RAD52

Gene Summary

Gene:RAD52; RAD52 homolog, DNA repair protein
Location:12p13.33
Summary:The protein encoded by this gene shares similarity with Saccharomyces cerevisiae Rad52, a protein important for DNA double-strand break repair and homologous recombination. This gene product was shown to bind single-stranded DNA ends, and mediate the DNA-DNA interaction necessary for the annealing of complementary DNA strands. It was also found to interact with DNA recombination protein RAD51, which suggested its role in RAD51 related DNA recombination and repair. A pseudogene of this gene is present on chromosome 2. Alternative splicing results in multiple transcript variants. Additional alternatively spliced transcript variants of this gene have been described, but their full-length nature is not known. [provided by RefSeq, Jul 2014]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:DNA repair protein RAD52 homolog
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (11)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RAD52 (cancer-related)

Wang H, Li S, Oaks J, et al.
The concerted roles of FANCM and Rad52 in the protection of common fragile sites.
Nat Commun. 2018; 9(1):2791 [PubMed] Free Access to Full Article Related Publications
Common fragile sites (CFSs) are prone to chromosomal breakage and are hotspots for chromosomal rearrangements in cancer cells. We uncovered a novel function of Fanconi anemia (FA) protein FANCM in the protection of CFSs that is independent of the FA core complex and the FANCI-FANCD2 complex. FANCM, along with its binding partners FAAP24 and MHF1/2, is recruited to CFS-derived structure-prone AT-rich sequences, where it suppresses DNA double-strand break (DSB) formation and mitotic recombination in a manner dependent on FANCM translocase activity. Interestingly, we also identified an indispensable function of Rad52 in the repair of DSBs at CFS-derived AT-rich sequences, despite its nonessential function in general homologous recombination (HR) in mammalian cells. Suppression of Rad52 expression in combination with FANCM knockout drastically reduces cell and tumor growth, suggesting a synthetic lethality interaction between these two genes, which offers a potential targeted treatment strategy for FANCM-deficient tumors with Rad52 inhibition.

Byun J, Schwartz AG, Lusk C, et al.
Genome-wide association study of familial lung cancer.
Carcinogenesis. 2018; 39(9):1135-1140 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
To identify genetic variation associated with lung cancer risk, we performed a genome-wide association analysis of 685 lung cancer cases that had a family history of two or more first or second degree relatives compared with 744 controls without lung cancer that were genotyped on an Illumina Human OmniExpressExome-8v1 array. To ensure robust results, we further evaluated these findings using data from six additional studies that were assembled through the Transdisciplinary Research on Cancer of the Lung Consortium comprising 1993 familial cases and 33 690 controls. We performed a meta-analysis after imputation of all variants using the 1000 Genomes Project Phase 1 (version 3 release date September 2013). Analyses were conducted for 9 327 222 SNPs integrating data from the two sources. A novel variant on chromosome 4p15.31 near the LCORL gene and an imputed rare variant intergenic between CDKN2A and IFNA8 on chromosome 9p21.3 were identified at a genome-wide level of significance for squamous cell carcinomas. Additionally, associations of CHRNA3 and CHRNA5 on chromosome 15q25.1 in sporadic lung cancer were confirmed at a genome-wide level of significance in familial lung cancer. Previously identified variants in or near CHRNA2, BRCA2, CYP2A6 for overall lung cancer, TERT, SECISPB2L and RTEL1 for adenocarcinoma and RAD52 and MHC for squamous carcinoma were significantly associated with lung cancer.

Xu G, Du J, Wang F, et al.
RAD52 motif‑containing protein 1 promotes non‑small cell lung cancer cell proliferation and survival via cell cycle regulation.
Oncol Rep. 2018; 40(2):833-840 [PubMed] Related Publications
DNA repair proteins such as RAD52 have been implicated in tumor progression and response to chemotherapy. RAD52 motif‑containing protein 1 (RDM1) has been implicated in the response to chemotherapeutic agent cisplatin; however, its function in lung cancer progression remains unclear. This study aimed to investigate the role of RDM1 in the progression of non‑small cell lung cancer (NSCLC). We found elevated RDM1 mRNA and protein expression in NSCLC tissues and cell lines compared to levels in normal lung cells. RDM1 protein expression in lung cancer tissues was found to correlate with tumor size, histological differentiation, lymph node metastasis and tumor‑node‑metastasis (TNM) stage. Knockdown of the RDM1 gene with siRNA significantly reduced the cellular proliferation rate and increased apoptosis in the human NSCLC cell line, NCI‑H1299. Compared to wild‑type NCI‑H1299 cells, RDM1 knockdown enhanced the activity of caspase‑3 and caspase‑7, and decreased the proportion of cells in the S‑phase of the cell cycle. Taken together, these data imply that RDM1 promotes the survival and proliferation of NSCLC cells. Due to its similarity to RAD52, we hypothesized that RDM1 potentially repairs DNA double‑strand breaks arising through DNA replication, thereby preventing G2/M cell cycle arrest. Accordingly, specific targeting of RDM1 may be a novel therapeutic strategy in the treatment of NSCLC.

Das R, Kundu S, Laskar S, et al.
Assessment of DNA repair susceptibility genes identified by whole exome sequencing in head and neck cancer.
DNA Repair (Amst). 2018 Jun - Jul; 66-67:50-63 [PubMed] Related Publications
Head and neck cancer (HNC), the sixth most common cancer globally, stands second in India. In Northeast (NE) India, it is the sixth most common cause of death in males and seventh in females. Prolonged tobacco and alcohol consumption constitute the major etiological factors for HNC development, which induce DNA damage. Therefore, DNA repair pathway is a crucial system in maintaining genomic integrity and preventing carcinogenesis. The present work was aimed to predict the consequence of significant germline variants of the DNA repair genes in disease predisposition. Whole exome sequencing was performed in Ion Proton™ platform on 15 case-control samples from the HNC-prevalent states of Manipur, Mizoram, and Nagaland. Variant annotation was done in Ion Reporter™ as well as wANNOVAR. Subsequent statistical and bioinformatics analysis identified significant exonic and intronic variants associated with HNC. Amongst our observed variants, 78.6% occurred in ExAC, 94% reported in dbSNP and 5.8% & 9.3% variants were present in ClinVar and HGMD, respectively. The total variants were dispersed among 199 genes with DSBR and FA pathway being the most mutated pathways. The allelic association test suggested that the intronic variants in HLTF and RAD52 gene significantly associated (P < 0.05) with the risk (OR > 5), while intronic variants in PARP4, RECQL5, EXO1 and PER1 genes and exonic variant in TDP2 gene showed protection (OR < 1) for HNC. MDR analysis proposed the exonic variants in MSH6, BRCA2, PALB2 and TP53 genes and intronic variant in RECQL5 genetic region working together during certain phase of DNA repair mechanism for HNC causation. In addition, other intronic and 3'UTR variations caused modifications in the transcription factor binding sites and miRNA target sites associated with HNC. Large-scale validation in NE Indian population, in-depth structure prediction and subsequent simulation of our recognized polymorphisms is necessary to identify true causal variants related to HNC.

Setton JS, Powell SN
A new role for a tumor-suppressing protein.
Elife. 2018; 7 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
In addition to its role in preventing tumors, the protein p53 appears to participate in a DNA repair process known as the replication-stress response.

Zhang L, Zhang Y, Tang CH, Su CM
RAD52 gene polymorphisms are associated with risk of colorectal cancer in a Chinese Han population.
Medicine (Baltimore). 2017; 96(49):e8994 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Upward trends in the incidence and mortality rates of colorectal cancer (CRC) in China over the past decade mean that it is critical to improve survival outcomes for patients with this malignancy. Analysis of genetic variants may identify biomarkers that have a role in CRC susceptibility and clinical outcomes in Chinese patients with CRC. RAD52 is a key mediator during DNA strand exchange and homologous recombination within mammalian cells. In this study, we explored the effects of RAD52 single nucleotide polymorphisms (SNPs) in the susceptibility and clinicopathological characteristics of Chinese Han patients with CRC. Five RAD52 SNPs (rs1051669, rs10774474, rs11571378, rs6489769, and rs7963551) were analyzed using TaqMan SNP genotyping in 281 patients with CRC and 309 healthy controls. Among those aged over 60 years in the total population, carriers of the variant C allele or at least one T allele of the rs1051669 SNP were at a lower risk of CRC than carriers of the wild-type CC variant of rs1051669, while in those carrying the rs7963551 SNP, the GT or GT+GG alleles were associated with an increased risk of CRC compared with patients carrying TT alleles. We indicated a significant correlation between RAD52 rs7963551 polymorphism and lymph node metastasis in CRC patients. In all patients, the T-T-T-T-T, C-T-T-T-T, and C-T-A-C-T haplotypes were associated with an increasing risk of CRC. Our findings suggest that 4 RAD52 SNPs (rs1051669, rs10774474, rs11571378, and rs6489769) might contribute to the prediction of CRC susceptibility. In conclusion, our study demonstrated that RAD52 polymorphisms were associated with CRC in a Chinese Han cohort.

Hromas R, Kim HS, Sidhu G, et al.
The endonuclease EEPD1 mediates synthetic lethality in RAD52-depleted BRCA1 mutant breast cancer cells.
Breast Cancer Res. 2017; 19(1):122 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
BACKGROUND: Proper repair and restart of stressed replication forks requires intact homologous recombination (HR). HR at stressed replication forks can be initiated by the 5' endonuclease EEPD1, which cleaves the stalled replication fork. Inherited or acquired defects in HR, such as mutations in breast cancer susceptibility protein-1 (BRCA1) or BRCA2, predispose to cancer, including breast and ovarian cancers. In order for these HR-deficient tumor cells to proliferate, they become addicted to a bypass replication fork repair pathway mediated by radiation repair protein 52 (RAD52). Depleting RAD52 can cause synthetic lethality in BRCA1/2 mutant cancers by an unknown molecular mechanism.
METHODS: We hypothesized that cleavage of stressed replication forks by EEPD1 generates a fork repair intermediate that is toxic when HR-deficient cells cannot complete repair with the RAD52 bypass pathway. To test this hypothesis, we applied cell survival assays, immunofluorescence staining, DNA fiber and western blot analyses to look at the correlation between cell survival and genome integrity in control, EEPD1, RAD52 and EEPD1/RAD52 co-depletion BRCA1-deficient breast cancer cells.
RESULTS: Our data show that depletion of EEPD1 suppresses synthetic lethality, genome instability, mitotic catastrophe, and hypersensitivity to stress of replication of RAD52-depleted, BRCA1 mutant breast cancer cells. Without HR and the RAD52-dependent backup pathway, the BRCA1 mutant cancer cells depleted of EEPD1 skew to the alternative non-homologous end-joining DNA repair pathway for survival.
CONCLUSION: This study indicates that the mechanism of synthetic lethality in RAD52-depleted BRCA1 mutant cancer cells depends on the endonuclease EEPD1. The data imply that EEPD1 cleavage of stressed replication forks may result in a toxic intermediate when replication fork repair cannot be completed.

Couto PP, Bastos-Rodrigues L, Schayek H, et al.
Spectrum of germline mutations in smokers and non-smokers in Brazilian non-small-cell lung cancer (NSCLC) patients.
Carcinogenesis. 2017; 38(11):1112-1118 [PubMed] Related Publications
Lung cancer (LC) is a leading cause of cancer-related mortality. Although smoking is the major risk factor, ~15% of all cases occur in never-smokers, suggesting that genetic factors play a role in LC predisposition. Indeed, germline mutations in the TP53 gene predispose to multiple cancer types, including LC. To date, few studies compared the somatic and germline mutational profiles of LC cases by smoking status, and none was reported in Brazilians. Whole-exome sequencing (WES) was performed on two pools (seven smokers and six non-smokers) of tumor-derived DNA using the Illumina HiSeq2000 platform. Files from pools were analyzed separately using Ingenuity®Variant AnalysisTM and Mendel,MD. Validation of all candidate variants was performed by Sanger sequencing. Subsequently, validated mutations were analyzed in germline DNA from the same patients and in ethnically matched controls. In addition, a single recurring Brazilian TP53 germline mutation (R337H) was genotyped in 45 non-small-cell lung cancer patients.Four novel germline variants in the ATAD2, AURKA, PTPRD and THBS1 genes were identified exclusively in smoker patients, and four germline missense variants in PLCD1, RAD52, CP and CDC6 genes were identified solely in non-smokers. There were 4/45 (8.9%) germline carriers of the R337H TP53 mutation. In conclusion, the recurring Brazilian TP53 mutation should be genotyped in all non-small-cell lung cancer in Brazil, regardless of smoking status. Distinct pathogenic mutations and novel sequence variants are detected in Brazilian non-small-cell lung cancer patients, by smoking status. The contribution of these sequence variants to LC pathogenesis remains to be further explored.

Lieberman R, You M
Corrupting the DNA damage response: a critical role for Rad52 in tumor cell survival.
Aging (Albany NY). 2017; 9(7):1647-1659 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
The DNA damage response enables cells to survive, maintain genome integrity, and to safeguard the transmission of high-fidelity genetic information. Upon sensing DNA damage, cells respond by activating this multi-faceted DNA damage response leading to restoration of the cell, senescence, programmed cell death, or genomic instability if the cell survives without proper repair. However, unlike normal cells, cancer cells maintain a marked level of genomic instability. Because of this enhanced propensity to accumulate DNA damage, tumor cells rely on homologous recombination repair as a means of protection from the lethal effect of both spontaneous and therapy-induced double-strand breaks (DSBs) in DNA. Thus, modulation of DNA repair pathways have important consequences for genomic instability within tumor cell biology and viability maintenance under high genotoxic stress. Efforts are underway to manipulate specific components of the DNA damage response in order to selectively induce tumor cell death by augmenting genomic instability past a viable threshold. New evidence suggests that RAD52, a component of the homologous recombination pathway, is important for the maintenance of tumor genome integrity. This review highlights recent reports indicating that reducing homologous recombination through inhibition of RAD52 may represent an important focus for cancer therapy and the specific efforts that are already demonstrating potential.

Stafford JL, Dyson G, Levin NK, et al.
Reanalysis of BRCA1/2 negative high risk ovarian cancer patients reveals novel germline risk loci and insights into missing heritability.
PLoS One. 2017; 12(6):e0178450 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
While up to 25% of ovarian cancer (OVCA) cases are thought to be due to inherited factors, the majority of genetic risk remains unexplained. To address this gap, we sought to identify previously undescribed OVCA risk variants through the whole exome sequencing (WES) and candidate gene analysis of 48 women with ovarian cancer and selected for high risk of genetic inheritance, yet negative for any known pathogenic variants in either BRCA1 or BRCA2. In silico SNP analysis was employed to identify suspect variants followed by validation using Sanger DNA sequencing. We identified five pathogenic variants in our sample, four of which are in two genes featured on current multi-gene panels; (RAD51D, ATM). In addition, we found a pathogenic FANCM variant (R1931*) which has been recently implicated in familial breast cancer risk. Numerous rare and predicted to be damaging variants of unknown significance were detected in genes on current commercial testing panels, most prominently in ATM (n = 6) and PALB2 (n = 5). The BRCA2 variant p.K3326*, resulting in a 93 amino acid truncation, was overrepresented in our sample (odds ratio = 4.95, p = 0.01) and coexisted in the germline of these women with other deleterious variants, suggesting a possible role as a modifier of genetic penetrance. Furthermore, we detected loss of function variants in non-panel genes involved in OVCA relevant pathways; DNA repair and cell cycle control, including CHEK1, TP53I3, REC8, HMMR, RAD52, RAD1, POLK, POLQ, and MCM4. In summary, our study implicates novel risk loci as well as highlights the clinical utility for retesting BRCA1/2 negative OVCA patients by genomic sequencing and analysis of genes in relevant pathways.

Kan Y, Batada NN, Hendrickson EA
Human somatic cells deficient for RAD52 are impaired for viral integration and compromised for most aspects of homology-directed repair.
DNA Repair (Amst). 2017; 55:64-75 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Homology-directed repair (HDR) maintains genomic integrity by eliminating lesions such as DNA double-strand breaks (DSBs), interstrand crosslinks (ICLs) and stalled replication forks and thus a deficiency in HDR is associated with genomic instability and cancer predisposition. The mechanism of HDR is best understood and most rigorously characterized in yeast. The inactivation of the fungal radiation sensitive 52 (RAD52) gene, which has both recombination mediator and single-strand annealing (SSA) activities in vitro, leads to severe HDR defects in vivo. Confusingly, however, the inactivation of murine and chicken RAD52 genes resulted in mouse and chicken cells, respectively, that were largely aphenotypic. To clarify this issue, we have generated RAD52 knockout human cell lines. Human RAD52-null cells retain a significant level of SSA activity demonstrating perforce that additional SSA-like activities must exist in human cells. Moreover, we confirmed that the SSA activity associated with RAD52 is involved in, but not absolutely required for, most HDR subpathways. Specifically, a deficiency in RAD52 impaired the repair of DNA DSBs and intriguingly decreased the random integration of recombinant adeno-associated virus (rAAV). Finally, an analysis of pan-cancer genome data from The Cancer Genome Atlas (TCGA) revealed an association between aberrant levels of RAD52 expression and poor overall survival in multiple cancers. In toto, our work demonstrates that RAD52 contributes to the maintenance of genome stability and tumor suppression in human cells.

Zhao Q, Yang J, Li L, et al.
Germline and somatic mutations in homologous recombination genes among Chinese ovarian cancer patients detected using next-generation sequencing.
J Gynecol Oncol. 2017; 28(4):e39 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
OBJECTIVE: To define genetic profiling of homologous recombination (HR) deficiency in Chinese ovarian cancer patients.
METHODS: we have applied next-generation sequencing to detect deleterious mutations through all exons in 31 core HR genes. Paired whole blood and frozen tumor samples from 50 Chinese women diagnosed with epithelial ovarian carcinomas were tested to identify both germline and somatic variants.
RESULTS: Deleterious germline HR-mutations were identified in 36% of the ovarian cancer patients. Another 5 patients had only somatic mutations. BRCA2 was most frequently mutated. Three out of the 5 somatic mutations were in RAD genes and a wider distribution of other HR genes was involved in non-serous carcinomas. BRCA1/2-mutation carriers had favorable platinum sensitivity (relative risk, 1.57, p<0.05), resulting in a 100% remission probability and survival rate. In contrast, mutations in other HR genes predicted poor prognosis. However, multivariate analysis demonstrated that platinum sensitivity and optimal cytoreduction were the independent impact factors influencing survival (hazards ratio, 0.053) and relapse (hazards ratio, 0.247), respectively.
CONCLUSION: our results suggest that a more comprehensive profiling of HR defect than merely BRCA1/2 could help elucidate tumor heterogeneity and lead to better stratification of ovarian cancer patients for individualized clinical management.

Lieberman R, Pan J, Zhang Q, You M
Rad52 deficiency decreases development of lung squamous cell carcinomas by enhancing immuno-surveillance.
Oncotarget. 2017; 8(21):34032-34044 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
RAD52 is involved in homologous recombination and DNA repair. This study focuses on lung cancer progression and how the DNA repair gene, Rad52, enables tumor cells to have sufficient genome integrity, i.e., the ability to repair lethal DNA damage, to avoid cell death. In this report, we analyze the phenotypic differences between wild type and Rad52-/- in inhibition of tumor phenotypes including cell growth, viability, cytolysis, and immune profiling. We demonstrated that loss of Rad52 not only increases the death of cells undergoing carcinogen-induced transformation in vivo, but that Rad52 loss also augments in vivo antitumor activity through an enhanced capacity for direct killing of LLC tumor cells by stimulated Rad52-/- NK and CD8+ T cells. We hypothesize that upon DNA damage, wild type cells attempt to repair DNA lesions, but those cells that survive will continue to divide with damage and a high likelihood of progressing to malignancy. Loss of Rad52, however, appears to increase genomic instability beyond a manageable threshold, acceding the damaged cells to death before they are able to become tumor cells. Our results suggest a key role for the complex interplay between the DNA damage response and host immunity in determining risk for Squamous Cell Lung Carcinoma.

Sotiriou SK, Kamileri I, Lugli N, et al.
Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks.
Mol Cell. 2016; 64(6):1127-1134 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.

Bhargava R, Onyango DO, Stark JM
Regulation of Single-Strand Annealing and its Role in Genome Maintenance.
Trends Genet. 2016; 32(9):566-575 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Single-strand annealing (SSA) is a DNA double-strand break (DSB) repair pathway that uses homologous repeats to bridge DSB ends. SSA involving repeats that flank a single DSB causes a deletion rearrangement between the repeats, and hence is relatively mutagenic. Nevertheless, this pathway is conserved, in that SSA events have been found in several organisms. In this review, we describe the mechanism of SSA and its regulation, including the cellular conditions that may favor SSA versus other DSB repair events. We will also evaluate the potential contribution of SSA to cancer-associated genome rearrangements, and to DSB-induced gene targeting.

Naccarati A, Rosa F, Vymetalkova V, et al.
Double-strand break repair and colorectal cancer: gene variants within 3' UTRs and microRNAs binding as modulators of cancer risk and clinical outcome.
Oncotarget. 2016; 7(17):23156-69 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Genetic variations in 3' untranslated regions of target genes may affect microRNA binding, resulting in differential protein expression. microRNAs regulate DNA repair, and single-nucleotide polymorphisms in miRNA binding sites (miRSNPs) may account for interindividual differences in the DNA repair capacity. Our hypothesis is that miRSNPs in relevant DNA repair genes may ultimately affect cancer susceptibility and impact prognosis.In the present study, we analysed the association of polymorphisms in predicted microRNA target sites of double-strand breaks (DSBs) repair genes with colorectal cancer (CRC) risk and clinical outcome. Twenty-one miRSNPs in non-homologous end-joining and homologous recombination pathways were assessed in 1111 cases and 1469 controls. The variant CC genotype of rs2155209 in MRE11A was strongly associated with decreased cancer risk when compared with the other genotypes (OR 0.54, 95% CI 0.38-0.76, p = 0.0004). A reduced expression of the reporter gene was observed for the C allele of this polymorphism by in vitro assay, suggesting a more efficient interaction with potentially binding miRNAs. In colon cancer patients, the rs2155209 CC genotype was associated with shorter survival while the TT genotype of RAD52 rs11226 with longer survival when both compared with their respective more frequent genotypes (HR 1.63, 95% CI 1.06-2.51, p = 0.03 HR 0.60, 95% CI 0.41-0.89, p = 0.01, respectively).miRSNPs in DSB repair genes involved in the maintenance of genomic stability may have a role on CRC susceptibility and clinical outcome.

Rajkumar T, Meenakumari B, Mani S, et al.
Targeted Resequencing of 30 Genes Improves the Detection of Deleterious Mutations in South Indian Women with Breast and/or Ovarian Cancers.
Asian Pac J Cancer Prev. 2015; 16(13):5211-7 [PubMed] Related Publications
BACKGROUND: We earlier used PCR-dHPLC for mutation analysis of BRCA1 and BRCA2. In this article we report application of targeted resequencing of 30 genes involved in hereditary cancers.
MATERIALS AND METHODS: A total of 91 patient samples were analysed using a panel of 30 genes in the Illumina HiScan SQ system. CLCBio was used for mapping reads to the reference sequences as well as for quality-based variant detection. All the deleterious mutations were then reconfirmed using Sanger sequencing. Kaplan Meier analysis was conducted to assess the effect of deleterious mutations on disease free and overall survival.
RESULTS: Seventy four of the 91 samples had been run earlier using the PCR-dHPLC and no deleterious mutations had been detected while 17 samples were tested for the first time. A total of 24 deleterious mutations were detected, 11 in BRCA1, 4 in BRCA2, 5 in p53, one each in RAD50, RAD52, ATM and TP53BP1. Some 19 deleterious mutations were seen in patients who had been tested earlier with PCR-dHPLC [19/74] and 5/17 in the samples tested for the first time, Together with our earlier detected 21 deleterious mutations in BRCA1 and BRCA2, we now had 45 mutations in 44 patients. BRCA1c.68_69delAG;p.Glu23ValfsX16 mutation was the most common, seen in 10/44 patients. Kaplan Meier survival analysis did not show any difference in disease free and overall survival in the patients with and without deleterious mutations.
CONCLUSIONS: The NGS platform is more sensitive and cost effective in detecting mutations in genes involved in hereditary breast and/or ovarian cancers.

Xu L, Tang H, El-Naggar AK, et al.
Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.
PLoS One. 2015; 10(6):e0128753 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
DNA double strand break (DSB) repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC). We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs) in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs) for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7)) and 0.58 (0.45-0.74, P = 2.00 × 10(-5)) respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5), n = 74), and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3), n = 123). Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

Lieberman R, Xiong D, James M, et al.
Functional characterization of RAD52 as a lung cancer susceptibility gene in the 12p13.33 locus.
Mol Carcinog. 2016; 55(5):953-63 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Recent genome-wide association studies have identified variations in the recombination repair gene, RAD52, that are associated with increased lung cancer risk, and particularly with the development of lung squamous cell carcinomas (LUSC). As LUSC development is strongly associated with smoking, DNA repair is increased in the lung tissues of smokers, presumably because of ongoing DNA damage from exposure to tobacco smoke. A key player in the DNA damage response, RAD52 plays a role in DNA strand exchange and annealing during homologous recombination (HR) in mammalian cells. In this study, we discovered two cis-expression quantitative trait loci (eQTL) SNPs in the RAD52 gene that are associated with its expression and are also associated with LUSC risk. In addition, we report that amplification of the genomic region 12p13.33, which contains the RAD52 gene, is significantly associated with the development of LUSC in the TCGA database and that somatic overexpression of RAD52 was confirmed to be significant in LUSC tumors from our own patient cohort. Consistent with these genetic findings, we demonstrate that blockade of Rad52 slows cell growth and induces senescence in mouse bronchial epithelial cells. In contrast, overexpression of Rad52 leads to an increased rate of cell proliferation. We show that depletion of Rad52 in mouse lung tumor cells alters cell cycle distribution and increases DNA damage accumulation associated with increased tumor cell death. Our genetic and functional data implicate RAD52 as a significant determinant of risk in the development of LUSC.

Wu Z, Wang P, Song C, et al.
Evaluation of miRNA-binding-site SNPs of MRE11A, NBS1, RAD51 and RAD52 involved in HRR pathway genes and risk of breast cancer in China.
Mol Genet Genomics. 2015; 290(3):1141-53 [PubMed] Related Publications
MiRNA-binding-site single nucleotide polymorphisms (SNPs) in homologous recombination repair (HRR) pathway genes may change DNA repair capacity and affect susceptibility to cancer though complex gene-gene and gene-reproductive factors interactions. However, these SNPs associated with breast cancer (BC) are still unclear in Chinese women. Therefore, we conducted a case-control study to evaluate the genetic susceptibility of the five miRNA-binding-site SNPs in HRR pathway genes (MRE11A rs2155209, NBS1 rs2735383, RAD51 rs963917 and rs963918 and RAD52 rs7963551) in the development of BC. MRE11A rs2155209 and RAD52 rs7963551 were found to be associated with BC risk (ORadjusted: 1.87; 95 % CI: 1.23-2.86 and ORadjusted: 0.36; 95 % CI: 0.24-0.58). NBS1 rs2735383, RAD51 rs963917 and rs963918 were associated with BC risk after stratification according to reproductive factors. Haplotypes of Crs963917Ars963918 decreased the risk of BC (ORadjusted: 0.53; 95 % CI: 0.4-0.68), while the Trs963917Ars963918 and Trs963917Grs963918 haplotypes could increase the risk of BC (ORadjusted: 1.28; 95 % CI: 1.05-1.57 and ORadjusted: 1.31; 95 % CI: 1.09-1.62). Combined effect of risk alleles showed that the five SNPs were associated with increased BC risk in a dose-dependent manner (P trend = 0.003). The GC genotype of rs2735383, AG + GG genotype of rs963918 and AC + CC genotype of rs7963551 were associated with PR positivity of BC patients. These findings suggest that the miRNA-binding-site SNPs involved in HRR pathway genes may affect susceptibility of BC in Chinese women; moreover, the interactions of gene-gene and gene-reproductive factors play vital roles in the progression of BC. Further functional studies with larger sample are needed to support and validate these findings.

Cui H, Seubert B, Stahl E, et al.
Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes.
Oncogene. 2015; 34(28):3640-50 [PubMed] Related Publications
Tissue inhibitor of metalloproteinases-1 (TIMP-1) recently emerged as a pro-metastatic factor highly associated with poor prognosis in a number of cancers. This correlation seemed paradox as TIMP-1 is best described as an inhibitor of pro-tumourigenic matrix metalloproteinases. Only recently, TIMP-1 has been revealed as a signalling molecule that can regulate cancer progression independent of its inhibitory properties. In the present study, we demonstrate that an increase of both exogenous and endogenous TIMP-1 led to the upregulation of miR-210 in a CD63/PI3K/AKT/HIF-1-dependent pathway in lung adenocarcinoma cells. TIMP-1 induced P110/P85 PI3K-signalling and AKT phosphorylation. It also led to increase of HIF-1α protein levels positively correlating with HIF-1-regulated mRNA expression and upregulation of the microRNA miR-210. Downstream targets of miR-210, namely FGFRL1, E2F3, VMP-1, RAD52 and SDHD, were decreased in the presence of TIMP-1. Upon the overexpression of TIMP-1 in tumour cells, miR-210 was accumulated in exosomes in vitro and in vivo. These exosomes promoted tube formation activity in human umbilical vein endothelial cell (HUVECs), which was reflected in increased angiogenesis in A549L-derived tumour xenografts. Activation and elevation of PI3K, AKT, HIF-1A and miR-210 in tumours additionally confirmed our in vitro data. This new pro-tumourigenic signalling function of TIMP-1 may explain why elevated TIMP-1 levels in lung cancer patients are highly correlated with poor prognosis.

Reinhold WC, Varma S, Sousa F, et al.
NCI-60 whole exome sequencing and pharmacological CellMiner analyses.
PLoS One. 2014; 9(7):e101670 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Exome sequencing provides unprecedented insights into cancer biology and pharmacological response. Here we assess these two parameters for the NCI-60, which is among the richest genomic and pharmacological publicly available cancer cell line databases. Homozygous genetic variants that putatively affect protein function were identified in 1,199 genes (approximately 6% of all genes). Variants that are either enriched or depleted compared to non-cancerous genomes, and thus may be influential in cancer progression and differential drug response were identified for 2,546 genes. Potential gene knockouts are made available. Assessment of cell line response to 19,940 compounds, including 110 FDA-approved drugs, reveals ≈80-fold range in resistance versus sensitivity response across cell lines. 103,422 gene variants were significantly correlated with at least one compound (at p<0.0002). These include genes of known pharmacological importance such as IGF1R, BRAF, RAD52, MTOR, STAT2 and TSC2 as well as a large number of candidate genes such as NOM1, TLL2, and XDH. We introduce two new web-based CellMiner applications that enable exploration of variant-to-compound relationships for a broad range of researchers, especially those without bioinformatics support. The first tool, "Genetic variant versus drug visualization", provides a visualization of significant correlations between drug activity-gene variant combinations. Examples are given for the known vemurafenib-BRAF, and novel ifosfamide-RAD52 pairings. The second, "Genetic variant summation" allows an assessment of cumulative genetic variations for up to 150 combined genes together; and is designed to identify the variant burden for molecular pathways or functional grouping of genes. An example of its use is provided for the EGFR-ERBB2 pathway gene variant data and the identification of correlated EGFR, ERBB2, MTOR, BRAF, MEK and ERK inhibitors. The new tools are implemented as an updated web-based CellMiner version, for which the present publication serves as a compendium.

Lu C, Chen YD, Han S, et al.
A RAD52 genetic variant located in a miRNA binding site is associated with glioma risk in Han Chinese.
J Neurooncol. 2014; 120(1):11-7 [PubMed] Related Publications
As a crucial homologous recombination repair gene, RAD52 participates in maintenance of genomic stability and prevention of tumorigenesis. Although several cancer susceptibility RAD52 single nucleotide polymorphisms (SNPs) have been identified previously, little was known on how the RAD52 SNPs are involved in glioma development in Han Chinese. Therefore, we examined the association between five RAD52 SNPs (rs1051669, rs10774474, rs11571378, rs7963551 and rs6489769) and glioma risk using a case-control design. Odds ratios (ORs) and 95 % confidence intervals (CIs) were estimated by logistic regression. We found that only the RAD52 rs7963551 SNP was significantly associated with glioma risk, with the odds of having the rs7963551 AC or CC genotype in patients was 0.49 (95 % CI 0.37-0.65, P = 9.2 × 10(-6)) or 0.39 (95 % CI 0.18-0.81, P = 0.012) compared with the AA genotype. These data are consistent with functional relevance of allelic regulation of RAD52 expression by the rs7963551 SNP and miRNA let-7 in cancer cells. Stratified analyses elucidated that statistically significant association between glioma and rs7963551 SNP only existed in either astrocytic tumors (P = 6.3 × 10(-6)) or oligoastrocytic tumors (P = 0.002). In conclusion, our results support the hypothesis that genetic variants influencing miRNA-mediated regulation of tumor suppressor genes or oncogenes may contribute glioma susceptibility.

Khrunin AV, Khokhrin DV, Moisseev AA, et al.
Pharmacogenomic assessment of cisplatin-based chemotherapy outcomes in ovarian cancer.
Pharmacogenomics. 2014; 15(3):329-37 [PubMed] Related Publications
AIM: Cisplatin and its analogs are potent antitumor agents. However, their use is restricted by significant variability in tumor response and toxicity. There is a great need to identify genetic markers to predict the most important adverse events and patient outcomes.
MATERIALS & METHODS: We have evaluated the association between polymorphisms in 106 genes involved mainly in xenobiotic metabolism, DNA repair, the cell cycle and apoptosis, and outcomes in 104 ovarian cancer patients receiving cisplatin-cyclophosphamide chemotherapy. Arrayed primer extension technology was used to genotype 228 SNPs.
RESULTS: Ten SNPs in nine genes were found to be associated with one or more of the assessed clinical end points. SNPs in TPMT and NQO1 were significantly associated with progression-free survival. Polymorphisms in ERCC5, RAD52, MUTYH and LIG3 correlated with the occurrence of severe neutropenia. SNPs in NAT2 and EPHX1 were associated with anemia and nephrotoxicity, respectively. A SNP in ADH1C was correlated with complete tumor response.
CONCLUSION: The results obtained suggest that SNPs in different genes involved in drug metabolism can be important in identifying patients at risk for nonresponse to or toxicity from cisplatin-based treatment.

Fayaz S, Karimmirza M, Tanhaei S, et al.
Increased risk of differentiated thyroid carcinoma with combined effects of homologous recombination repair gene polymorphisms in an Iranian population.
Asian Pac J Cancer Prev. 2014; 14(11):6727-31 [PubMed] Related Publications
Homologous recombination (HR) repair has a crucial role to play in the prevention of chromosomal instability, and it is clear that defects in some HR repair genes are associated with many cancers. To evaluate the potential effect of some HR repair gene polymorphisms with differentiated thyroid carcinoma (DTC), we assessed Rad51 (135G>C), Rad52 (2259C>T), XRCC2 (R188H) and XRCC3 (T241M) polymorphisms in Iranian DTC patients and cancer-free controls. In addition, haplotype analysis and gene combination assessment were carried out. Genotyping of Rad51 (135G>C), Rad52 (2259C>T) and XRCC3 (T241M) polymorphisms was determined by PCR-RFLP and PCR-HRM analysis was carried out to evaluate XRCC2 (R188H) . Separately, Rad51, Rad52 and XRCC2 polymorphisms were not shown to be more significant in patients when compared to controls in crude, sex-adjusted and age-adjusted form. However, results indicated a significant difference in XRCC3 genotypes for patients when compared to controls (p value: 0.035). The GCTG haplotype demonstrated a significant difference (p value: 0.047). When compared to the wild type, the combined variant form of Rad52/XRCC2/XRCC3 revealed an elevated risk of DTC (p value: 0.007). It is recommended that Rad52 2259C>T, XRCC2 R188H and XRCC3 T241M polymorphisms should be simultaneously considered as contributing to a polygenic risk of differentiated thyroid carcinoma.

Cramer-Morales K, Nieborowska-Skorska M, Scheibner K, et al.
Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.
Blood. 2013; 122(7):1293-304 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Homologous recombination repair (HRR) protects cells from the lethal effect of spontaneous and therapy-induced DNA double-stand breaks. HRR usually depends on BRCA1/2-RAD51, and RAD52-RAD51 serves as back-up. To target HRR in tumor cells, a phenomenon called "synthetic lethality" was applied, which relies on the addiction of cancer cells to a single DNA repair pathway, whereas normal cells operate 2 or more mechanisms. Using mutagenesis and a peptide aptamer approach, we pinpointed phenylalanine 79 in RAD52 DNA binding domain I (RAD52-phenylalanine 79 [F79]) as a valid target to induce synthetic lethality in BRCA1- and/or BRCA2-deficient leukemias and carcinomas without affecting normal cells and tissues. Targeting RAD52-F79 disrupts the RAD52-DNA interaction, resulting in the accumulation of toxic DNA double-stand breaks in malignant cells, but not in normal counterparts. In addition, abrogation of RAD52-DNA interaction enhanced the antileukemia effect of already-approved drugs. BRCA-deficient status predisposing to RAD52-dependent synthetic lethality could be predicted by genetic abnormalities such as oncogenes BCR-ABL1 and PML-RAR, mutations in BRCA1 and/or BRCA2 genes, and gene expression profiles identifying leukemias displaying low levels of BRCA1 and/or BRCA2. We believe this work may initiate a personalized therapeutic approach in numerous patients with tumors displaying encoded and functional BRCA deficiency.

Pedersen BS, Konstantinopoulos PA, Spillman MA, De S
Copy neutral loss of heterozygosity is more frequent in older ovarian cancer patients.
Genes Chromosomes Cancer. 2013; 52(9):794-801 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
Loss of heterozygosity (LOH) is a common type of genomic alterations in ovarian cancer. Analyzing 74,415 copy neutral LOH events in 513 serous ovarian adenocarcinomas samples from the Cancer Genome Atlas, we report that the frequency of LOH events increases with age. Similar trend is observed for LOH involving chromosome 17, which is frequently implicated in ovarian cancer. The results are consistent when we analyze data from the Boston high-grade serous cancer cohort. We further show that germ line and somatic mutations in BRCA1 (in chromosome 17) and BRCA2 (in chromosome 13) loci are not necessary to establish the pattern. We also report significant age-related changes in expression patterns for several genes in the homologous recombination (HR) pathway, such as BRCA1, RAD50, RAD52, XRCC2, XRCC3, and MRE11A in these patient samples. Furthermore, we develop a metric for pathway-level imbalance, and show that increased imbalance in the HR pathway, i.e., increase in expression of some HR genes and decrease in expression of others, is common and correlates significantly with the frequency of LOH events in the patient samples. Taken together, it is highly likely that aging and deregulation of HR pathway contribute to the increased incidence of copy-neutral LOH in ovarian cancer patients.

Shi TY, Yang G, Tu XY, et al.
RAD52 variants predict platinum resistance and prognosis of cervical cancer.
PLoS One. 2012; 7(11):e50461 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
RAD52 is an important but not well characterized homologous recombination repair gene that can bind to single-stranded DNA ends and mediate the DNA-DNA interaction necessary for the annealing of complementary DNA strands. To evaluate the role of RAD52 variants in the response of tumor cells to platinum agents, we investigated their associations with platinum resistance and prognosis in cervical cancer patients. We enrolled 154 patients with cervical squamous cell carcinoma, who had radical surgery between 2008 and 2009, and genotyped three potentially functional RAD52 variants by the SNaPshot assay. We tested in vitro platinum resistance and RAD52 expression by using the MTT and immunohistochemistry methods, respectively. In 144 cases who had genotyping data, we found that both the rs1051669 variant and RAD52 protein expression were significantly associated with carboplatin resistance (P = 0.024 and 0.028, respectively) and rs10774474 with nedaplatin resistance (P = 0.018). The rs1051669 variant was significantly associated with RAD52 protein expression (adjusted OR = 4.7, 95% CI = 1.4-16.1, P = 0.013). When these three RAD52 variants were combined, progression-free survival was lower in patients who carried at least one (≥1) variant allele compared to those without any of the variant alleles (P = 0.047). Therefore, both RAD52 variants and protein expression can predict platinum resistance, and RAD52 variants appeared to predict prognosis in cervical cancer patients. Large studies are warranted to validate these findings.

Jiang Y, Qin Z, Hu Z, et al.
Genetic variation in a hsa-let-7 binding site in RAD52 is associated with breast cancer susceptibility.
Carcinogenesis. 2013; 34(3):689-93 [PubMed] Related Publications
Genetic variants may influence miRNA-mRNA interaction through modulate binding affinity, creating or destroying miRNA-binding sites. Twenty-four single nucleotide polymorphisms (SNPs) that were predicted to affect the binding affinity of breast cancer-related miRNAs to 3'-untranslated regions (UTR) of known genes were genotyped in 878 breast cancer cases and 900 controls in Chinese women. Three promising SNPs (rs10494836, rs10857748 and rs7963551) were further validated in additional 914 breast cancer cases and 967 controls. The variant allele (C) of rs7963551 at 3'-UTR of RAD52 showed a consistently reduced breast cancer risk in two stages with a combined odds ratio (OR) of 0.84 [95% confidence interval (CI) = 0.75-0.95], which was more prominent among women with early age at first live birth (OR = 0.71, 95% CI = 0.58-0.87). A significant interaction was observed between rs7963551 and age at first live birth on breast cancer risk (P for interaction = 0.04). Luciferase activity assay showed a higher expression level for rs7963551 C allele as compared with A allele (P = 5.19 × 10(-3) for MCF-7 cell lines), which might be due to a reduced inhibition from a weakened binding capacity of miRNA to 3'-UTR of RAD52 harboring C allele. These findings indicate that rs7963551 located at hsa-let-7 binding site may alter expression of RAD52 through modulating miRNA-mRNA interaction and contribute to the development of breast cancer in Chinese women.

Liang Z, Ahn J, Guo D, et al.
MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation.
Pharm Res. 2013; 30(4):1008-16 [PubMed] Article available free on PMC after 21/09/2019 Related Publications
PURPOSE: Solid tumors can be resistant or develop resistance to radiotherapy. The purpose of this study is to explore whether microRNA-302 is involved in radioresistance and can be exploited as a sensitizer to enhance sensitivity of breast cancer cells to radiation therapy.
METHODS: MiR-302 expression levels in radioresistant cell lines were analyzed in comparison with their parent cell lines. Furthermore, we investigated whether enforced expression of miR-302 sensitized radioresistant breast cancer cells to ionizing radiation in vitro and in vivo.
RESULTS: MiR-302 was downregulated in irradiated breast cancer cells. Additionally, the expression levels of miR-302a were inversely correlated with those of AKT1 and RAD52, two critical regulators of radioresistance. More promisingly, miR-302a sensitized radioresistant breast cancer cells to radiation therapy in vitro and in vivo and reduced the expression of AKT1 and RAD52.
CONCLUSION: Our findings demonstrated that decreased expression of miR-302 confers radioresistance and restoration of miR-302 baseline expression sensitizes breast cancer cells to radiotherapy. These data suggest that miR-302 is a potential sensitizer to radiotherapy.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RAD52, Cancer Genetics Web: http://www.cancer-genetics.org/RAD52.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999