MSN

Gene Summary

Gene:MSN; moesin
Aliases: HEL70, IMD50
Location:Xq12
Summary:Moesin (for membrane-organizing extension spike protein) is a member of the ERM family which includes ezrin and radixin. ERM proteins appear to function as cross-linkers between plasma membranes and actin-based cytoskeletons. Moesin is localized to filopodia and other membranous protrusions that are important for cell-cell recognition and signaling and for cell movement. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:moesin
Source:NCBIAccessed: 29 August, 2019

Ontology:

What does this gene/protein do?
Show (29)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MSN (cancer-related)

Ergün S
Cross-Kingdom Gene regulation via miRNAs of Hypericum perforatum (St. John's wort) flower dietetically absorbed: An in silico approach to define potential biomarkers for prostate cancer.
Comput Biol Chem. 2019; 80:16-22 [PubMed] Related Publications
Prostate cancer (PCa) is the most frequent type of cancer in men. Hypericum perforatum (H. Perforatum) extract (HPE) administration provides remarkable decrease of PCa development. H. perforatum contains 7 conserved miRNAs (Hyp-miR-156a, Hyp-miR-156b, Hyp-miR-166, Hyp-miR-390, Hyp-miR-394, Hyp-miR-396 and Hyp-miR-414) with different targets. In this study, we aimed to investigate cross-kingdom gene regulation via miRNAs of H. perforatum flower dietetically absorbed in manner of an in silico approach to define potential biomarkers for PCa. psRNATarget database was used to find human genes targeted by 7 pre-defined H. perforatum miRNAs. We defined the mostly affected gene families from these miRNAs as ZNF, TMEM, SLC and FAM gene families. GeneMANIA database was used to define the most affected genes (TMEM41B and SLC4A7) from these 7 miRNAs. cBioPortal database was used to define alteration frequencies of TMEM41B and SLC4A7 on different types of PCa and to measure the mutual interaction potency and significance of co-occurence in PCa. This analysis showed that neuroendocrine prostate cancer (NEPC) had the highest total mutation frequency (22%) of TMEM41B and SLC4A7 genes. Also, TMEM41B and SLC4A7 genes had an average 2.1% pathway change potential among all different types of PCa. Moreover, TMEM41B and SLC4A7 gene pair was found significantly co-occurrent in PCa (p < 0.001). Finally, via GEPIA database, we used Spearman correlation analysis to measure the correlation degree of TMEM41B and SLC4A7 genes in PCa and found their significant correlation with PCa (p = 1.2 × 10

Xia J, Ozaki I, Matsuhashi S, et al.
Mechanisms of PKC-Mediated Enhancement of HIF-1α Activity and its Inhibition by Vitamin K2 in Hepatocellular Carcinoma Cells.
Int J Mol Sci. 2019; 20(5) [PubMed] Free Access to Full Article Related Publications
Hypoxia-inducible factor 1 (HIF-1) plays important roles in cancer cell biology. HIF-1α is reportedly activated by several factors, including protein kinase C (PKC), in addition to hypoxia. We investigated the role of PKC isoforms and the effects of vitamin K2 (VK2) in the activation process of HIF-1α. Human hepatocellular carcinoma (HCC)-derived Huh7 cells were cultured under normoxic and hypoxic (1% O₂) conditions with or without the PKC stimulator TPA. The expression, transcriptional activity and nuclear translocation of HIF-1α were examined under treatment with PKC inhibitors, siRNAs against each PKC isoform and VK2. Hypoxia increased the expression and activity of HIF-1α. TPA increased the HIF-1α activity several times under both normoxic and hypoxic conditions. PKC-δ siRNA-mediated knockdown, PKC-δ inhibitor (rottlerin) and pan-PKC inhibitor (Ro-31-8425) suppressed the expression and transcriptional activity of HIF-1α. VK2 significantly inhibited the TPA-induced HIF-1α transcriptional activity and suppressed the expression and nuclear translocation of HIF-1α induced by TPA without altering the HIF-1α mRNA levels. These data indicate that PKC-δ enhances the HIF-1α transcriptional activity by increasing the nuclear translocation, and that VK2 might suppress the HIF-1α activation through the inhibition of PKC in HCC cells.

Wang P, Magdolen V, Seidl C, et al.
Kallikrein-related peptidases 4, 5, 6 and 7 regulate tumour-associated factors in serous ovarian cancer.
Br J Cancer. 2018; 119(7):1-9 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
BACKGROUND: Tissue kallikrein-related peptidases 4, 5, 6 and 7 (KLK4-7) strongly increase the malignancy of ovarian cancer cells. Deciphering their downstream effectors, we aimed at finding new potential prognostic biomarkers and treatment targets for ovarian cancer patients. KLK4-7-transfected (OV-KLK4-7) and vector-control OV-MZ-6 (OV-VC) ovarian cancer cells were established to select differentially regulated factors.
METHODS: With three independent approaches, PCR arrays, genome-wide microarray and proteome analyses, we identified 10 candidates (MSN, KRT19, COL5A2, COL1A2, BMP5, F10, KRT7, JUNB, BMP4, MMP1). To determine differential protein expression, we performed western blot analyses, immunofluorescence and immunohistochemistry for four candidates (MSN, KRT19, KRT7, JUNB) in cells, tumour xenograft and patient-derived tissues.
RESULTS: We demonstrated that KLK4-7 clearly regulates expression of MSN, KRT19, KRT7 and JUNB at the mRNA and protein levels in ovarian cancer cells and tissues. Protein expression of the top-upregulated effectors, MSN and KRT19, was investigated by immunohistochemistry in patients afflicted with serous ovarian cancer and related to KLK4-7 immunoexpression. Significant positive associations were found for KRT19/KLK4, KRT19/KLK5 and MSN/KLK7.
CONCLUSION: These findings imply that KLK4-7 exert key modulatory effects on other cancer-related genes and proteins in ovarian cancer. These downstream effectors of KLK4-7, MSN and KRT19 may represent important therapeutic targets in serous ovarian cancer.

Kotani S, Yoda A, Kon A, et al.
Molecular pathogenesis of disease progression in MLL-rearranged AML.
Leukemia. 2019; 33(3):612-624 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Leukemic relapse is frequently accompanied by progressively aggressive clinical course. To understand the molecular mechanism of leukemic relapse, MLL/AF9-transformed mouse leukemia cells were serially transplanted in C57BL/6 mice (N = 96) by mimicking repeated recurrences, where mutations were monitored by exome sequencing (N = 42). The onset of leukemia was progressively promoted with advanced transplants, during which increasing numbers of somatic mutations were acquired (P < 0.005). Among these, mutations in Ptpn11 (p.G60R) and Braf (p.V637E) corresponded to those identified in human MLL-AML, while recurrent mutations affecting Msn (p.R295C) were observed only in mouse but not in human MLL-AML. Another mutated gene of interest was Gnb2 which was reported to be recurrently mutated in various hematological neoplasms. Gnb2 mutations (p.G77R) were significantly increased in clone size (P = 0.007) and associated with earlier leukemia onset (P = 0.011). GNB2 transcripts were significantly upregulated in human MLL-AML compared to MLL-negative AML (P < 0.05), which was supported by significantly increased Gnb2 transcript induced by MLL/AF9 overexpression (P < 0.001). In in vivo model, both mutation and overexpression of GNB2 caused leukemogenesis, and downregulation of GNB2 expression reduced proliferative potential and survival benefit, suggesting a driver role of GNB2. In conclusion, alterations of driver genes over time may play an important role in the progression of MLL-AML.

Yoshizawa S, Umezu T, Saitoh Y, et al.
Exosomal miRNA Signatures for Late-Onset Acute Graft-Versus-Host Disease in Allogenic Hematopoietic Stem Cell Transplantation.
Int J Mol Sci. 2018; 19(9) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Recent studies have demonstrated that exosomal microRNAs (miRNAs) have the potential of facilitating molecular diagnosis. Currently, little is known about the underlying mechanism behind late-onset acute graft-versus-host disease (LA GVHD). Identifying differentially expressed miRNAs in exosomes should be useful for understanding the role of miRNAs in this disease. This study was established to investigate the relevance of miRNAs in exosomes derived from patients developing LA GVHD after allogeneic hematopoietic stem cell transplantation (HSCT). Plasma samples were collected from patients with LA GVHD (

Xing F, Liu Y, Wu SY, et al.
Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis.
Cancer Res. 2018; 78(15):4316-4330 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Up to 30% of patients with metastatic breast cancer eventually develop brain metastasis, yet the pathologic mechanism behind this development remains poorly understood. Here, we profiled long noncoding RNAs in brain metastatic tumors from patients with breast cancer and found that the X-inactive-specific transcript (XIST) was significantly downregulated in these tissues. XIST expression levels inversely correlated with brain metastasis, but not with bone metastasis in patients. Silencing of XIST preferentially promoted brain metastatic growth of XIST

Shiao SPK, Grayson J, Lie A, Yu CH
Personalized Nutrition-Genes, Diet, and Related Interactive Parameters as Predictors of Cancer in Multiethnic Colorectal Cancer Families.
Nutrients. 2018; 10(6) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
To personalize nutrition, the purpose of this study was to examine five key genes in the folate metabolism pathway, and dietary parameters and related interactive parameters as predictors of colorectal cancer (CRC) by measuring the healthy eating index (HEI) in multiethnic families. The five genes included

Losi L, Fonda S, Saponaro S, et al.
Distinct DNA Methylation Profiles in Ovarian Tumors: Opportunities for Novel Biomarkers.
Int J Mol Sci. 2018; 19(6) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Aberrant methylation of multiple promoter CpG islands could be related to the biology of ovarian tumors and its determination could help to improve treatment strategies. DNA methylation profiling was performed using the Methylation Ligation-dependent Macroarray (MLM), an array-based analysis. Promoter regions of 41 genes were analyzed in 102 ovarian tumors and 17 normal ovarian samples. An average of 29% of hypermethylated promoter genes was observed in normal ovarian tissues. This percentage increased slightly in serous, endometrioid, and mucinous carcinomas (32%, 34%, and 45%, respectively), but decreased in germ cell tumors (20%). Ovarian tumors had methylation profiles that were more heterogeneous than other epithelial cancers. Unsupervised hierarchical clustering identified four groups that are very close to the histological subtypes of ovarian tumors. Aberrant methylation of three genes (

Bosseler M, Marani V, Broukou A, et al.
Inhibition of HIF1α-Dependent Upregulation of Phospho-l-Plastin Resensitizes Multiple Myeloma Cells to Frontline Therapy.
Int J Mol Sci. 2018; 19(6) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
The introduction of novel frontline agents in multiple myeloma (MM), like immunomodulatory drugs and proteasome inhibitors, has improved the overall survival of patients. Yet, MM is still not curable, and drug resistance (DR) remains the main challenge. To improve the understanding of DR in MM, we established a resistant cell line (MOLP8/R). The exploration of DR mechanisms yielded an overexpression of HIF1α, due to impaired proteasome activity of MOLP8/R. We show that MOLP8/R, like other tumor cells, overexpressing HIF1α, have an increased resistance to the immune system. By exploring the main target genes regulated by HIF1α, we could not show an overexpression of these targets in MOLP8/R. We, however, show that MOLP8/R cells display a very high overexpression of

Huang PS, Chung IH, Lin YH, et al.
The Long Non-Coding RNA MIR503HG Enhances Proliferation of Human ALK-Negative Anaplastic Large-Cell Lymphoma.
Int J Mol Sci. 2018; 19(5) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Anaplastic lymphoma kinase (ALK)-negative anaplastic large-cell lymphoma (ALCL) is a rare type of highly malignant, non-Hodgkin lymphoma. Currently, only a few gene rearrangements have been linked to ALK-negative ALCL progression. However, the specific molecular mechanisms underlying the growth of ALK-negative ALCL tumors remain unclear. Here, we investigated aberrantly expressed, long non-coding RNAs (lncRNAs) in ALK-negative ALCL and assessed their potential biological function.

Guo H, Zhao L, Shi B, et al.
GALNT5 uaRNA promotes gastric cancer progression through its interaction with HSP90.
Oncogene. 2018; 37(33):4505-4517 [PubMed] Related Publications
Recently, long noncoding RNAs (lncRNAs) have been reported to play a pivotal role in the occurrence and progression of cancer because of their unique characteristics and have therefore become an active area of cancer research. The object of this study was to screen lncRNAs that are dysregulated in gastric cancer and to investigate their potential functions. Global expression of lncRNAs in gastric cancer and adjacent normal tissues of patients was profiled using a microarray assay. We identified an lncRNA (GALNT5 uaRNA, UTR-associated RNA) that is derived from the 3'-UTR of GALNT5. This lncRNA was transcribed independently of the coding region of GALNT5 and was determined to be markedly upregulated in human gastric carcinoma relative to their corresponding normal gastric tissues by quantitative RT-PCR (qRT-PCR) analysis of tissues from 122 gastric carcinoma patients. The expression of GALNT5 uaRNA was significantly correlated with the TNM stage and with lymph node metastasis. Further results demonstrated that GALNT5 uaRNA facilitated the proliferation and migration of gastric cancer cells in vitro and promoted tumor growth in a mouse model of human gastric cancer. Our results also indicated that GALNT5 uaRNA might function in gastric cancer by binding with HSP90. Further studies indicated that the 5'-end stem-loop motifs of GALNT5 uaRNA promoted the binding of HSP90 and its client proteins, and thus inhibited ubiquitination of the clients. These results expanded our understanding of GALNT5 uaRNA as a new avenue for therapeutic intervention against gastric cancer progression.

Huang C, Zhang Z, Chen L, et al.
Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.
Cancer Res. 2018; 78(11):2825-2838 [PubMed] Related Publications
Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G

Li W, Lee MR, Kim T, et al.
Activated STAT3 may participate in tumor progression through increasing CD133/survivin expression in early stage of colon cancer.
Biochem Biophys Res Commun. 2018; 497(1):354-361 [PubMed] Related Publications
The activation of signal transducer and activator of transcription 3 (STAT3) by elevated interleukin (IL) levels has been reported to regulate tumorigenesis both in vitro and in vivo. However, the clinical implication of p-STAT3 expression in colon cancer is still controversial. In this study, we evaluated the effect of STAT3 inactivation on biologic behavior of primary (Caco-2) and metastatic colon cancer cells (LoVo and SNU407) and the relation of p-STAT3 expression with the invasion of colon tumor. In vitro study, the STAT3 inhibition by siRNA and stattic treatment significantly reduced colony formation and cell migration and decreased CD133 and survivin the expression compared with a control in all three cell lines. Furthermore, primary cancer cells exhibited a marked decrease in CD133 expression and increased apoptosis compared to metastatic cells after stattic treatment. The immunohistochemical assay using clinical samples of colonic tumors with various invasion depth showed that p-STAT3 expression was inversely associated with tumor invasion (p = 0.001, hazard ratio (HR) = 0.328, 95% confidence interval (95%CI): 0.170-0.632). In conclusion, p-STAT3 may participate in the progression of the early stage of colon cancer through the up-regulation of CD133, which in turn induces survivin expression. However, the regulatory mechanism of these molecules in tumor progression in vivo is need to be more verified.

Menezes AC, Carvalheiro M, Ferreira de Oliveira JMP, et al.
Cytotoxic effect of the serotonergic drug 1-(1-Naphthyl)piperazine against melanoma cells.
Toxicol In Vitro. 2018; 47:72-78 [PubMed] Related Publications
1-(1-Naphthyl)piperazine (1-NPZ) is a serotonergic derivative of quipazine acting both as antagonist and agonist of different serotonin receptors, with promising results for the management of skin cancer. In this work, we studied the effect of 1-NPZ on human MNT-1 melanoma cells by evaluating its effects on cell viability, ability to form colonies, cell cycle dynamics, reactive oxygen species (ROS) production and apoptosis. Treatment of MNT-1 cells with 1-NPZ for 24h decreased cell viability and induced apoptosis in a dose-dependent manner. Activity against melanoma was confirmed with a different melanoma cell line, SK-MEL-28. Simultaneously, 1-NPZ affected cell cycle progression by mediating a S-phase delay. Higher levels of ROS were also detected in MNT-1 cells after treatment with 1-NPZ. Furthermore, 1-NPZ significantly increased the expression of cyclooxygenase-2 in MNT-1 cells. These findings suggest that 1-NPZ pretreatment is able to induce oxidative stress, and consequently apoptotic cell death in melanoma cells. In conclusion, this study demonstrates the cytotoxic and genotoxic potential of 1-NPZ against melanoma cells.

Zheng G, Zhao R, Xu A, et al.
Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy.
Eur J Pharm Sci. 2018; 111:492-502 [PubMed] Related Publications
Combination with chemotherapeutic drug and gene therapy has been proven highly effective in suppressing tumor progression. Hence, an asialoglycoprotein receptor (ASGPR)-targeting nanodrug delivery system based on mesoporous silica (MSN) nanocarrier for co-delivery of sorafenib (SO) and vascular endothelial growth factor (VEGF) targeted siRNA (siVEGF) to hepatocellular carcinoma (HCC) was successfully designed and synthesized. The structure of nanoparticles was characterized by IR, particle size, zeta potential and N2 adsorption-desorption. The nanoparticles were further evaluated for drug release, cellular uptake, transfection, cell cytotoxicity and cell cycle against HepG2 and Huh7 cells. In vitro testing demonstrated that MSN-LA delivery system could not only induce S cell cycle arrest, enhance the cytotoxicity and improve the tumor target of SO and siVEGF, but also enhance the siVEGF transfection efficiency in ASGPR-overexpressing Huh7 cells. Overall, the MSN-LA delivery system can be a promising drug carrier which could further enhance the anti-cancer efficacy of SO and siVEGF via the active targeting property of LA.

Kamel HFM, Al-Amodi HSAB
Exploitation of Gene Expression and Cancer Biomarkers in Paving the Path to Era of Personalized Medicine.
Genomics Proteomics Bioinformatics. 2017; 15(4):220-235 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Cancer therapy agents have been used extensively as cytotoxic drugs against tissue or organ of a specific type of cancer. With the better understanding of molecular mechanisms underlying carcinogenesis and cellular events during cancer progression and metastasis, it is now possible to use targeted therapy for these molecular events. Targeted therapy is able to identify cancer patients with dissimilar genetic defects at cellular level for the same cancer type and consequently requires individualized approach for treatment. Cancer therapy begins to shift steadily from the traditional approach of "one regimen for all patients" to a more individualized approach, through which each patient will be treated specifically according to their specific genetic defects. Personalized medicine accordingly requires identification of indicators or markers that guide in the decision making of such therapy to the chosen patients for more effective therapy. Cancer biomarkers are frequently used in clinical practice for diagnosis and prognosis, as well as identification of responsive patients and prediction of treatment response of cancer patient. The rapid breakthrough and development of microarray and sequencing technologies is probably the main tool for paving the way toward "individualized biomarker-driven cancer therapy" or "personalized medicine". In this review, we aim to provide an updated knowledge and overview of the current landscape of cancer biomarkers and their role in personalized medicine, emphasizing the impact of genomics on the implementation of new potential targeted therapies and development of novel cancer biomarkers in improving the outcome of cancer therapy.

Miwa T, Kanda M, Tanaka H, et al.
FBXO50 Enhances the Malignant Behavior of Gastric Cancer Cells.
Ann Surg Oncol. 2017; 24(12):3771-3779 [PubMed] Related Publications
BACKGROUND: Challenges to our understanding the molecular mechanisms of the progression of gastric cancer (GC) must be overcome to facilitate the identification of novel biomarkers and therapeutic targets. In this article, we analyzed the expression of the gene encoding F-box-only 50 (FBXO50) and determined whether it contributes to the malignant phenotype of GC.
METHODS: FBXO50 messenger RNA (mRNA) levels and copy numbers of the FBXO50 locus were determined in 10 GC cell lines and a nontumorigenic epithelial cell line. Polymerase chain reaction array analysis was performed to identify genes coordinately expressed with FBXO50. The effects of inhibiting FBXO50 on GC cell proliferation, adhesion, invasiveness, and migration were evaluated using a small interfering RNA targeted to FBXO50 mRNA. To evaluate the clinical significance of FBXO50 expression, we determined the levels of FBXO50 mRNA in tissues acquired from 200 patients with GC.
RESULTS: The levels of FBXO50 mRNA were increased in five GC cell lines and positively correlated with those of ITGA5, ITGB1, MMP2, MSN, COL5A2, GNG11, and WNT5A. Copy number gain of the FBXO50 locus was detected in four GC cell lines. Inhibition of FBXO50 expression significantly decreased the proliferation, adhesion, migration, and invasiveness of GC cell lines. In clinical samples, high FBXO50 expression correlated with increased pT4, invasive growth, lymph node metastasis, and positive peritoneal lavage cytology. Patients with high FBXO50 expression had a significantly higher prevalence of recurrence after curative gastrectomy and were more likely to experience shorter overall survival.
CONCLUSIONS: FBXO50 may represent a biomarker for GC phenotypes and as a target for therapy.

Cha W, Fan R, Miao Y, et al.
Mesoporous Silica Nanoparticles as Carriers for Intracellular Delivery of Nucleic Acids and Subsequent Therapeutic Applications.
Molecules. 2017; 22(5) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Nucleic acids, including DNA, microRNA (miRNA), small interfering RNA (siRNA), and antisense oligonucleotide (ASO), are powerful gene regulators, which have been demonstrated as promising drug candidates for therapeutic treatments. Nevertheless, poor cellular membrane permeability and serum stability have greatly hindered the applications of nucleic acids in biomedicine. To address these issues, associate carriers that can encapsulate and protect nucleic acids are urgently required. Mesoporous silica nanoparticles (MSNs or MSNPs), which are nanomaterials with excellent biocompatibility, large surface area for functionalization, and tunable pore size for encapsulating different cargos, are emerging as novel and ideal biomaterials for different biomedical applications. In this review paper, we focus on the applications of MSNs in nucleic acid delivery and nucleic acid-guided therapeutic treatments. General strategies for the preparation of nucleic acid-MSN complexes will be firstly introduced, followed by a summary of recent applications of MSNs in nucleic acid delivery and nucleic acid-guided therapeutics.

Roskoski R
ROS1 protein-tyrosine kinase inhibitors in the treatment of ROS1 fusion protein-driven non-small cell lung cancers.
Pharmacol Res. 2017; 121:202-212 [PubMed] Related Publications
ROS1 protein-tyrosine kinase fusion proteins are expressed in 1-2% of non-small cell lung cancers. The ROS1 fusion partners include CD74, CCDC6, EZR, FIG, KDELR2, LRIG3, MSN, SDC4, SLC34A2, TMEM106B, TMP3, and TPD52L1. Physiological ROS1 is closely related to the ALK, LTK, and insulin receptor protein-tyrosine kinases. ROS1 is a so-called orphan receptor because the identity of its activating ligand, if any, is unknown. The receptor is expressed during development, but little is expressed in adults and its physiological function is unknown. The human ROS1 gene encodes 2347 amino acid residues and ROS1 is the largest protein-tyrosine kinase receptor protein. Unlike the ALK fusion proteins that are activated by the dimerization induced by their amino-terminal portions, the amino-terminal domains of several of its fusion proteins including CD74 apparently lack the ability to induce dimerization so that the mechanism of constitutive protein kinase activation is unknown. Downstream signaling from the ROS1 fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module, the phosphatidyl inositol 3-kinase cell survival pathway, and the Vav3 cell migration pathway. Moreover, several of the ROS1 fusion proteins are implicated in the pathogenesis of a very small proportion of other cancers including glioblastoma, angiosarcoma, and cholangiocarcinoma as well as ovarian, gastric, and colorectal carcinomas. The occurrence of oncogenic ROS1 fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ROS1 inhibitors. Although the percentage of lung cancers driven by ROS1 fusion proteins is low, owing to the large number of new cases of non-small cell lung cancer per year, the number of new cases of ROS1-positive lung cancers is significant and ranges from 2000 to 4000 per year in the United States and 10,000-15,000 worldwide. Crizotinib was the first inhibitor approved by the US Food and Drug Administration for the treatment of ROS1-positive non-small cell lung cancer in 2016. Other drugs that are in clinical trials for the treatment of these lung cancers include ceritinib, cabozantinib, entrectinib, and lorlatinib. Crizotinib forms a complex within the front cleft between the small and large lobes of an active ROS1 protein-kinase domain and it is classified as type I inhibitor.

Shi J, Hou S, Huang J, et al.
An MSN-PEG-IP drug delivery system and IL13Rα2 as targeted therapy for glioma.
Nanoscale. 2017; 9(26):8970-8981 [PubMed] Related Publications
A combination of gene therapy and chemotherapy has recently received interest as a targeted therapy for glioma. A mesoporous silica nanoparticle (MSN)-based vehicle coated with IL13Rα2-targeted peptide (IP) using polyethylene glycol (PEG), MSN-PEG-IP (MPI), was constructed and confirmed as a potential glioma-targeted drug delivery system in vitro. In this work, tissue microarray (TMA) results revealed that IL13Rα2 was over-expressed in human glioma tissues and that high expression of IL13Rα2 in patients was associated with poor survival. Doxorubicin (DOX)-loaded MPI (MPI/D) crossed the blood-brain barrier, specifically targeting glioma cells and significantly enhancing the cellular uptake of DOX in glioma cells compared with MSN/DOX (M/D) and MSN-PEG/DOX (MP/D), whereas the normal brain was not affected. Magnetic Resonance Imaging (MRI) examinations showed that the tumour size of glioma-bearing rats in the MPI/D-treated group was much smaller than those in the M/D and MP/D treated groups. Immunofluorescence results demonstrated that MPI/D treatment induced more apoptosis and much less proliferation than the other two treatments. However, the therapeutic effect was weak when IL13Rα2 was knocked down. Furthermore, U87 cells treated with IL-13 and MPI together could increase both STAT6 and P63 expression, which attenuated glioma cell proliferation, invasion and migration compared with cells treated with IL-13 alone. The results of the subcutaneous tumour model also revealed that IL13Rα2 knockdown could hinder cell proliferation and induce more apoptosis. The promising results suggested that MPI can not only deliver DOX to glioma in a targeted manner but also occupy IL13Rα2, which can promote IL-13 binding to IL13Rα1 and activation of the JAK-STAT pathway to induce an anti-glioma effect.

Horimasu Y, Ishikawa N, Tanaka S, et al.
MUC1 in lung adenocarcinoma: cross-sectional genetic and serological study.
BMC Cancer. 2017; 17(1):263 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
BACKGROUND: Mucin 1 (MUC1) contributes to the growth and metastasis of various cancers, including lung cancer, and MUC1 gene length polymorphisms are associated with susceptibility to lung cancer and its prognosis. In contrast, the association between rs4072037, a single nucleotide polymorphism in MUC1, and lung cancer has not been well studied.
METHODS: In the present study, we determined the rs4072037 genotype and measured serum KL-6 levels to evaluate the association between lung adenocarcinoma (ADC) and rs4072037 or serum KL-6 levels. DNA samples were available for 172 patients and these were included in the genomic analyses. In addition, 304 patients were included in the serum analyses. Furthermore, 276 healthy volunteers were included in both genomic and serum analyses.
RESULTS: The rs4072037 genotype was not associated with susceptibility to lung ADC or its prognosis. Interestingly, serum KL-6 levels significantly differed according to rs4072037 genotype in those with T1 or T2 (P < 0.001), N0 or N1 (P = 0.002) and M0 (P < 0.001), but not in those with T3 or T4 (P = 0.882), N2 or N3 (P = 0.616) and M1a or M1b (P = 0.501). Serum KL-6 levels were significantly associated with the presence of lung ADC, as well as with its progression and prognosis, indicating the crucial involvement of KL-6/MUC1 in the development of lung cancer and its progression.
CONCLUSION: Based on these findings, we conclude that rs4072037 does not have a significant impact on the pathogenesis or prognosis of lung ADC, whereas serum KL-6 levels, which might reflecting the molecular length of MUC1, are significantly associated with lung ADC.

Loudig O, Wang T, Ye K, et al.
Evaluation and Adaptation of a Laboratory-Based cDNA Library Preparation Protocol for Retrospective Sequencing of Archived MicroRNAs from up to 35-Year-Old Clinical FFPE Specimens.
Int J Mol Sci. 2017; 18(3) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Formalin-fixed paraffin-embedded (FFPE) specimens, when used in conjunction with patient clinical data history, represent an invaluable resource for molecular studies of cancer. Even though nucleic acids extracted from archived FFPE tissues are degraded, their molecular analysis has become possible. In this study, we optimized a laboratory-based next-generation sequencing barcoded cDNA library preparation protocol for analysis of small RNAs recovered from archived FFPE tissues. Using matched fresh and FFPE specimens, we evaluated the robustness and reproducibility of our optimized approach, as well as its applicability to archived clinical specimens stored for up to 35 years. We then evaluated this cDNA library preparation protocol by performing a miRNA expression analysis of archived breast ductal carcinoma in situ (DCIS) specimens, selected for their relation to the risk of subsequent breast cancer development and obtained from six different institutions. Our analyses identified six miRNAs (miR-29a, miR-221, miR-375, miR-184, miR-363, miR-455-5p) differentially expressed between DCIS lesions from women who subsequently developed an invasive breast cancer (cases) and women who did not develop invasive breast cancer within the same time interval (control). Our thorough evaluation and application of this laboratory-based miRNA sequencing analysis indicates that the preparation of small RNA cDNA libraries can reliably be performed on older, archived, clinically-classified specimens.

Melling N, Rashed M, Schroeder C, et al.
High-Level γ-Glutamyl-Hydrolase (GGH) Expression is Linked to Poor Prognosis in ERG Negative Prostate Cancer.
Int J Mol Sci. 2017; 18(2) [PubMed] Article available free on PMC after 02/10/2019 Related Publications
γ-glutamyl-hydrolase (GGH) is a ubiquitously-expressed enzyme that regulates intracellular folate metabolism for cell proliferation, DNA synthesis, and repair. Employing GGH immunohistochemistry on a tissue microarray with 12,427 prostate cancers, we found that GGH expression was negative to low in normal prostate epithelium, whereas 88.3% of our 10,562 interpretable cancers showed GGH expression. GGH staining was considered as low intensity in 49.6% and as high intensity in 38.6% of cancers. High GGH expression was linked to the TMPRSS2:ERG-fusion positive subset of cancers (

Gonzales MC, Yu P, Shiao SP
MTHFR Gene Polymorphism-Mutations and Air Pollution as Risk Factors for Breast Cancer: A Metaprediction Study.
Nurs Res. 2017 Mar/Apr; 66(2):152-163 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
BACKGROUND: The methylenetetrahydrofolate reductase gene (MTHFR) is one of the most investigated genes associated with breast cancer for its role in epigenetic pathways.
OBJECTIVES: The objectives of this metaprediction study were to examine the polymorphism-mutation risk subtypes of MTHFR and air pollution as contributing factors for breast cancer.
METHODS: For triangulation purposes in metapredictive analyses, we used a recursive partition tree, nonlinear association curve fit, and heat maps for data visualization, in addition to the conventional comparison procedure and pooled analyses.
RESULTS: We included 36,683 breast cancer cases and 40,689 controls across 82 studies for MTHFR 677 and 23,252 cases and 27,094 controls across 50 studies for MTHFR 1298. MTHFR 677 TT was a risk genotype for breast cancer (p = .0004) and in the East Asian subgroup (p = .005). On global maps, the most polymorphism-mutations on MTHFR 677 TT were found in the Middle East, Europe, Asia, and the Americas, whereas the most mutations on MTHFR 1298 CC were located in Europe and the Middle East for the control group. The geographic information system maps further revealed that MTHFR 677 TT mutations yielded a higher risk of breast cancer for Australia, East Asia, the Middle East, South Europe, Morocco, and the Americas and that MTHFR 1298 CC mutations yielded a higher risk in Asia, the Middle East, South Europe, and South America. Metapredictive analysis revealed that air pollution level was significantly associated with MTHFR 677 TT polymorphism-mutation genotype.
DISCUSSION: We present the most comprehensive analyses to date of MTHFR polymorphism-mutations and breast cancer risk. Future nursing studies are needed to investigate the health impact on breast cancer of epigenetics and air pollution across populations.

Huang R, Yu Y, Zong X, et al.
Monomethyltransferase SETD8 regulates breast cancer metabolism via stabilizing hypoxia-inducible factor 1α.
Cancer Lett. 2017; 390:1-10 [PubMed] Related Publications
SETD8 is a methyltransferase that specifically catalyzes the monomethylation of lysine 20 on histone H4. Previous studies have demonstrated that SETD8 is associated with proper cell cycle progression, DNA damage response, and transcriptional regulation. A recent study revealed that SETD8 played an important role in epithelial-mesenchymal transition (EMT) in association with TWIST and enhanced metastatic potential of breast cancer cells. However, the contribution of SETD8 to metabolism reprogramming, one hallmark of cancer, has never been reported. In this study, we report that SETD8 was a positive regulator of anabolic metabolism. SETD8 reprograms breast cancer cell metabolism through hypoxia-inducible factor 1α (HIF1α) mediated process. Mechanistic studies indicated that SETD8 stabilized HIF1α protein level through post-transcriptional regulation. Moreover, we demonstrated that SETD8 was a HIF1α transcription target. In clinical breast cancer patient tissues, we observed a positive correlation of SETD8 with HIF1α and HIF1α target genes. Taken together, we validated SETD8 as a novel metabolic reprogramming regulator, and our mechanistic studies shed light on a novel function of SETD8 in breast cancer malignant properties maintenance.

Prabhakar N, Zhang J, Desai D, et al.
Stimuli-responsive hybrid nanocarriers developed by controllable integration of hyperbranched PEI with mesoporous silica nanoparticles for sustained intracellular siRNA delivery.
Int J Nanomedicine. 2016; 11:6591-6608 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
Small interfering RNA (siRNA) is a highly potent drug in gene-based therapy with the challenge being to deliver it in a sustained manner. The combination of mesoporous silica nanoparticles (MSNs) and polycations in the confined pore space allows for incorporation and controlled release of therapeutic siRNA payloads. We hereby constructed MSNs with expanded mesopores and pore-surface-hyperbranched poly(ethyleneimine) (PEI) tethered with redox-cleavable linkers that could carry a high payload of siRNA (120 mg·g

Huang FL, Yu SJ
Esophageal cancer: Risk factors, genetic association, and treatment.
Asian J Surg. 2018; 41(3):210-215 [PubMed] Related Publications
The poor prognosis and rising incidence of esophageal cancer highlight the need for improved detection and prediction methods that are essential prior to treatment. Esophageal cancer is one of the most fatal malignancies worldwide, with a dramatic increase in incidence in the Western world occurring over the past few decades. Despite improvements in the management and treatment of esophageal cancer patients, the general outcome remains very poor for overall 5-year survival rates (∼10%) and 5-year postesophagectomy survival rates (∼15-40%). Esophageal cancer is often diagnosed during its advanced stages, the main reason being the lack of early clinical symptoms. In an attempt to improve the outcome of patients after surgery, such patients are often treated with neoadjuvent concurrent chemoradiotherapy (CCRT) in order to decrease tumor size. However, CCRT may enhance toxicity levels and possibly cause a delay in surgery for patients who respond poorly to CCRT. Thus, precise biomarkers that could predict or identify patients who may or may not respond well to CCRT can assist physicians in choosing the appropriate therapy for patients. Identifying susceptible gene and biomarkers can help in predicting the treatment response of patients while improving their survival rates.

Savage P
Chemotherapy curable malignancies and cancer stem cells: a biological review and hypothesis.
BMC Cancer. 2016; 16(1):906 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
BACKGROUND: Cytotoxic chemotherapy brings routine cures to only a small select group of metastatic malignancies comprising gestational trophoblast tumours, germ cell tumours, acute leukemia, Hodgkin's disease, high grade lymphomas and some of the rare childhood malignancies. We have previously postulated that the extreme sensitivity to chemotherapy for these malignancies is linked to the on-going high levels of apoptotic sensitivity that is naturally linked with the unique genetic events of nuclear fusion, meiosis, VDJ recombination, somatic hypermutation, and gastrulation that have occurred within the cells of origin of these malignancies. In this review we will examine the cancer stem cell/cancer cell relationship of each of the chemotherapy curable malignancies and how this relationship impacts on the resultant biology and pro-apoptotic sensitivity of the varying cancer cell types.
DISCUSSION: In contrast to the common epithelial cancers, in each of the chemotherapy curable malignancies there are no conventional hierarchical cancer stem cells. However cells with cancer stem like qualities can arise stochastically from within the general tumour cell population. These stochastic stem cells acquire a degree of resistance to DNA damaging agents but also retain much of the key characteristics of the cancer cells from which they develop. We would argue that the balance between the acquired resistance of the stochastic cancer stem cell and the inherent chemotherapy sensitivity of parent tumour cell determines the overall chemotherapy curability of each diagnosis. The cancer stem cells in the chemotherapy curable malignancies appear to have two key biological differences from those of the more common chemotherapy incurable malignancies. The first difference is that the conventional hierarchical pattern of cancer stem cells is absent in each of the chemotherapy curable malignancies. The other key difference, we suggest, is that the stochastic stem cells in the chemotherapy curable malignancies take on a significant aspect of the biological characteristics of their parent cancer cells. This action includes for the chemotherapy curable malignancies the heightened pro-apoptotic sensitivity linked to their respective associated unique genetic events. For the chemotherapy curable malignancies the combination of the relationship of their cancer stem cells combined with the extreme inherent sensitivity to induction of apoptosis from DNA damaging agents plays a key role in determining their overall curability with chemotherapy.

Chen J, Gao S, Wang C, et al.
Pathologically decreased expression of miR-193a contributes to metastasis by targeting WT1-E-cadherin axis in non-small cell lung cancers.
J Exp Clin Cancer Res. 2016; 35(1):173 [PubMed] Article available free on PMC after 02/10/2019 Related Publications
BACKGROUND: The metastatic cascade is a complex and multistep process with many potential barriers. Recently, miR-193a has been reported to be a suppressive miRNA in multiple types of cancers, but its underlying anti-oncogenic activity in non-small cell lung cancers (NSCLC) is not fully elucidated.
METHODS: The expressions of miR-193a (miR-193a-5p) in human lung cancer tissues and cell lines were detected by real-time PCR. Dual-luciferase reporter assay was used to identify the direct target of miR-193a. Cell proliferation, apoptosis, and metastasis were assessed by CCK-8, flow cytometry, and Transwell assay, respectively.
RESULTS: The expression of miR-193a in lung cancer tissues was decreased comparing to adjacent non-tumor tissues due to DNA hypermethylation in lung cancer tissues. Ectopic expression of miR-193a inhibited cell proliferation, colony formation, migration, and invasion in A549 and H1299 cells. Moreover, overexpression of miR-193a partially reversed tumor growth factor-β1 (TGF-β1)-induced epithelial-to-mesenchymal transition (EMT) in NSCLC cells. Mechanistically, miR-193a reduced the expression of WT1, which negatively regulated the protein level of E-cadherin, suggesting that miR-193a might prevent EMT via modulating WT1-E-cadherin axis. Importantly, knockdown of WT1 resembled the anti-cancer activity by miR-193a and overexpression of WT1 partially reversed miR-193a-induced anti-cancer activity, indicating that WT1 plays an important role in miR-193a-induced anti-cancer activity. Finally, overexpression of miR-193a decreased the growth of tumor xenografts in mice.
CONCLUSION: Collectively, our results have revealed an important role of miR-193a-WT1-E-cadherin axis in metastasis, demonstrated an important molecular cue for EMT, and suggested a therapeutic strategy of restoring miR-193a expression in NSCLC.

Li T, Shen X, Geng Y, et al.
Folate-Functionalized Magnetic-Mesoporous Silica Nanoparticles for Drug/Gene Codelivery To Potentiate the Antitumor Efficacy.
ACS Appl Mater Interfaces. 2016; 8(22):13748-58 [PubMed] Related Publications
An appropriate codelivery system for chemotherapeutic agents and nucleic acid drugs will provide a more efficacious approach for the treatment of cancer. Combining gene therapy with chemotherapeutics in a single delivery system is more effective than individual delivery systems carrying either gene or drug. In this work, we developed folate (FA) receptor targeted magnetic-mesoporous silica nanoparticles for the codelivery of VEGF shRNA and doxorubicin (DOX) (denoted as M-MSN(DOX)/PEI-FA/VEGF shRNA). Our data showed that M-MSN(DOX)/PEI-FA could strongly condense VEGF shRNA at weight ratios of 30:1, and possesses higher stability against DNase I digestion and sodium heparin. In vitro antitumor activity assays revealed that HeLa cell growth was significantly inhibited. The intracellular accumulation of DOX by confocal microscopy and fluorescence spectrophotometry showed that M-MSN(DOX)/PEI-FA were more easily taken up than nontargeted M-MSN(DOX). Quantitative PCR and ELISA data revealed that M-MSN/PEI-FA/VEGF shRNA induced a significant decrease in VEGF expression as compared to cells treated with either the control or other complexes. The invasion and migration phenotypes of the HUVECs were significantly decrease after coculture with MSN/PEI-FA/VEGF shRNA nanocomplexes-treated HeLa cells. The approach provides a potential strategy to treat cancer by a singular nanoparticle delivery system.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MSN, Cancer Genetics Web: http://www.cancer-genetics.org/MSN.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999