PTK2

Gene Summary

Gene:PTK2; protein tyrosine kinase 2
Aliases: FAK, FADK, FAK1, FRNK, PPP1R71, p125FAK, pp125FAK
Location:8q24.3
Summary:This gene encodes a cytoplasmic protein tyrosine kinase which is found concentrated in the focal adhesions that form between cells growing in the presence of extracellular matrix constituents. The encoded protein is a member of the FAK subfamily of protein tyrosine kinases but lacks significant sequence similarity to kinases from other subfamilies. Activation of this gene may be an important early step in cell growth and intracellular signal transduction pathways triggered in response to certain neural peptides or to cell interactions with the extracellular matrix. Several transcript variants encoding different isoforms have been found for this gene, but the full-length natures of only four of them have been determined. [provided by RefSeq, Oct 2015]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:focal adhesion kinase 1
Source:NCBIAccessed: 15 March, 2017

Ontology:

What does this gene/protein do?
Show (65)
Pathways:What pathways are this gene/protein implicaed in?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTK2 (cancer-related)

Chikara S, Lindsey K, Borowicz P, et al.
Enterolactone alters FAK-Src signaling and suppresses migration and invasion of lung cancer cell lines.
BMC Complement Altern Med. 2017; 17(1):30 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Systemic toxicity of chemotherapeutic agents and the challenges associated with targeting metastatic tumors are limiting factors for current lung cancer therapeutic approaches. To address these issues, plant-derived bioactive components have been investigated for their anti-cancer properties because many of these agents are non-toxic to healthy tissues. Enterolactone (EL) is a flaxseed-derived mammalian lignan that has demonstrated anti-migratory properties for various cancers, but EL has not been investigated in the context of lung cancer, and its anticancer mechanisms are ill-defined. We hypothesized that EL could inhibit lung cancer cell motility by affecting the FAK-Src signaling pathway.
METHODS: Non-toxic concentrations of EL were identified for A549 and H460 human lung cancer cells by conducting 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-Dephenyltetrazolium Bromide (MTT) assays. The anti-migratory and anti-invasive potential of EL for lung cancer cell lines was determined by scratch wound healing and Matrigel® invasion assays. Changes in filamentous actin (F-actin) fiber density and length in EL-treated cells were determined using phalloidin-conjugated rhodamine dye and fluorescent microscopy. Vinculin expression in focal adhesions upon EL treatment was determined by immunocytochemistry. Gene and protein expression levels of FAK-Src signaling molecules in EL-treated lung cancer cells were determined using PCR arrays, qRT-PCR, and western blotting.
RESULTS: Non-toxic concentrations of EL inhibited lung cancer cell migration and invasion in a concentration- and time-dependent manner. EL treatment reduced the density and number of F-actin fibers in lung cancer cell lines, and reduced the number and size of focal adhesions. EL decreased phosphorylation of FAK and its downstream targets, Src, paxillin, and decreased mRNA expression of cell motility-related genes, RhoA, Rac1, and Cdc42 in lung cancer cells.
CONCLUSIONS: Our data suggest that EL suppresses lung cancer cell motility and invasion by altering FAK activity and subsequent activation of downstream proteins needed for focal adhesion formation and cytoskeletal rearrangement. Therefore, administration of EL may serve as a safe and complementary approach for inhibiting lung tumor cell motility, invasion, and metastasis.

Cui L, Li Y, Lv X, et al.
Expression of MicroRNA-301a and its Functional Roles in Malignant Melanoma.
Cell Physiol Biochem. 2016; 40(1-2):230-244 [PubMed] Related Publications
BACKGROUND/AIMS: Although microRNA-301a has been reported to function as an oncogene in many human cancers, the roles of miR-301a in malignant melanoma (MM) is unclear. The present study aims to investigate the functional roles of miR-301a in MM and its possible molecular mechanisms.
METHODS: Quantitative real-time PCR (qRT-PCR) assay was performed to detect the expression of miR-301a in MM tissues, and analyze its correlation with metastasis and prognosis of MM patients. In vitro, miR-301a was ectopically expressed using overexpression and knock-down strategies, and the effects of miR-301a expression on growth, apoptosis, migration, invasion and chemosensitivity of MM cells were further investigated. Furthermore, the potential and functional target gene was identified by luciferase reporter, qRT-PCR, Western blot assays.
RESULTS: We showed that the expression of miR-301a was significantly upregulated in MM tissues, and upregulation of miR-301a correlated with metastasis and poor prognosis of MM patients. Transfection of miR-301a/inhibitor significantly inhibited growth, colony formation, migration, invasion and enhanced apoptosis and chemosensitivity in MM cells, while transfection of miR-301a/mimic could induce the inverse effects on phenotypes of MM cells. Luciferase reporter, qRT-PCR and Western blot assays showed that phosphatase and tensin homolog (PTEN) was a direct and functional target of miR-301a. It was also observed that the Akt and FAK signaling pathways were involved in miR-301/PTEN-promoting MM progression.
CONCLUSION: Taken together, our study suggests that miR-301a may be used as a potential therapeutic target in the treatment of human MM.

Dragoj M, Milosevic Z, Bankovic J, et al.
Targeting CXCR4 and FAK reverses doxorubicin resistance and suppresses invasion in non-small cell lung carcinoma.
Cell Oncol (Dordr). 2017; 40(1):47-62 [PubMed] Related Publications
BACKGROUND: Current high lung cancer mortality rates are mainly due to the occurrence of metastases and therapeutic resistance. Therefore, simultaneous targeting of these processes may be a valid approach for the treatment of this type of cancer. Here, we assessed relationships between CXC chemokine receptor type 4 (CXCR4) and focal adhesion kinase (FAK) gene expression levels and expression levels of the drug resistance-related genes ABCB1 and ABCC1, and tested the potential of CXCR4 and FAK inhibitors to reverse doxorubicin (DOX) resistance and to decrease the invasive capacity of non-small cell lung carcinoma (NSCLC) cells.
METHODS: qRT-PCR was used for gene expression analyses in primary lung tissue samples obtained from 30 NSCLC patients and the human NSCLC-derived cell lines NCI-H460, NCI-H460/R and COR-L23. MTT, flow cytometry, cell death and β-galactosidase activity assays were used to assess the in vitro impact of CXCR4 and FAK inhibitors on DOX sensitivity. In addition, invasion and gelatin degradation assays were used to assess the in vitro impact of the respective inhibitors on metastasis-related processes in combination with DOX treatment.
RESULTS: We found that ABCB1 over-expression was significantly associated with CXCR4 and FAK over-expression, whereas ABCC1 over-expression was associated with increased FAK expression. We also found that CXCR4 and FAK inhibitors strongly synergized with DOX in reducing cell viability, arresting the cell cycle in the S or G2/M phases and inducing senescence. Additionally, we found that DOX enhanced the anti-invasive potential of CXCR4 and FAK inhibitors by reducing gelatin degradation and invasion.
CONCLUSIONS: From our data we conclude that targeting of CXCR4 and FAK may overcome ABCB1 and ABCC1-dependent DOX resistance in NSCLC cells and that simultaneous treatment of these cells with DOX may potentiate the anti-invasive effects of CXCR4 and FAK inhibitors.

Hsia TC, Yu CC, Hsiao YT, et al.
Cantharidin Impairs Cell Migration and Invasion of Human Lung Cancer NCI-H460 Cells via UPA and MAPK Signaling Pathways.
Anticancer Res. 2016; 36(11):5989-5997 [PubMed] Related Publications
Cantharidin (CTD), a component of natural mylabris (Mylabris phalerata Pallas), has been shown to have biological activities and induce cell death in many human cancer cells. In the present study, we investigated the effect of CTD on cell migration and invasion of NCI-H460 human lung cancer cells. Cell viability was examined and results indicated that CTD decreased the percentage of viable cells in dose-dependent manners. CTD inhibited cell migration and invasion in dose-dependent manners. Gelatin zymography analysis was used to measure the activities of matrix metalloproteinases (MMP-2/-9) and the results indicated that CTD inhibited the enzymatic activities of MMP-2/-9 of NCI-H460 cells. Western blotting was used to examine the protein expression of NCI-H460 cells after incubation with CTD and the results showed that CTD decreased the expression of MMP-2/-9, focal adhesion kinase (FAK), Ras homolog gene family, member A (Rho A), phospho-protein kinase B (AKT) (Thr308)(p-AKT(308)), phospho-extracellular signal-regulated kinase1/2 (p-ERK1/2), phospho-p38 mitogen-activated protein (MAP) kinase (p-p38), phospho c-Jun N-terminal kinase 1/2 (p-JNK1/2), nuclear factor-κB (NF-κB) and urokinase plasminogen activator (UPA). Furthermore, confocal laser microscopy was used to confirm that CTD suppressed the expression of NF-κB p65, but did not significantly affect protein kinase C (PKC) translocation in NCI-H460 cells. Based on those observations, we suggest that CTD may be used as a novel anticancer metastasis agent for lung cancer in the future.

Lu KH, Chen PN, Hsieh YH, et al.
3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo.
Food Chem Toxicol. 2016; 97:177-186 [PubMed] Related Publications
Many natural flavonoids have cytostatic and apoptotic properties; however, we little know whether the effect of synthetic 3-hydroxyflavone on metastasis and tumor growth of human osteosarcoma. Here, we tested the hypothesis that 3-hydroxyflavone suppresses human osteosarcoma cells metastasis and tumor growth. 3-hydroxyflavone, up to 50 μM without cytotoxicity, inhibited U2OS and 143B cells motility, invasiveness and migration by reducing matrix metalloproteinase (MMP)-2 and urokinase-type plasminogen activator (u-PA) and also impaired cell adhesion to gelatin. 3-hydroxyflavone significantly reduced p-focal adhesion kinase (FAK) Tyr397, p-FAK Tyr925, p-steroid receptor coactivator (Src), p-mitogen/extracellular signal-regulated kinase (MEK)1/2, p-myosin light chain (MLC)2 Ser19, epithelial cell adhesion molecule, Ras homolog gene family (Rho)A and fibronectin expressions. 3-hydroxyflavone also affected the epithelial-mesenchymal transition (EMT) by down-regulating expressions of Vimentin and α-catenin with activation of the transcription factor Slug. In nude mice xenograft model and tail vein injection model showed that 3-hydroxyflavone reduced 143B tumor growth and lung metastasis. 3-hydroxyflavone possesses the anti-metastatic activity of U2OS and 143B cells by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and suppresses 143B tumor growth in vivo. This may lead to clinical trials of osteosarcoma chemotherapy to confirm the promising result in the future.

Lee J, Lee J, Yun JH, et al.
DUSP28 links regulation of Mucin 5B and Mucin 16 to migration and survival of AsPC-1 human pancreatic cancer cells.
Tumour Biol. 2016; 37(9):12193-12202 [PubMed] Related Publications
The prognosis of pancreatic cancer has not improved despite considerable and continuous effort. Dual-specificity phosphatase 28 (DUSP28) is highly expressed in human pancreatic cancers and exerts critical effects. However, knowledge of its function in pancreatic cancers is extremely limited. Here, we demonstrate the peculiar role of DUSP28 in pancreatic cancers. Analysis using the Gene Expression Omnibus public microarray database indicated higher DUSP28, MUC1, MUC4, MUC5B, MUC16 and MUC20 messenger RNA (mRNA) levels in pancreatic cancers compared with normal pancreas tissues. DUSP28 expression in human pancreatic cancer correlated positively with those of MUC1, MUC4, MUC5B, MUC16 and MUC20. In contrast, there were no significant correlations between DUSP28 and mucins in normal pancreas tissues. Decreased DUSP28 expression resulted in down-regulation of MUC5B and MUC16 at both the mRNA and protein levels; furthermore, transfection with small interfering RNA (siRNA) for MUC5B and MUC16 inhibited the migration and survival of AsPC-1 cells. In addition, transfection of siRNA for MUC5B and MUC16 resulted in a significant decrease in phosphorylation of FAK and ERK1/2 compared with transfection with scrambled-siRNA. These results collectively indicate unique links between DUSP28 and MUC5B/MUC16 and their roles in pancreatic cancer; moreover, they strongly support a rationale for targeting DUSP28 to inhibit development of malignant pancreatic cancer.

Li A, Zhang W, Xia H, et al.
Overexpression of CASS4 promotes invasion in non-small cell lung cancer by activating the AKT signaling pathway and inhibiting E-cadherin expression.
Tumour Biol. 2016; 37(11):15157-15164 [PubMed] Related Publications
The role of Crk-associated substrate (CAS) family members in regulating invasion and metastasis has been described in several cancers. As the fourth member of the CAS family, CASS4 is also related with positive lymph node metastasis and poor prognosis in lung cancer. However, the underlying mechanisms and downstream effectors of CASS4 in the development and progression of non-small cell lung cancer (NSCLC) remain unclear. In this study, CASS4 overexpression inhibited E-cadherin expression and enhanced invasion in NSCLC cell line transfected with CASS4 plasmid, while CASS4 depletion upregulated E-cadherin expression and inhibited invasion in NSCLC cell line transfected with CASS4 siRNA. The effect of CASS4 overexpression in facilitating invasion of NSCLC cells was reversed by restoring E-cadherin expression, which indicates that CASS4 may promote invasion by inhibiting E-cadherin expression. Subsequent immunohistochemistry results confirmed that CASS4 overexpression correlated with loss of E-cadherin expression. We next investigated the phosphorylation levels of focal adhesion kinase (FAK), p38, extracellular signal-related kinase (ERK), and AKT after CASS4 plasmid or CASS4 siRNA transfection. CASS4 facilitated AKT (Ser473) phosphorylation. Treatment with an AKT phosphorylation inhibitor reversed the increased invasive capacity and downregulation of E-cadherin protein induced by CASS4 overexpression. Taken together, the present results indicate that CASS4 may promote NSCLC invasion by activating the AKT signaling pathway, thereby inhibiting E-cadherin expression.

Xu L, Tong X, Zhang S, et al.
ASPP2 suppresses stem cell-like characteristics and chemoresistance by inhibiting the Src/FAK/Snail axis in hepatocellular carcinoma.
Tumour Biol. 2016; 37(10):13669-13677 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is the third leading cause of death in cancer patients worldwide. Understanding the molecular pathogenesis of HCC recurrence and chemoresistance is key to improving patients' prognosis. In this study, we report that downregulation of ASPP2, a member of the ankyrin-repeat-containing, SH3-domain-containing, and proline-rich-region-containing protein (ASPP) family, bestowed HCC cells with stem-like properties and resistance to chemotherapy, including the expansion of side population fractions, formation of hepatospheroids, expression of stem cell-associated genes, loss of chemosensitivity, and increased tumorigenicity in immunodeficient mice. An expression profiling assay revealed that ASPP2 specifically repressed focal adhesion kinase (FAK)/Src/extracellular signal regulated kinase (ERK) signaling. ASPP2 does this by physically interacting with C-terminal Src kinase (CSK) and stimulating its kinase activity, which eventually leads to activator protein 1 (AP1)-mediated downregulation of Snail expression. In addition, pharmacologic inhibition of Src attenuated the effects of ASPP2 deficiency. Our findings present functional and mechanistic insight into the critical role of ASPP2 in the inhibition of HCC stemness and drug resistance and may provide a new strategy for therapeutic combinations to treat HCC.

Mizerska-Kowalska M, Bojarska-Junak A, Jakubowicz-Gil J, Kandefer-Szerszeń M
Neutral endopeptidase (NEP) is differentially involved in biological activities and cell signaling of colon cancer cell lines derived from various stages of tumor development.
Tumour Biol. 2016; 37(10):13355-13368 [PubMed] Free Access to Full Article Related Publications
The presented studies were aimed at exploring the role of neutral endopeptidase (NEP) in the function of colon cancer cell lines LS 180 and SW 620, derived from different grades and stages of tumor development. NEP silencing by siRNA resulted in decreased viability and proliferation accompanied by increased apoptosis in both cell lines. Additionally, cell cycle arrest at the G2/M phase was observed, but only in LS 180 cells. Opposite to these results, serum-stimulated migration was increased in both cell lines. Furthermore, NEP silencing influenced the invasive activity of LS 180 and SW 620 cells in an opposite manner: while LS 180 cells showed an enhanced invasiveness, SW 620 cells exerted a reduced activity. An exploration of the activity of signaling molecules responsible for the function of tumor cells-Akt, PTEN, and FAK-after NEP silencing indicated that the endopeptidase is involved in their regulation. The increased phosphorylation level of Akt was accompanied by a decrease in PTEN in the presence of a high concentration of serum. A reduced concentration of serum did not change the phosphorylation status of Akt. Enhanced autophosphorylation of FAK was observed in LS 180 and SW 620 cells cultivated in a medium with a high concentration of serum. Taken together, these results confirm that NEP is implicated in the regulation of the survival, growth, and motile activity of colon cancer. This is also the first report which shows that NEP mediates cancer cell migration and invasiveness, but not growth and survival, through Akt/FAK signaling pathways.

Yang L, Zhou Q, Chen X, et al.
Activation of the FAK/PI3K pathway is crucial for AURKA-induced epithelial-mesenchymal transition in laryngeal cancer.
Oncol Rep. 2016; 36(2):819-26 [PubMed] Related Publications
Laryngeal squamous cell carcinoma (LSCC) is one of the most common malignant tumors, and the main cause of death is metastasis. Overexpression of aurora kinase A (AURKA) plays an important role in the metastasis of LSCC. However, the mechanism by which AURKA promotes the metastasis of LSCC is poorly understood. Recent accumulating evidence indicates that epithelial-mesenchymal transition (EMT) may be one of the mechanisms of tumor metastasis. In the present study, we studied whether AURKA may induce EMT to promote the metastasis of LSCC. CCK-8 and plate colony-formation assays were carried out to show that AURKA significantly promoted the proliferation of Hep2 cells. Immunofluorescence staining and western blotting showed that EMT-related proteins changed in a time-dependent manner along with the alteration of AURKA, with decreased expression of N-cadherin, vimentin and slug and increased expression of E-cadherin. Additionally, downregulation of the expression of AURKA inhibited FAK/PI3K pathway activity. Inhibition of the FAK/PI3K pathway caused less mesenchymal-like characteristics and reduced the mobility, migration and invasion of Hep2 cells. In conclusion, AURKA may induce EMT to promote metastasis via activation of the FAK/PI3K pathway in LSCC. Those regulatory factors may present new diagnostic biomarkers and potential therapeutic targets for LSCC.

Sun L, Wang D, Li X, et al.
Extracellular matrix protein ITGBL1 promotes ovarian cancer cell migration and adhesion through Wnt/PCP signaling and FAK/SRC pathway.
Biomed Pharmacother. 2016; 81:145-51 [PubMed] Related Publications
Despite the advances in cancer treatment and the progresses in tumor biological, ovarian cancer remains a bad situation. In current study, we found a novel extracellular matrix protein, ITGBL1, which is highly expressed in ovarian cancer tissues by immunohistochemistry examination. The expression pattern of ITGBL1 in malignant tissues inspired us to investigate its role in ovarian cancer progression. Both loss- and gain-function assays revealed that ITGBL1 could promote ovarian cancer cell migration and adhesion. As it's a secreted protein, we further used recombinant ITGBL1 protein treated cancer cells and found that ITGBL1 promotes cell migration and adhesion in a concentration dependent manner. Furthermore, we found that ITGBL1 not only influences the activity of Wnt/PCP signaling but also affects FAK/src pathway in vitro. Taken together, our results suggest that highly expressed ITGBL1 could promotes cancer cell migration and adhesion in ovarian cancer and as a secreted protein, ITGBL1 might be a novel biomarker for ovarian cancer diagnosis.

Mertins P, Mani DR, Ruggles KV, et al.
Proteogenomics connects somatic mutations to signalling in breast cancer.
Nature. 2016; 534(7605):55-62 [PubMed] Free Access to Full Article Related Publications
Somatic mutations have been extensively characterized in breast cancer, but the effects of these genetic alterations on the proteomic landscape remain poorly understood. Here we describe quantitative mass-spectrometry-based proteomic and phosphoproteomic analyses of 105 genomically annotated breast cancers, of which 77 provided high-quality data. Integrated analyses provided insights into the somatic cancer genome including the consequences of chromosomal loss, such as the 5q deletion characteristic of basal-like breast cancer. Interrogation of the 5q trans-effects against the Library of Integrated Network-based Cellular Signatures, connected loss of CETN3 and SKP1 to elevated expression of epidermal growth factor receptor (EGFR), and SKP1 loss also to increased SRC tyrosine kinase. Global proteomic data confirmed a stromal-enriched group of proteins in addition to basal and luminal clusters, and pathway analysis of the phosphoproteome identified a G-protein-coupled receptor cluster that was not readily identified at the mRNA level. In addition to ERBB2, other amplicon-associated highly phosphorylated kinases were identified, including CDK12, PAK1, PTK2, RIPK2 and TLK2. We demonstrate that proteogenomic analysis of breast cancer elucidates the functional consequences of somatic mutations, narrows candidate nominations for driver genes within large deletions and amplified regions, and identifies therapeutic targets.

Zhao HF, Wang J, Jiang HR, et al.
PI3K p110β isoform synergizes with JNK in the regulation of glioblastoma cell proliferation and migration through Akt and FAK inhibition.
J Exp Clin Cancer Res. 2016; 35:78 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Glioblastoma multiforme is the most aggressive malignant primary brain tumor, characterized by rapid growth and extensive infiltration to neighboring normal brain parenchyma. Both PI3K/Akt and JNK pathways are essential to glioblastoma cell survival, migration and invasion. Due to their hyperactivation in glioblastoma cells, PI3K and JNK are promising targets for glioblastoma treatment.
METHODS: To investigate the combination effects of class IA PI3K catalytic isoforms (p110α, p110β and p110δ) and JNK inhibition on tumor cell growth and motility, glioblastoma cells and xenografts in nude mice were treated with isoform-selective PI3K inhibitors in combination with JNK inhibitor.
RESULTS: We showed that combined inhibition of these PI3K isoforms and JNK exerted divergent effects on the proliferation, migration and invasion of glioblastoma cells in vitro. Pharmacological inhibition of p110β or p110δ, but not p110α, displayed synergistic inhibitory effect with JNK inhibition on glioblastoma cell proliferation and migration through decreasing phosphorylation of Akt, FAK and zyxin, leading to blockade of lamellipodia and membrane ruffles formation. No synergistic effect on invasion was observed in all the combination treatment. In vivo, combination of p110β and JNK inhibitors significantly reduced xenograft tumor growth compared with single inhibitor alone.
CONCLUSION: Concurrent inhibition of p110β and JNK exhibited synergistic effects on suppressing glioblastoma cell proliferation and migration in vitro and xenograft tumor growth in vivo. Our data suggest that combined inhibition of PI3K p110β isoform and JNK may serve as a potent and promising therapeutic approach for glioblastoma multiforme.

Jadav RS, Kumar D, Buwa N, et al.
Deletion of inositol hexakisphosphate kinase 1 (IP6K1) reduces cell migration and invasion, conferring protection from aerodigestive tract carcinoma in mice.
Cell Signal. 2016; 28(8):1124-36 [PubMed] Free Access to Full Article Related Publications
Inositol hexakisphosphate kinases (IP6Ks), a family of enzymes found in all eukaryotes, are responsible for the synthesis of 5-diphosphoinositol pentakisphosphate (5-IP7) from inositol hexakisphosphate (IP6). Three isoforms of IP6Ks are found in mammals, and gene deletions of each isoform lead to diverse, non-overlapping phenotypes in mice. Previous studies show a facilitatory role for IP6K2 in cell migration and invasion, properties that are essential for the early stages of tumorigenesis. However, IP6K2 also has an essential role in cancer cell apoptosis, and mice lacking this protein are more susceptible to the development of aerodigestive tract carcinoma upon treatment with the oral carcinogen 4-nitroquinoline-1-oxide (4NQO). Not much is known about the functions of the equally abundant and ubiquitously expressed IP6K1 isoform in cell migration, invasion and cancer progression. We conducted a gene expression analysis on mouse embryonic fibroblasts (MEFs) lacking IP6K1, revealing a role for this protein in cell receptor-extracellular matrix interactions that regulate actin cytoskeleton dynamics. Consequently, cells lacking IP6K1 manifest defects in adhesion-dependent signaling, evident by lower FAK and Paxillin activation, leading to reduced cell spreading and migration. Expression of active, but not inactive IP6K1 reverses migration defects in IP6K1 knockout MEFs, suggesting that 5-IP7 synthesis by IP6K1 promotes cell locomotion. Actin cytoskeleton remodeling and cell migration support the ability of cancer cells to achieve their complete oncogenic potential. Cancer cells with lower IP6K1 levels display reduced migration, invasion, and anchorage-independent growth. When fed an oral carcinogen, mice lacking IP6K1 show reduced progression from epithelial dysplasia to invasive carcinoma. Thus, our data reveal that like IP6K2, IP6K1 is also involved in early cytoskeleton remodeling events during cancer progression. However, unlike IP6K2, IP6K1 is essential for 4NQO-induced invasive carcinoma. Our study therefore uncovers similarities and differences in the roles of IP6K1 and IP6K2 in cancer progression, and we propose that an isoform-specific IP6K1 inhibitor may provide a novel route to suppress carcinogenesis.

Zhang PF, Li KS, Shen YH, et al.
Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling.
Cell Death Dis. 2016; 7:e2201 [PubMed] Free Access to Full Article Related Publications
Galectin-1 (Gal-1) is involved in several pathological activities associated with tumor progression and chemoresistance, however, the role and molecular mechanism of Gal-1 activity in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT) and sorafenib resistance remain enigmatic. In the present study, forced Gal-1 expression promoted HCC progression and sorafenib resistance. Gal-1 elevated αvβ3-integrin expression, leading to AKT activation. Moreover, Gal-1 overexpression induced HCC cell EMT via PI3K/AKT cascade activation. Clinically, our data revealed that Gal-1 overexpression is correlated with poor HCC survival outcomes and sorafenib response. These data suggest that Gal-1 may be a potential therapeutic target for HCC and a biomarker for predicting response to sorafenib treatment.

Li W, Wang H, Zhang J, et al.
miR-199a-5p regulates β1 integrin through Ets-1 to suppress invasion in breast cancer.
Cancer Sci. 2016; 107(7):916-23 [PubMed] Free Access to Full Article Related Publications
Increasing evidence has revealed that miR-199a-5p is actively involved in tumor invasion and metastasis as well as in the decline of breast cancer tissues. In this research, overexpression of miR-199a-5p weakened motility and invasion of breast cancer cells MCF-7 and MDA-MB-231. Upregulation of Ets-1 increased breast cancer cell invasion, but the mechanism by which miR-199a-5p modulates activation of Ets-1 in breast cancer was not clarified. We investigated the relationship between miR-199a-5p and Ets-1 on the basis of 158 primary breast cancer case specimens, and the results showed that Ets-1 expression was inversely correlated with endogenous miR-199a-5p. Overexpression of miR-199a-5p reduced the mRNA and protein levels of Ets-1 in MCF-7 and MDA-MB-231 cells, whereas anti-miR-199a-5p elevated Ets-1. siRNA-mediated Ets-1 knockdown phenocopied the inhibition invasion of miR-199a-5p in vitro. Moreover, luciferase reporter assay revealed that miR-199a-5p directly targeted 3'-UTR of Ets-1 mRNA. This research revealed that miR-199a-5p could descend the levels of β1 integrin by targeting 3'-UTR of Ets-1 to alleviate the invasion of breast cancer via FAK/Src/Akt/mTOR signaling pathway. Our results provide insight into the regulation of β1 integrin through miR-199a-5p-mediated Ets-1 silence and will help in designing new therapeutic strategies to inhibit signal pathways induced by miR-199a-5p in breast cancer invasion.

Makino Y, Hamamura K, Takei Y, et al.
A therapeutic trial of human melanomas with combined small interfering RNAs targeting adaptor molecules p130Cas and paxillin activated under expression of ganglioside GD3.
Biochim Biophys Acta. 2016; 1860(8):1753-63 [PubMed] Related Publications
We previously demonstrated that focal adhesion kinase (FAK), p130Cas and paxillin are crucially involved in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells. Therefore, molecules existing in the GD3-mediated signaling pathway could be considered as suitable targets for therapeutic intervention in malignant melanoma. The aim of this study was to determine whether blockade of p130Cas and/or paxillin by RNAi suppresses melanoma growth. We found a suitable dose (40 μM siRNA, 25 μl/tumor) of the siRNA to suppress p130Cas in the xenografts generated in nu/nu mice. Based on these results, we performed intratumoral (i.t.) treatment with anti-p130Cas and/or anti-paxillin siRNAs mixed with atelocollagen as a drug delivery system in a xenograft tumor of a human melanoma cell line, SK-MEL-28. Mixture of atelocollagen (1.75%) and an siRNA (500 or 1000 pmol/tumor) was injected into the tumors every 3 days after the first injection. An siRNA against human p130Cas markedly suppressed tumor growth of the xenograft in a dose-dependent manner, whereas siRNA against human paxillin slightly inhibited the tumor growth. A control siRNA against firefly luciferase showed no effect. To our surprise, siRNA against human p130Cas (500 or 1000 pmol/tumor) combined with siRNA against human paxillin dramatically suppressed tumor growth. In agreement with the tumor suppression effects of the anti-p130Cas siRNA, reduction in Ki-67 positive cell number as well as in p130Cas expression was demonstrated by immunohistostaining. These results suggested that blockade of GD3-mediated growth signaling pathways by siRNAs might be a novel and promising therapeutic strategy against malignant melanomas, provided signaling molecules such as p130Cas and paxillin are significantly expressed in individual cases. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.

Kundu M, Mahata B, Banerjee A, et al.
Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.
Biochim Biophys Acta. 2016; 1863(7 Pt A):1472-89 [PubMed] Related Publications
The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor.

Salem I, Alsalahi M, Chervoneva I, et al.
The effects of CEP-37440, an inhibitor of focal adhesion kinase, in vitro and in vivo on inflammatory breast cancer cells.
Breast Cancer Res. 2016; 18(1):37 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Inflammatory breast cancer (IBC) is an aggressive type of advanced breast cancer with a poor prognosis. We recently found that focal adhesion kinase 1 (FAK1) is upregulated and phosphorylated (active) in IBC. In this study, we investigated the effect of CEP-37440, a dual inhibitor of FAK1 and anaplastic lymphoma kinase (ALK), using human IBC cell lines and preclinical models of IBC.
METHODS: Cell proliferation assays were performed in the presence of several concentrations of CEP-37440 using IBC and triple-negative breast cancer non-IBC cell lines. In vitro, we studied the expression of total FAK1, phospho-FAK1 (Tyr 397), total ALK and phospho-ALK (Tyr 1604). In vivo, we tested CEP-37440 using FC-IBC02, SUM149, and SUM190 IBC xenograft mouse models.
RESULTS: CEP-37440 at low concentration decreased the proliferation of the IBC cell lines FC-IBC02, SUM190, and KPL4, while not affecting the proliferation of normal breast epithelial cells. At higher concentration, CEP-37440 was also able to inhibit the proliferation of the IBC cell line MDA-IBC03 and the triple-negative non-IBC cell lines MDA-MB-231 and MDA-MB-468; the IBC cell line SUM149 showed a slight response to the drug. CEP-37440 decreased the cell proliferation of FC-IBC02, SUM190, and KPL4 by blocking the autophosphorylation kinase activity of FAK1 (Tyr 397). None of the cells evaluated expressed ALK. In vivo, after 7 weeks of CEP-37440 treatment, the SUM190, FC-IBC02, and SUM149 breast tumor xenografts were smaller in mice treated with 55 mg/kg bid CEP-37440 compared to the controls; the tumor growth inhibition (TGI) was 79.7 %, 33 %, and 23 %, respectively. None of the FC-IBC02 breast xenografts mice treated with CEP-37440 developed brain metastasis while 20 % of the mice in the control group developed brain metastasis. Expression array analyses in FC-IBC02 cells showed that CEP-37440 affects the expression of genes related to apoptosis, interferon signaling, and cytokines.
CONCLUSIONS: CEP-37440 is effective against some IBC cells that express phospho-FAK1 (Tyr 397), and its antiproliferative activity is related to its ability to decrease phospho-FAK1. Our results suggest that combinational therapies could be more effective than using CEP-37440 as a single agent.

Yu X, Li T, Xia Y, et al.
Herpes simplex virus type 1 VP22-mediated intercellular delivery of PTEN increases the antitumor activity of PTEN in esophageal squamous cell carcinoma cells in vitro and in vivo.
Oncol Rep. 2016; 35(5):3034-40 [PubMed] Related Publications
In the past decade, studies have revealed that the phosphatase and tensin homolog (PTEN) protein, a tumor suppressor, comprises a potential biological marker and therapeutic target for esophageal squamous cell carcinoma (ESCC). As such, the delivery of the PTEN gene represents a powerful strategy for ESCC therapy. The tegument protein VP22 of herpes simplex virus type 1 (HSV-1) has been reported to act as a transporter of heterologous proteins across the host cell membrane, thereby enhancing the biological functions of these proteins. In the present study, the intercellular delivery and antitumor activity of the fusion protein PTEN-VP22 were examined in the esophageal squamous cell carcinoma cell line Eca109 both in vitro and in vivo. VP22-mediated PTEN intercellular delivery was confirmed in the Eca109 cells by western blot analysis and by quantitation of immunofluorescence. VP22 alone did not exert antiproliferative effects or induce cell cycle arrest, induction of apoptosis, blockage of the Akt and focal adhesion kinase (FAK) pathways, tumor growth inhibition, or antiangiogenic effects in Eca109 cells. However, compared with PTEN alone, PTEN-VP22 exerted significantly higher antiproliferative effects and induced cell cycle arrest at G1 stage, apoptosis and antiangiogenic effects in Eca109 cells. Together, our findings demonstrate that VP22 alone does not exert antitumor activity directly; however, this protein mediates the intercellular delivery of PTEN and thereby increases its intracellular concentration to achieve a therapeutic steady state, leading to an overall increase in the antitumor activity of PTEN. This study provides further experimental data to confirm the potential of VP22-based intercellular delivery strategies for enhancing the efficacy of gene therapy for cancer treatment.

Leng C, Zhang ZG, Chen WX, et al.
An integrin beta4-EGFR unit promotes hepatocellular carcinoma lung metastases by enhancing anchorage independence through activation of FAK-AKT pathway.
Cancer Lett. 2016; 376(1):188-96 [PubMed] Related Publications
Anoikis, a form of programmed cell death, occurs when the cells are detached from the appropriate extracellular matrix. Anoikis resistance or anchorage independence is necessary for distant metastases of cancer. The mechanisms by which hepatocellular carcinoma (HCC) cells become resistant to anoikis are not fully understood. Integrin beta4 (ITGB4, also known as CD104) is associated with progression of many human cancers. In this study, we demonstrate that ITGB4 is over-expressed in HCC tissues and aggressive HCC cell lines. To explore the role of ITGB4 in HCC, we inhibited its expression using small interfering RNA in two HCC cell lines: HCCLM3 and HLF. We show that knockdown of ITGB4 significantly enhanced susceptibility to anoikis through inhibition of AKT/PKB signaling. Moreover, ITGB4 interacts with epidermal growth factor receptor (EGFR) in a ligand independent manner. Inactivation of EGFR inhibits the anchorage independence and AKT pathway promoted by ITGB4. Further investigation proved that the ITGB4-EGFR unit triggers the focal adhesion kinase (FAK) to activate the AKT signaling pathway. Finally, we demonstrate that over-expression of ITGB4 is positively associated with tumor growth and lung metastases of HCC in vivo. Collectively, we demonstrate for the first time that ITGB4 is overexpressed in HCC tissues and promotes metastases of HCC by conferring anchorage independence through EGFR-dependent FAK-AKT activation.

Lin TY, Hsu HY
Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation.
Cancer Lett. 2016; 375(2):340-8 [PubMed] Related Publications
We recently reported that recombinant Ling Zhi-8 (rLZ-8), a medicinal mushroom Ganoderma lucidum recombinant protein, effectively prevents lung cancer cells proliferation in vivo mice model. In our current study, we demonstrated that rLZ-8 suppressed tumor metastasis and increased the survival rate in Lewis lung carcinoma cell-bearing mice. The epithelial to mesenchymal transition (EMT) process is regarded as the critical event in tumor metastasis. Herein, we showed that rLZ-8 effectively induced changes in EMT by interfering with cell adhesion and focal adhesion kinase (FAK) functions in lung cancer cells. Slug, a transcription factor, represses E-cadherin transcription and is regarded as a critical event in EMT and tumor metastasis. Functional studies revealed that downregulation of Slug as a result of rLZ-8-induced FAK inactivation enhanced E-cadherin expression and repressed cancer cell mobility. Moreover, we found that rLZ-8 enhanced the ubiquitination proteasome pathway (UPP)-mediated degradation of Slug in CL1-5 cells. Mechanistically, we demonstrated that rLZ-8 promoted the interaction between MDM2 and Slug, resulting in Slug degradation; however, MDM2-shRNA abolished rLZ-8-enhanced Slug degradation. This study is the first to determine anti-metastatic activity of rLZ-8 and its potential mechanism, with how the regulation of EMT and cell mobility is via the negative modulation of FAK, and thereby leading to the ubiquitination and degradation of Slug. Our findings suggest that the targets of FAK play a key role in metastasis. Moreover, rLZ-8 may be useful as a chemotherapeutic agent for treating lung cancer.

Hayashi K, Michiue H, Yamada H, et al.
Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization.
Sci Rep. 2016; 6:23372 [PubMed] Free Access to Full Article Related Publications
Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a median survival time about one year. Invasion of GBM cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM. Therefore, we hypothesized that inhibitors of actin polymerization can suppress GBM migration and invasion. First, we adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood-brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing both FAK and Akt/mammalian target of rapamycin signaling. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same dose of anti-depressant effect. In conclusion, fluvoxamine is a promising anti-invasive treatment against GBM with reliable approach.

Roseweir AK, Qayyum T, Lim Z, et al.
Nuclear expression of Lyn, a Src family kinase member, is associated with poor prognosis in renal cancer patients.
BMC Cancer. 2016; 16:229 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: 8000 cases of renal cancer are diagnosed each year in the UK, with a five-year survival rate of 50%. Treatment options are limited; a potential therapeutic target is the Src family kinases (SFKs). SFKs have roles in multiple oncogenic processes and promote metastases in solid tumours. The aim of this study was to investigate SFKs as potential therapeutic targets for clear cell renal cell carcinoma (ccRCC).
METHODS: SFKs expression was assessed in a tissue microarray consisting of 192 ccRCC patients with full clinical follow-up. SFK inhibitors, dasatinib and saracatinib, were assessed in early ccRCC cell lines, 786-O and 769-P and a metastatic ccRCC cell line, ACHN (± Src) for effects on protein expression, apoptosis, proliferation and wound healing.
RESULTS: High nuclear expression of Lyn and the downstream marker of activation, paxillin, were associated with decreased patient survival. Conversely, high cytoplasmic expression of other SFK members and downstream marker of activation, focal adhesion kinase (FAK) were associated with increased patient survival. Treatment of non-metastatic 786-O and 769-P cells with dasatinib, dose dependently reduced SFK activation, shown via SFK (Y(419)) and FAK (Y(861)) phosphorylation, with no effect in metastatic ACHN cells. Dasatinib also increased apoptosis, while decreasing proliferation and migration in 786-O and 769-P cell lines, both in the presence and absence of Src protein.
CONCLUSIONS: Our data suggests that nuclear Lyn is a potential therapeutic target for ccRCC and dasatinib affects cellular functions associated with cancer progression via a Src kinase independent mechanism.

Fan T, Chen J, Zhang L, et al.
Bit1 knockdown contributes to growth suppression as well as the decreases of migration and invasion abilities in esophageal squamous cell carcinoma via suppressing FAK-paxillin pathway.
Mol Cancer. 2016; 15:23 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: There is growing evidence that Bit1 exerts different roles in the development and progression of human cancers. Although Bit1 was highly exhibited in ESCC tissues in our previous study, its roles and molecular mechanisms implicated in development and progression of ESCC remain unknown.
METHODS: Bit1 protein expression in ESCC cell lines and normal esophageal epithelial cell was detected by Western blotting. Bit1 protein expression mediated by Bit1 shRNA was investigated by Western blotting. MTT, migration assay, invasion experiment, ELISA and Flow cytometry were utilized to determine the effects of Bit1 knockdown on cell proliferation, migration, invasion and apoptosis, respectively. A xenograft model was used to examine in vivo tumourigenicity, and immunohistochemistry and TUNEL were utilized to evaluate the related protein expression and apoptosis. Gene microarray was determined by Agilent SurePrint G3 Human GE 8 × 60 K Microarray, the interaction of Bit1 and FAK proteins were detected by Immunoprecipitation and the key protein expressions of FAK-paxillin pathway were detected by Western blotting.
RESULTS: We found Bit1 expression in all human ESCC cell lines tested was significantly higher than that in normal esophageal epithelial cell Het-1A (P < 0.05), in which EC9706 presented the highest Bit1 level. Bit1 protein level was significantly downregulated at day 1 after transfection with specific shRNA against Bit1 (P < 0.05). At days 2 and 3, Bit1 level reached the lowest value after transfection with Bit1 shRNA. Moreover, Bit1 depletion contributed to growth inhibition in vitro and in vivo, reduced cell migration and invasion abilities, and induced cell apoptosis in EC9706 and TE1 cells. More importantly, Bit1 downregulation significantly lowered Bcl-2 and MMP-2 levels in EC9706 xenografted tumor tissues, meanwhile triggered apoptosis after treatment with different doses of Bit1 shRNA. Further gene microarray revealed that 23 genes in Bit1-RNAi group were markedly downregulated, whereas 16 genes were obviously upregulated. Notably, Bit1 intrinsically interacted with FAK protein in EC9706 cells. Moreover, paxillin was downregulated at mRNA and protein levels in Bit1 shRNA group, coupled with the decreases of FAK mRNA and protein expressions.
CONCLUSION: Bit1 may be an important regulator in cell growth, apoptosis, migration and invasion of ESCC via targeting FAK-paxillin pathway, and thereby combinative manipulation of Bit1 and FAK-paxillin pathway may be the novel and promising therapeutic targets for the patients with ESCC.

Chang HR, Park HS, Ahn YZ, et al.
Improving gastric cancer preclinical studies using diverse in vitro and in vivo model systems.
BMC Cancer. 2016; 16:200 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: "Biomarker-driven targeted therapy," the practice of tailoring patients' treatment to the expression/activity levels of disease-specific genes/proteins, remains challenging. For example, while the anti-ERBB2 monoclonal antibody, trastuzumab, was first developed using well-characterized, diverse in vitro breast cancer models (and is now a standard adjuvant therapy for ERBB2-positive breast cancer patients), trastuzumab approval for ERBB2-positive gastric cancer was largely based on preclinical studies of a single cell line, NCI-N87. Ensuing clinical trials revealed only modest patient efficacy, and many ERBB2-positive gastric cancer (GC) patients failed to respond at all (i.e., were inherently recalcitrant), or succumbed to acquired resistance.
METHOD: To assess mechanisms underlying GC insensitivity to ERBB2 therapies, we established a diverse panel of GC cells, differing in ERBB2 expression levels, for comprehensive in vitro and in vivo characterization. For higher throughput assays of ERBB2 DNA and protein levels, we compared the concordance of various laboratory quantification methods, including those of in vitro and in vivo genetic anomalies (FISH and SISH) and xenograft protein expression (Western blot vs. IHC), of both cell and xenograft (tissue-sectioned) microarrays.
RESULTS: The biomarker assessment methods strongly agreed, as did correlation between RNA and protein expression. However, although ERBB2 genomic anomalies showed good in vitro vs. in vivo correlation, we observed striking differences in protein expression between cultured cells and mouse xenografts (even within the same GC cell type). Via our unique pathway analysis, we delineated a signaling network, in addition to specific pathways/biological processes, emanating from the ERBB2 signaling cascade, as a potential useful target of clinical treatment. Integrated analysis of public data from gastric tumors revealed frequent (10 - 20 %) amplification of the genes NFKBIE, PTK2, and PIK3CA, each of which resides in an ERBB2-derived subpathway network.
CONCLUSION: Our comprehensive bioinformatics analyses of highly heterogeneous cancer cells, combined with tumor "omics" profiles, can optimally characterize the expression patterns and activity of specific tumor biomarkers. Subsequent in vitro and in vivo validation, of specific disease biomarkers (using multiple methodologies), can improve prediction of patient stratification according to drug response or nonresponse.

Ye X, Zhang Y, Wang X, et al.
Tumor-suppressive functions of long-chain acyl-CoA synthetase 4 in gastric cancer.
IUBMB Life. 2016; 68(4):320-7 [PubMed] Related Publications
Long chain acyl CoA synthetase 4 (ACSL4) is a key enzyme in fatty acid metabolism with marked preference for arachidonic acid (AA). Recent reports have implicated its crucial roles in tumorigenesis. However in gastric cancer (GC), the expression and function of ACSL4 remain unclear. In the present study, we identified ACSL4 as a potential tumor suppressor in GC. The ACSL4 expression in GC samples was evaluated by real-time PCR and immunohistochemistry. The results indicated that the mRNA and protein levels of ACSL4 were frequently downregulated in cancer tissues compared with the adjacent non-cancerous mucosa control tissues. Cell-based functional assays exhibited that ectopic expression of ACSL4 inhibits cell growth, colony formation and cell migration, whereas ACSL4 knockdown enhanced these effects. In a nude mice model, ACSL4 knockdown also promoted subcutaneous xenografts' growth in vivo. Moreover, western blot analysis revealed that ACSL4 expression had a significant effect on FAK and P21 protein level. These findings suggest that ACSL4 plays a tumor-suppressive role and could be a potential therapeutic target in GC.

Chen JS, Li HS, Huang JQ, et al.
MicroRNA-379-5p inhibits tumor invasion and metastasis by targeting FAK/AKT signaling in hepatocellular carcinoma.
Cancer Lett. 2016; 375(1):73-83 [PubMed] Related Publications
Some microRNAs (miRNAs) have been implicated in hepatocellular carcinoma (HCC) development and progression. However, the roles and mechanisms of several miRNAs in HCC remain poorly understood. Here, we report that miR-379-5p, which is down-regulated in HCC tissues and cell lines, is associated with advanced TNM stage and metastasis in HCC. The ectopic overexpression of miR-379-5p inhibited HCC cell migration, invasion, epithelial-to-mesenchymal transition (EMT) and metastasis both in vitro and in vivo. Conversely, miR-379 knockdown increased migration, invasion and EMT in HCC cells. Moreover, miR-379-5p exerted this function by directly targeting focal adhesion kinase (FAK) 3'-UTR and repressing FAK expression, thus leading to suppression of AKT signaling. Furthermore, the tumor suppressive effects of miR-379-5p in HCC cells were reversed by activating AKT signaling or restoring FAK expression. In clinical samples of HCC, miR-379-5p negatively correlated with FAK, which was up-regulated in HCC. Taken together, our findings highlight the important role of miR-379-5p in regulating the EMT and metastasis of HCC by targeting FAK/AKT signaling, suggesting that miR-379-5p may represent a novel potential therapeutic target and prognostic marker for HCC.

Wangpu X, Lu J, Xi R, et al.
Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling.
Mol Pharmacol. 2016; 89(5):521-40 [PubMed] Free Access to Full Article Related Publications
Metastasis is a complex process that is regulated by multiple signaling pathways, with the focal adhesion kinase (FAK)/paxillin pathway playing a major role in the formation of focal adhesions and cell motility. N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor in many solid tumor types, including prostate and colon cancer. Considering the antimetastatic effect of NDRG1 and the crucial involvement of the FAK/paxillin pathway in cellular migration and cell-matrix adhesion, we assessed the effects of NDRG1 on this important oncogenic pathway. In the present study, NDRG1 overexpression and silencing models of HT29 colon cancer and DU145 prostate cancer cells were used to examine the activation of FAK/paxillin signaling and the formation of focal adhesions. The expression of NDRG1 resulted in a marked and significant decrease in the activating phosphorylation of FAK and paxillin, whereas silencing of NDRG1 resulted in an opposite effect. The expression of NDRG1 also inhibited the formation of focal adhesions as well as cell migration and cell-collagen adhesion. Incubation of cells with novel thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, that upregulate NDRG1 also resulted in decreased phosphorylation of FAK and paxillin. The ability of these thiosemicarbazones to inhibit cell migration and metastasis could be mediated, at least in part, through the FAK/paxillin pathway.

Shi PJ, Xu LH, Lin KY, et al.
Synergism between the mTOR inhibitor rapamycin and FAK down-regulation in the treatment of acute lymphoblastic leukemia.
J Hematol Oncol. 2016; 9:12 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Acute lymphoblastic leukemia (ALL) is an aggressive malignant disorder of lymphoid progenitor cells in both children and adults. Although improvements in contemporary therapy and development of new treatment strategies have led to dramatic increases in the cure rate in children with ALL, the relapse rate remains high and the prognosis of relapsed childhood ALL is poor. Molecularly targeted therapies have emerged as the leading treatments in cancer therapy. Multi-cytotoxic drug regimens have achieved success, yet many studies addressing targeted therapies have focused on only one single agent. In this study, we attempted to investigate whether the effect of the mammalian target of rapamycin (mTOR) inhibitor rapamycin is synergistic with the effect of focal adhesion kinase (FAK) down-regulation in the treatment of ALL.
METHODS: The effect of rapamycin combined with FAK down-regulation on cell proliferation, the cell cycle, and apoptosis was investigated in the human precursor B acute lymphoblastic leukemia cells REH and on survival time and leukemia progression in a non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse model.
RESULTS: When combined with FAK down-regulation, rapamycin-induced suppression of cell proliferation, G0/G1 cell cycle arrest, and apoptosis were significantly enhanced. In addition, REH cell-injected NOD/SCID mice treated with rapamycin and a short-hairpin RNA (shRNA) to down-regulate FAK had significantly longer survival times and slower leukemia progression compared with mice injected with REH-empty vector cells and treated with rapamycin. Moreover, the B-cell CLL/lymphoma-2 (BCL-2) gene family was shown to be involved in the enhancement, by combined treatment, of REH cell apoptosis.
CONCLUSIONS: FAK down-regulation enhanced the in vitro and in vivo inhibitory effects of rapamycin on REH cell growth, indicating that the simultaneous targeting of mTOR- and FAK-related pathways might offer a novel and powerful strategy for treating ALL.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTK2, Cancer Genetics Web: http://www.cancer-genetics.org/PTK2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999