetic Lethal Screens Identify Vulnerabilities in GPCR Signaling and Cytoskeletal Organization in E-Cadherin-Deficient Cells.
Mol Cancer Ther. 2015; 14(5):1213-23 [PubMed] Related Publications
The CDH1 gene, which encodes the cell-to-cell adhesion protein E-cadherin, is frequently mutated in lobular breast cancer (LBC) and diffuse gastric cancer (DGC). However, because E-cadherin is a tumor suppressor protein and lost from the cancer cell, it is not a conventional drug target. To overcome this, we have taken a synthetic lethal approach to determine whether the loss of E-cadherin creates druggable vulnerabilities. We first conducted a genome-wide siRNA screen of isogenic MCF10A cells with and without CDH1 expression. Gene ontology analysis demonstrated that G-protein-coupled receptor (GPCR) signaling proteins were highly enriched among the synthetic lethal candidates. Diverse families of cytoskeletal proteins were also frequently represented. These broad classes of E-cadherin synthetic lethal hits were validated using both lentiviral-mediated shRNA knockdown and specific antagonists, including the JAK inhibitor LY2784544, Pertussis toxin, and the aurora kinase inhibitors alisertib and danusertib. Next, we conducted a 4,057 known drug screen and time course studies on the CDH1 isogenic MCF10A cell lines and identified additional drug classes with linkages to GPCR signaling and cytoskeletal function that showed evidence of E-cadherin synthetic lethality. These included multiple histone deacetylase inhibitors, including vorinostat and entinostat, PI3K inhibitors, and the tyrosine kinase inhibitors crizotinib and saracatinib. Together, these results demonstrate that E-cadherin loss creates druggable vulnerabilities that have the potential to improve the management of both sporadic and familial LBC and DGC.

Plouffe SW, Hong AW, Guan KL
Disease implications of the Hippo/YAP pathway.
Trends Mol Med. 2015; 21(4):212-22 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
The Hippo signaling pathway is important for controlling organ size and tissue homeostasis. Originally identified in Drosophila melanogaster, the core components of the Hippo pathway are highly conserved in mammals. The Hippo pathway can be modulated by a wide range of stimuli, including G protein-coupled receptor (GPCR) signaling, changes in the actin cytoskeleton, cell-cell contact, and cell polarity. When activated, the Hippo pathway functions as a tumor suppressor to limit cell growth. However, dysregulation by genetic inactivation of core pathway components or amplification or gene fusion of its downstream effectors results in increased cell proliferation and decreased apoptosis and differentiation. Unsurprisingly, this can lead to tissue overgrowth, tumorigenesis, and many other diseases.

Zanini S, Giovinazzo F, Alaimo D, et al.
GNA15 expression in small intestinal neuroendocrine neoplasia: functional and signalling pathway analyses.
Cell Signal. 2015; 27(5):899-907 [PubMed] Related Publications
Gastroenteropancreatic neuroendocrine neoplasia (GEP-NEN) comprises a heterogeneous group of tumours that exhibit widely divergent biological behaviour. The identification of new targetable GPCR-pathways involved in regulating cell function could help to identify new therapeutic strategies. We assessed the function of a haematopoietic stem cell heterotrimeric G-protein, Gα15, in gut neuroendocrine cell models and examined the clinical implications of its over expression. Functional assays were undertaken to define the role of GNA15 in the small intestinal NEN cell line KRJ-I and in clinical samples from small intestinal NENs using quantitative polymerase chain reaction, western blot, proliferation and apoptosis assays, immunoprecipitation, immunohistochemistry (IHC) and automated quantitative analysis (AQUA). GNA15 was not expressed in normal neuroendocrine cells but was overexpressed in GEP-NEN cell lines. In KRJ-I cells, decreased expression of GNA15 was associated with inhibition of proliferation, activation of apoptosis and differential effects on pro-proliferative ERK, NFκB and Akt pathway signalling. Moreover, Gα15 was demonstrated to couple to the ß1 adrenergic receptor and modulated proliferative signals through this GPCR. Transcript and protein levels of GNA15 were significantly elevated in primary and metastatic tumours compared to normal mucosa and were particularly increased in low Ki-67 expressing tumours. IHC and AQUA revealed that a higher Gα15 expression was associated with a poorer survival. GNA15 may have a pathobiological role in SI-NENs. Targeting this signalling mediator could provide an opportunity for the development of new therapeutic strategies for this tumour type.

Liang F, Yue J, Wang J, et al.
GPCR48/LGR4 promotes tumorigenesis of prostate cancer via PI3K/Akt signaling pathway.
Med Oncol. 2015; 32(3):49 [PubMed] Related Publications
G-protein-coupled receptor (GPCR) 48, also known as leucine-rich repeat-containing G-protein-coupled receptor (LGR) 4, is an orphan receptor belonging to the GPCR superfamily, which plays an important role in the development of various organs and multiple cancers. However, the function of GPCR48/LGR4 in prostate cancer has not been fully investigated. Herein, GPCR48/LGR4 was overexpressed and silenced in prostate cancer cells via plasmid and shRNA transfection, respectively. The expression of GPCR48/LGR4 in mRNA and protein levels was analyzed using RT-qPCR and Western blotting, respectively. Subsequently, we demonstrated the effects of GPCR48/LGR4 on the migration, invasion, proliferation and apoptosis of prostate cancer cells, including Du145 and PC-3 cells. Next, we investigated the relationship between GPCR48/LGR4 and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling pathway. The results showed that the overexpression of GPCR48/LGR4 was associated with the up-regulation of Akt, a key effector of PI3K/Akt signaling pathway, which meantime up-regulated the expression of mammalian target of rapamycin (mTOR) and glycogen synthase kinase 3β (GSK-3β), while down-regulated forkhead box, class O (FOXO), all of whom are the downstream targets of PI3K/Akt signaling pathway. Hence, the results suggested that GPCR48/LGR4 may regulate prostate cancer cells and tumor growth via the PI3K/Akt signaling pathway and could provide a better therapeutic target for the diagnosis and treatment of prostate cancer.

Azad AK, Lawen A, Keith JM
Prediction of signaling cross-talks contributing to acquired drug resistance in breast cancer cells by Bayesian statistical modeling.
BMC Syst Biol. 2015; 9:2 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: Initial success of inhibitors targeting oncogenes is often followed by tumor relapse due to acquired resistance. In addition to mutations in targeted oncogenes, signaling cross-talks among pathways play a vital role in such drug inefficacy. These include activation of compensatory pathways and altered activities of key effectors in other cell survival and growth-associated pathways.
RESULTS: We propose a computational framework using Bayesian modeling to systematically characterize potential cross-talks among breast cancer signaling pathways. We employed a fully Bayesian approach known as the p 1-model to infer posterior probabilities of gene-pairs in networks derived from the gene expression datasets of ErbB2-positive breast cancer cell-lines (parental, lapatinib-sensitive cell-line SKBR3 and the lapatinib-resistant cell-line SKBR3-R, derived from SKBR3). Using this computational framework, we searched for cross-talks between EGFR/ErbB and other signaling pathways from Reactome, KEGG and WikiPathway databases that contribute to lapatinib resistance. We identified 104, 188 and 299 gene-pairs as putative drug-resistant cross-talks, respectively, each comprised of a gene in the EGFR/ErbB signaling pathway and a gene from another signaling pathway, that appear to be interacting in resistant cells but not in parental cells. In 168 of these (distinct) gene-pairs, both of the interacting partners are up-regulated in resistant conditions relative to parental conditions. These gene-pairs are prime candidates for novel cross-talks contributing to lapatinib resistance. They associate EGFR/ErbB signaling with six other signaling pathways: Notch, Wnt, GPCR, hedgehog, insulin receptor/IGF1R and TGF- β receptor signaling. We conducted a literature survey to validate these cross-talks, and found evidence supporting a role for many of them in contributing to drug resistance. We also analyzed an independent study of lapatinib resistance in the BT474 breast cancer cell-line and found the same signaling pathways making cross-talks with the EGFR/ErbB signaling pathway as in the primary dataset.
CONCLUSIONS: Our results indicate that the activation of compensatory pathways can potentially cause up-regulation of EGFR/ErbB pathway genes (counteracting the inhibiting effect of lapatinib) via signaling cross-talk. Thus, the up-regulated members of these compensatory pathways along with the members of the EGFR/ErbB signaling pathway are interesting as potential targets for designing novel anti-cancer therapeutics.

Sandgren J, Holm S, Marino AM, et al.
Whole Exome- and mRNA-Sequencing of an AT/RT Case Reveals Few Somatic Mutations and Several Deregulated Signalling Pathways in the Context of SMARCB1 Deficiency.
Biomed Res Int. 2015; 2015:862039 [PubMed] Article available free on PMC after 01/04/2017 Related Publications
BACKGROUND: AT/RTs are rare aggressive brain tumours, mainly affecting young children. Most cases present with genetic inactivation of SMARCB1, a core member of the SWI/SNF chromatin-remodeling complex. We have performed whole exome- and mRNA-sequencing on an early onset AT/RT case for detection of genetic events potentially contributing to the disease.
RESULTS: A de novo germline variant in SMARCB1, c.601C>T p.Arg201∗, in combination with somatic deletion of the healthy allele is likely the major tumour causing event. Only seven somatic small scale mutations were discovered (hitting SEPT03, H2BFM, ZIC4, HIST2H2AB, ZIK1, KRTAP6-3, and IFNA8). All were found with subclonal allele frequencies (range 5.7-17%) and none were expressed. However, besides SMARCB1, candidate genes affected by predicted damaging germline variants that were expressed were detected (KDM5C, NUMA1, and PCM1). Analysis of differently expressed genes revealed many dysregulated pathways in the tumour, such as cell cycle, CXCR4 pathway, GPCR-signalling, and neuronal system. FGFR1, CXCR4, and MDK were upregulated and may represent possible drug targets.
CONCLUSION: The loss of SMARCB1 function leads to AT/RT development and deregulated genes and pathways. Additional predisposing events may however contribute. Studies utilizing NGS technologies in larger cohorts will probably identify recurrent genetic and epigenetic alterations and molecular subgroups with implications for clinical practice and development of targeted therapies.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GPRC6A, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999