Gene Summary

Gene:RBPJ; recombination signal binding protein for immunoglobulin kappa J region
Summary:The protein encoded by this gene is a transcriptional regulator important in the Notch signaling pathway. The encoded protein acts as a repressor when not bound to Notch proteins and an activator when bound to Notch proteins. It is thought to function by recruiting chromatin remodeling complexes containing histone deacetylase or histone acetylase proteins to Notch signaling pathway genes. Several transcript variants encoding different isoforms have been found for this gene, and several pseudogenes of this gene exist on chromosome 9. [provided by RefSeq, Oct 2013]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:recombining binding protein suppressor of hairless
Source:NCBIAccessed: 16 March, 2017


What does this gene/protein do?
Show (41)
Pathways:What pathways are this gene/protein implicaed in?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 16 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Neoplastic Cell Transformation
  • Notch Receptors
  • Protein Binding
  • HEK293 Cells
  • Transendothelial and Transepithelial Migration
  • Repressor Proteins
  • Basic Helix-Loop-Helix Transcription Factors
  • Cell Line
  • Transcription Factor HES-1
  • Epstein-Barr Virus Nuclear Antigens
  • p53 Protein
  • Apoptosis
  • Homeodomain Proteins
  • Cancer Gene Expression Regulation
  • Neoplasm Proteins
  • Translocation
  • Nuclear Proteins
  • Herpesvirus 4, Human
  • Mice, Transgenic
  • Colorectal Cancer
  • Membrane Proteins
  • Tumor Suppressor Proteins
  • Transcription Factors
  • Chromosome 4
  • RNA Interference
  • Cell Movement
  • Immunoglobulin J Recombination Signal Sequence-Binding Protein
  • Transfection
  • Base Sequence
  • siRNA
  • NOTCH1 Receptor
  • Cell Proliferation
  • Cell Transformation, Viral
  • Gene Expression
  • Oncogene Fusion Proteins
  • Western Blotting
  • Knockout Mice
  • Promoter Regions
  • DNA-Binding Proteins
  • Transcription
  • Molecular Sequence Data
Tag cloud generated 16 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (1)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: RBPJ (cancer-related)

Carlson JA, Caldeira Xavier JC, Tarasen A, et al.
Next-Generation Sequencing Reveals Pathway Activations and New Routes to Targeted Therapies in Cutaneous Metastatic Melanoma.
Am J Dermatopathol. 2017; 39(1):1-13 [PubMed] Related Publications
BACKGROUND: Comprehensive genomic profiling of clinical samples by next-generation sequencing (NGS) can identify one or more therapy targets for the treatment of metastatic melanoma (MM) with a single diagnostic test.
METHODS: NGS was performed on hybridization-captured, adaptor ligation-based libraries using DNA extracted from 4 formalin-fixed paraffin-embedded sections cut at 10 microns from 30 MM cases. The exons of 182 cancer-related genes were fully sequenced using the Illumina HiSeq 2000 at an average sequencing depth of 1098X and evaluated for genomic alterations (GAs) including point mutations, insertions, deletions, copy number alterations, and select gene fusions/rearrangements. Clinically relevant GAs (CRGAs) were defined as those identifying commercially available targeted therapeutics or therapies in registered clinical trials.
RESULTS: The 30 American Joint Committee on Cancer Stage IV MM included 17 (57%) male and 13 (43%) female patients with a mean age of 59.5 years (range 41-83 years). All MM samples had at least 1 GA, and an average of 2.7 GA/sample (range 1-7) was identified. The mean number of GA did not differ based on age or sex; however, on average, significantly more GAs were identified in amelanotic and poorly differentiated MM. GAs were most commonly identified in BRAF (12 cases, 40%), CDKN2A (6 cases, 20%), NF1 (8 cases, 26.7%), and NRAS (6 cases, 20%). CRGAs were identified in all patients, and represented 77% of the GA (64/83) detected. The median and mean CRGAs per tumor were 2 and 2.1, respectively (range 1-7).
CONCLUSION: Comprehensive genomic profiling of MM, using a single diagnostic test, uncovers an unexpectedly high number of CRGA that would not be identified by standard of care testing. Moreover, NGS has the potential to influence therapy selection and can direct patients to enter relevant clinical trials evaluating promising targeted therapies.

Lee CW, Choi SI, Lee SJ, et al.
The Effectiveness of Ferritin as a Contrast Agent for Cell Tracking MRI in Mouse Cancer Models.
Yonsei Med J. 2017; 58(1):51-58 [PubMed] Free Access to Full Article Related Publications
PURPOSE: We aimed to investigate the effectiveness of ferritin as a contrast agent and a potential reporter gene for tracking tumor cells or macrophages in mouse cancer models.
MATERIALS AND METHODS: Adenoviral human ferritin heavy chain (Ad-hFTH) was administrated to orthotopic glioma models and subcutaneous colon cancer mouse models using U87MG and HCT116 cells, respectively. Brain MR images were acquired before and daily for up to 6 days after the intracranial injection of Ad-hFTH. In the HCT116 tumor model, MR examinations were performed before and at 6, 24, and 48 h after intratumoral injection of Ad-hFTH, as well as before and every two days after intravenous injection of ferritin-labeled macrophages. The contrast effect of ferritin in vitro was measured by MR imaging of cell pellets. MRI examinations using a 7T MR scanner comprised a T1-weighted (T1w) spin-echo sequence, T2-weighted (T2w) relaxation enhancement sequence, and T2*-weighted (T2*w) fast low angle shot sequence.
RESULTS: Cell pellet imaging of Ad-hFTH in vitro showed a strong negatively enhanced contrast in T2w and T2*w images, presenting with darker signal intensity in high concentrations of Fe. T2w images of glioma and subcutaneous HCT116 tumor models showed a dark signal intensity around or within the Ad-hFTH tumor, which was distinct with time and apparent in T2*w images. After injection of ferritin-labeled macrophages, negative contrast enhancement was identified within the tumor.
CONCLUSION: Ferritin could be a good candidate as an endogenous MR contrast agent and a potential reporter gene that is capable of maintaining cell labeling stability and cellular safety.

Suh DH, Kim M, Kim HJ, et al.
Major clinical research advances in gynecologic cancer in 2015.
J Gynecol Oncol. 2016; 27(6):e53 [PubMed] Free Access to Full Article Related Publications
In 2015, fourteen topics were selected as major research advances in gynecologic oncology. For ovarian cancer, high-level evidence for annual screening with multimodal strategy which could reduce ovarian cancer deaths was reported. The best preventive strategies with current status of evidence level were also summarized. Final report of chemotherapy or upfront surgery (CHORUS) trial of neoadjuvant chemotherapy in advanced stage ovarian cancer and individualized therapy based on gene characteristics followed. There was no sign of abating in great interest in immunotherapy as well as targeted therapies in various gynecologic cancers. The fifth Ovarian Cancer Consensus Conference which was held in November 7-9 in Tokyo was briefly introduced. For cervical cancer, update of human papillomavirus vaccines regarding two-dose regimen, 9-valent vaccine, and therapeutic vaccine was reviewed. For corpus cancer, the safety concern of power morcellation in presumed fibroids was explored again with regard to age and prevalence of corpus malignancy. Hormone therapy and endometrial cancer risk, trabectedin as an option for leiomyosarcoma, endometrial cancer and Lynch syndrome, and the radiation therapy guidelines were also discussed. In addition, adjuvant therapy in vulvar cancer and the updated of targeted therapy in gynecologic cancer were addressed. For breast cancer, palbociclib in hormone-receptor-positive advanced disease, oncotype DX Recurrence Score in low-risk patients, regional nodal irradiation to internal mammary, supraclavicular, and axillary lymph nodes, and cavity shave margins were summarized as the last topics covered in this review.

Shin K, Kim KH, Yoon MS, et al.
Expression of Interactive Genes Associated with Apoptosis and Their Prognostic Value for Ovarian Serous Adenocarcinoma.
Adv Clin Exp Med. 2016 May-Jun; 25(3):513-21 [PubMed] Related Publications
BACKGROUND: Malignant ovarian tumor is one of the leading causes of worldwide cancer death. It is usually characterized by insidious onset and late diagnosis because of the absence of symptoms, allowing ovarian cancer cases to progress rapidly and become unresectable. The tumor suppressor, p53, plays an important role in regulating cell cycles and apoptosis. p53 is regulated by several molecules, and it interacts with other apoptotic proteins.
OBJECTIVES: To compare the prognosis of ovarian serous carcinoma and evaluate the expression of DNA-PKcs, Akt3, GSK-3β, and p53 in cancerous cells.
MATERIAL AND METHODS: DNA-PKcs, Akt3, GSK-3β, and p53 expression levels were scored using immunohistochemistry staining of tissue samples from 132 women with ovarian serous adenocarcinoma. Expression was confirmed by real-time RT-PCR. Analyses were stratified by age, tumor grades, cancer stages and serum CA 125 levels.
RESULTS: Significant differences in DNA-PKcs, Akt3, and p53 expression were observed between participants with different stages and tumor grades of ovarian serous adenocarcinoma. DNA-PKcs and p53 expression increased along with increasing tumor grade. Meanwhile, DNA-PKcs, Akt3, and p53 expression increased along with increasing cancer stage, and with a decrease in 5-year overall survival rate.
CONCLUSIONS: This study shows that elevated expression of DNA-PKcs, Akt3, and p53 in ovarian serous adenocarcinoma tissues are an indication of more advanced disease and worse prognosis.

Yamasaki A, Onishi H, Imaizumi A, et al.
Protein-bound Polysaccharide-K Inhibits Hedgehog Signaling Through Down-regulation of MAML3 and RBPJ Transcription Under Hypoxia, Suppressing the Malignant Phenotype in Pancreatic Cancer.
Anticancer Res. 2016; 36(8):3945-52 [PubMed] Related Publications
Hedgehog signaling is activated in pancreatic cancer and could be a therapeutic target. We previously demonstrated that recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and mastermind-like 3 (MAML3) contribute to the hypoxia-induced up-regulation of Smoothened (SMO) transcription. We have also shown that protein-bound polysaccharide-K (PSK) could be effective for refractory pancreatic cancer that down-regulates SMO transcription under hypoxia. In this study, we evaluated whether the anticancer mechanism of PSK involves inhibiting RBPJ and MAML3 expression under hypoxia. PSK reduced SMO, MAML3 and RBPJ expression in pancreatic cancer cells under hypoxia. PSK also blocked RBPJ-induced invasiveness under hypoxia by inhibiting matrix metalloproteinase expression. Lastly, we showed that PSK attenuated RBPJ-induced proliferation both in vitro and in vivo. These results suggest that PSK suppresses Hedgehog signaling through down-regulation of MAML3 and RBPJ transcription under hypoxia, inhibiting the induction of a malignant phenotype in pancreatic cancer. Our results may lead to development of new treatments for refractory pancreatic cancer using PSK as a Hedgehog inhibitor.

Park KJ, Choi HJ, Suh SP, et al.
Germline TP53 Mutation and Clinical Characteristics of Korean Patients With Li-Fraumeni Syndrome.
Ann Lab Med. 2016; 36(5):463-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Little is known of the mutation and tumor spectrum of Korean patients with Li-Fraumeni syndrome (LFS). Owing to the rarity of LFS, few cases have been reported in Korea thus far. This study aimed to retrospectively review the mutations and clinical characteristics of Korean patients with LFS.
METHODS: TP53 mutation was screened in 89 unrelated individuals at the Samsung Medical Center in Korea, from 2004 to 2015. Six additional mutation carriers were obtained from the literature.
RESULTS: We identified nine different mutations in 14 Korean patients (male to female ratio=0.3:1). Two such frameshift mutations (p.Pro98Leufs*25, p.Pro27Leufs*17) were novel. The recurrent mutations were located at codons 31 (n=2; p.Val31Ile), 175 (n=3; p.Arg175His), and 273 (n=4; p.Arg273His and p.Arg273Cys). The median age at the first tumor onset was 25 yr. Ten patients (71%) developed multiple primary tumors. A diverse spectrum of tumors was observed, including breast (n=6), osteosarcoma (n=4), brain (n=4), leukemia (n=2), stomach (n=2), thyroid (n=2), lung (n=2), skin (n=2), bladder (n=1), nasal cavity cancer (n=1), and adrenocortical carcinoma (n=1).
CONCLUSIONS: There was considerable heterogeneity in the TP53 mutations and tumor spectrum in Korean patients with LFS. Our results suggest shared and different LFS characteristics between Caucasian and Korean patients. This is the first report on the mutation spectrum and clinical characteristics from the largest series of Korean LFS patients.

Suh M, Thompson CM, Brorby GP, et al.
Inhalation cancer risk assessment of cobalt metal.
Regul Toxicol Pharmacol. 2016; 79:74-82 [PubMed] Related Publications
Cobalt compounds (metal, salts, hard metals, oxides, and alloys) are used widely in various industrial, medical and military applications. Chronic inhalation exposure to cobalt metal and cobalt sulfate has caused lung cancer in rats and mice, as well as systemic tumors in rats. Cobalt compounds are listed as probable or possible human carcinogens by some agencies, and there is a need for quantitative cancer toxicity criteria. The U.S. Environmental Protection Agency has derived a provisional inhalation unit risk (IUR) of 0.009 per μg/m(3) based on a chronic inhalation study of soluble cobalt sulfate heptahydrate; however, a recent 2-year cancer bioassay affords the opportunity to derive IURs specifically for cobalt metal. The mechanistic data support that the carcinogenic mode of action (MOA) is likely to involve oxidative stress, and thus, non-linear/threshold mechanisms. However, the lack of a detailed MOA and use of high, toxic exposure concentrations in the bioassay (≥1.25 mg/m(3)) preclude derivation of a reference concentration (RfC) protective of cancer. Several analyses resulted in an IUR of 0.003 per μg/m(3) for cobalt metal, which is ∼3-fold less potent than the provisional IUR. Future research should focus on establishing the exposure-response for key precursor events to improve cobalt metal risk assessment.

Choi YW, Song YS, Lee H, et al.
MicroRNA Expression Signatures Associated With BRAF-Mutated Versus KRAS-Mutated Colorectal Cancers.
Medicine (Baltimore). 2016; 95(15):e3321 [PubMed] Free Access to Full Article Related Publications
BRAF and KRAS genes are known to play a similar role in the activation of RAS-RAF-MEK-ERK signaling pathway in colorectal tumorigenesis. However, BRAF-mutated colorectal cancers (CRCs) have distinct clinicopathologic characteristics different from those of the KRAS mutated ones as in comparison the BRAF-mutated CRCs are associated with a much worse prognosis for the afflicted patients. This study aimed to determine the different miRNA expression signatures associated with BRAF-mutated CRCs in comparison to KRAS-mutated ones, and to identify the specific miRNAs possibly mediating the aggressive phenotype of the BRAF-mutated CRCs. We screened 535 formalin-fixed paraffin-embedded CRC tissue samples for the BRAF V600E mutation, and selected 7 BRAF-mutated and 7 KRAS-mutated CRCs that were tumor size, stage, and microsatellite status-matched. Affymetrix GeneChip® miRNA 4.0 Array was used for detection of miRNA expression differences in the selected samples. We validated the array results by quantitative reverse transcription polymerase chain reaction (qRT-PCR) for selected miRNAs. A total of 10 differentially expressed (DE) miRNAs associated with BRAF-mutated CRCs were obtained, including miR-31-5p, miR-877-5p, miR-362-5p, and miR-425-3p. miR-31-5p showed the highest fold change (8.3-fold) among all of the miRNAs analyzed. From the analyses of GO biological processes, the DE-miRNAs were functionally relevant to cellular proliferation such as positive regulation of gene expression (P = 1.26 × 10(-10)), transcription (P = 9.70 × 10(-10)), and RNA metabolic process (P = 1.97 × 10(-9)). Bioinformatics analysis showed that the DE-miRNAs were significantly enriched in cancer-associated pathways including neutrophin signaling (P = 6.84 × 10(-5)), pathways in cancer (P = 0.0016), Wnt signaling (P = 0.0027), and MAPK signaling pathway (P = 0.0036). Our results suggest that the DE-miRNAs in BRAF-mutated CRCs in comparison to KRAS-mutated CRCs are implicated in the aggressive phenotype of the BRAF-mutated CRCs. Further experimental validation is required to confirm these results.

Tamir A, Gangadharan A, Balwani S, et al.
The serine protease prostasin (PRSS8) is a potential biomarker for early detection of ovarian cancer.
J Ovarian Res. 2016; 9:20 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ovarian cancer (OVC) is the deadliest of all gynecologic cancers, primarily as a consequence of asymptomatic progression. The complex nature of OVC creates challenges for early detection, and there is a lack of specific and sensitive biomarkers suitable for screening and detecting early stage OVC.
METHODS: Potential OVC biomarkers were identified by bioinformatic analysis. Candidates were further screened for differential expression in a library of OVC cell lines. OVC-specific overexpression of a candidate gene, PRSS8, which encodes prostasin, was confirmed against 18 major human cancer types from 390 cancer samples by qRT-PCR. PRSS8 expression profiles stratified by OVC tumor stage-, grade- and subtype were generated using cDNA samples from 159 OVC samples. Cell-specific expression and localization of prostasin was determined by immunohistological tissue array analysis of more than 500 normal, benign, and cancerous ovarian tissues. The presence of prostasin in normal, benign, and OVC serum samples was also determined.
RESULTS: Gene expression analysis indicated that PRSS8 was expressed in OVC at levels more than 100 fold greater than found in normal or benign ovarian lesions. This overexpression signature was found in early stages of OVC and was maintained in higher stages and grades of OVC. The PRSS8 overexpression signature was specific for OVC and urinary bladder cancer among 18 human cancer types. The majority of ovarian cell lines overexpressed PRSS8. In situ hybridization and histopathology studies of OVC tissues indicated that overexpression of prostasin was largely localized to tumor epithelium and was absent in neighboring stroma. Significantly higher levels of prostasin were found in early stage OVC serum samples compared to benign ovarian and normal donor samples.
CONCLUSIONS: The abundant amounts of secreted prostasin found in sera of early stage OVC can potentially be used as a minimally invasive screening biomarker for early stage OVC. Overexpression of PRSS8 mRNA and high levels of prostasin in multiple subtypes of early stage ovarian tumors may provide clinical biomarkers for early detection of OVC, which can potentially be used with CA125 and HE4.

Jun S, Jung YS, Suh HN, et al.
LIG4 mediates Wnt signalling-induced radioresistance.
Nat Commun. 2016; 7:10994 [PubMed] Free Access to Full Article Related Publications
Despite the implication of Wnt signalling in radioresistance, the underlying mechanisms are unknown. Here we find that high Wnt signalling is associated with radioresistance in colorectal cancer (CRC) cells and intestinal stem cells (ISCs). We find that LIG4, a DNA ligase in DNA double-strand break repair, is a direct target of β-catenin. Wnt signalling enhances non-homologous end-joining repair in CRC, which is mediated by LIG4 transactivated by β-catenin. During radiation-induced intestinal regeneration, LIG4 mainly expressed in the crypts is conditionally upregulated in ISCs, accompanied by Wnt/β-catenin signalling activation. Importantly, among the DNA repair genes, LIG4 is highly upregulated in human CRC cells, in correlation with β-catenin hyperactivation. Furthermore, blocking LIG4 sensitizes CRC cells to radiation. Our results reveal the molecular mechanism of Wnt signalling-induced radioresistance in CRC and ISCs, and further unveils the unexpected convergence between Wnt signalling and DNA repair pathways in tumorigenesis and tissue regeneration.

Cho A, Hur J, Moon YW, et al.
Correlation between EGFR gene mutation, cytologic tumor markers, 18F-FDG uptake in non-small cell lung cancer.
BMC Cancer. 2016; 16:224 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: EGFR mutation-induced cell proliferation causes changes in tumor biology and tumor metabolism, which may reflect tumor marker concentration and 18F-FDG uptake on PET/CT. Direct aspirates of primary lung tumors contain different concentrations of tumor markers than serum tumor markers, and may correlate better with EGFR mutation than serum tumor markers. The purpose of this study is to investigate an association between cytologic tumor markers and FDG uptake with EGFR mutation status in non-small cell lung cancer (NSCLC).
METHODS: We prospectively collected tumor aspirates of 61 patients who underwent EGFR mutation analysis. Serum and cytologic CYFRA 21-1, CEA, and SCCA levels were measured and correlated with EGFR gene mutations. FDG PET/CT was performed on 58 patients for NSCLC staging, and SUV was correlated with EGFR mutation status.
RESULTS: Thirty (50%) patients had EGFR mutation and 57 patients had adenocarcinoma subtype. Univariate analysis showed that female gender, never smoker, high levels of cytologic CYFRA 21-1 (c-CYFRA) and lower maximum standard uptake value (SUVmax) were correlated with EGFR mutations. ROC generated cut-off values of 20.8 ng/ml for c-CYFRA and SUVmax of 9.6 showed highest sensitivity for EGFR mutation detection. Multivariate analysis revealed that female gender [hazard ratio (HR): 18.15, p = 0.025], higher levels of c-CYFRA (HR: 7.58, and lower SUVmax (HR: 0.08, p = 0.005) were predictive of harboring EGFR mutation.
CONCLUSIONS: The cytologic tumor marker c-CYFRA was positively associated with EGFR mutations in NSCLC. EGFR mutation-positive NSCLCs have relatively lower glycolysis compared with NSCLCs without EGFR mutation.

Rangel MC, Bertolette D, Castro NP, et al.
Developmental signaling pathways regulating mammary stem cells and contributing to the etiology of triple-negative breast cancer.
Breast Cancer Res Treat. 2016; 156(2):211-26 [PubMed] Free Access to Full Article Related Publications
Cancer has been considered as temporal and spatial aberrations of normal development in tissues. Similarities between mammary embryonic development and cell transformation suggest that the underlying processes required for mammary gland development are also those perturbed during various stages of mammary tumorigenesis and breast cancer (BC) development. The master regulators of embryonic development Cripto-1, Notch/CSL, and Wnt/β-catenin play key roles in modulating mammary gland morphogenesis and cell fate specification in the embryo through fetal mammary stem cells (fMaSC) and in the adult organism particularly within the adult mammary stem cells (aMaSC), which determine mammary progenitor cell lineages that generate the basal/myoepithelial and luminal compartments of the adult mammary gland. Together with recognized transcription factors and embryonic stem cell markers, these embryonic regulatory molecules can be inappropriately augmented during tumorigenesis to support the tumor-initiating cell (TIC)/cancer stem cell (CSC) compartment, and the effects of their deregulation may contribute for the etiology of BC, in particular the most aggressive subtype of BC, triple-negative breast cancer (TNBC). This in depth review will present evidence of the involvement of Cripto-1, Notch/CSL, and Wnt/β-catenin in the normal mammary gland morphogenesis and tumorigenesis, from fMaSC/aMaSC regulation to TIC generation and maintenance in TNBC. Specific therapies for treating TNBC by targeting these embryonic pathways in TICs will be further discussed, providing new opportunities to destroy not only the bulk tumor, but also TICs that initiate and promote the metastatic spread and recurrence of this aggressive subtype of BC.

Kim MG, Kim D, Suh SK, et al.
Current status and regulatory perspective of chimeric antigen receptor-modified T cell therapeutics.
Arch Pharm Res. 2016; 39(4):437-52 [PubMed] Related Publications
Chimeric antigen receptor-modified T cells (CAR-T) have emerged as a new modality for cancer immunotherapy due to their potent efficacy against terminal cancers. CAR-Ts are reported to exert higher efficacy than monoclonal antibodies and antibody-drug conjugates, and act via mechanisms distinct from T cell receptor-engineered T cells. These cells are constructed by transducing genes encoding fusion proteins of cancer antigen-recognizing single-chain Fv linked to intracellular signaling domains of T cell receptors. CAR-Ts are classified as first-, second- and third-generation, depending on the intracellular signaling domain number of T cell receptors. This review covers the current status of CAR-T research, including basic proof-of-concept investigations at the cell and animal levels. Currently ongoing clinical trials of CAR-T worldwide are additionally discussed. Owing to the lack of existing approved products, several unresolved concerns remain with regard to safety, efficacy and manufacturing of CAR-T, as well as quality control issues. In particular, the cytokine release syndrome is the major side-effect impeding the successful development of CAR-T in clinical trials. Here, we have addressed the challenges and regulatory perspectives of CAR-T therapy.

Jung HJ, Seo I, Casciello F, et al.
The anticancer effect of chaetocin is enhanced by inhibition of autophagy.
Cell Death Dis. 2016; 7:e2098 [PubMed] Related Publications
Chaetocin is a fungal metabolite that possesses a potent antiproliferative activity in solid tumors by inducing cell death. Although recent studies have extended the role of chaetocin in tumors, the underlying molecular mechanisms such as the downstream cascade that induces cell death has not clearly been elucidated. In this study, we show that chaetocin is able to induce both apoptosis and autophagy in several hepatoma cell lines including HepG2, Hep3B and Huh7 cell lines. Moreover, we found that the inhibition of caspase-3/7 activity by z-VAD-fmk treatment was able to block chaetocin-mediated cell death, whereas blocking autophagy by Bafilomycin A1 or the knockdown of autophagy protein 5 enhanced cell death mediated by chaetocin. These findings suggest that chaetocin has a potent anticancer effect against hepatoma. Inhibition of autophagy may potentiate anticancer effects of chaetocin thus providing evidence that combined treatment with chaetocin and autophagy inhibitors will be an effective strategy for treating cancer.

Abraham KJ, Zhang X, Vidal R, et al.
Roles for miR-375 in Neuroendocrine Differentiation and Tumor Suppression via Notch Pathway Suppression in Merkel Cell Carcinoma.
Am J Pathol. 2016; 186(4):1025-35 [PubMed] Related Publications
Dysfunction of key miRNA pathways regulating basic cellular processes is a common driver of many cancers. However, the biological roles and/or clinical applications of such pathways in Merkel cell carcinoma (MCC), a rare but lethal cutaneous neuroendocrine (NE) malignancy, have yet to be determined. Previous work has established that miR-375 is highly expressed in MCC tumors, but its biological role in MCC remains unknown. Herein, we show that elevated miR-375 expression is a specific feature of well-differentiated MCC cell lines that express NE markers. In contrast, miR-375 is strikingly down-regulated in highly aggressive, undifferentiated MCC cell lines. Enforced miR-375 expression in these cells induced NE differentiation, and opposed cancer cell viability, migration, invasion, and survival, pointing to tumor-suppressive roles for miR-375. Mechanistically, miR-375-driven phenotypes were caused by the direct post-transcriptional repression of multiple Notch pathway proteins (Notch2 and RBPJ) linked to cancer and regulation of cell fate. Thus, we detail a novel molecular axis linking tumor-suppressive miR-375 and Notch with NE differentiation and cancer cell behavior in MCC. Our findings identify miR-375 as a putative regulator of NE differentiation, provide insight into the cell of origin of MCC, and suggest that miR-375 silencing may promote aggressive cancer cell behavior through Notch disinhibition.

Tesone AJ, Rutkowski MR, Brencicova E, et al.
Satb1 Overexpression Drives Tumor-Promoting Activities in Cancer-Associated Dendritic Cells.
Cell Rep. 2016; 14(7):1774-86 [PubMed] Free Access to Full Article Related Publications
Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.

Seo EJ, Kwon YW, Jang IH, et al.
Autotaxin Regulates Maintenance of Ovarian Cancer Stem Cells through Lysophosphatidic Acid-Mediated Autocrine Mechanism.
Stem Cells. 2016; 34(3):551-64 [PubMed] Related Publications
Ovarian cancer shows high mortality due to development of resistance to chemotherapy and relapse. Cancer stem cells (CSCs) have been suggested to be a major contributor in developing drug resistance and relapse in ovarian cancer. In this study, we isolated CSCs through sphere culture of A2780, SKOV3, OVCAR3 epithelial ovarian cancer cells and primary ovarian cancer cells from patients. We identified heat-stable factors secreted from ovarian CSCs stimulated migration and proliferation of CSCs. Mass spectrometry and ELISA analysis revealed that lysophosphatidic acid (LPA) was significantly elevated in CSC culture media compared with non-CSC culture media. Treatment of CSCs with LPA resulted in augmented CSC characteristics such as sphere-forming ability, resistance to anticancer drugs, tumorigenic potential in xenograft transplantation, and high expression of CSC-associated genes, including OCT4, SOX2, and aldehyde dehydrogenase 1. Treatment of CSCs with LPA receptor 1-specific inhibitors or silencing of LPA receptor 1 expression abrogated the LPA-stimulated CSC properties. Autotaxin, an LPA-producing enzyme, is highly secreted from ovarian CSCs, and pharmacological inhibition or knockdown of autotaxin markedly attenuated the LPA-producing, tumorigenic, and drug resistance potentials of CSCs. Clinicopathological analysis showed a significant survival disadvantage of patients with positive staining of autotaxin. In addition, we further identified that AKT1 activity was upregulated in ovarian CSCs through an LPA-dependent mechanism and silencing of AKT1 expression led to suppression of CSC characteristics. These results suggest that autotaxin-LPA-LPA receptor 1-AKT1 signaling axis is critical for maintaining CSC characteristics through an autocrine loop and provide a novel therapeutic target for ovarian CSCs.

Ross JS, Gay LM, Nozad S, et al.
Clinically advanced and metastatic pure mucinous carcinoma of the breast: a comprehensive genomic profiling study.
Breast Cancer Res Treat. 2016; 155(2):405-13 [PubMed] Related Publications
PURPOSE: Pure mucinous breast carcinoma (pmucBC) is a distinctive variant of breast cancer (BC) featuring an excellent overall prognosis. However, on rare occasions, pmucBC pursues an aggressive clinical course. We queried whether comprehensive genomic profiling (CGP) would uncover clinically relevant genomic alterations (CRGA) that could lead to targeted therapy treatment for patients with an advanced and metastatic form of pmucBC.
METHODS: From a series of 51,238 total cancer samples, which included 5605 cases of clinically advanced BC and 22 cases of stage IV pmucBC, DNA was extracted from 40 microns of FFPE sections. Comprehensive genomic profiling was performed using a hybrid-capture, adaptor ligation-based next generation sequencing assay to a mean coverage depth of 564X. The results were analyzed for all classes of genomic alterations (GA) including base substitutions, insertions and deletions, select rearrangements, and copy number changes. Clinically relevant genomic alterations were defined as those indicating possible treatment with anti-cancer drugs on the market or in registered clinical trials.
RESULTS: Samples were obtained from breast (11), lymph nodes (3), chest wall (2), liver (2), soft tissue (2), bone (1), and pleura (1). The median age of the 22 pmucBC patients was 57 years (range 32-79 years). Three pmucBCs were grade 1, 17 were grade 2, and 2 were grade 3. Twenty-one (95 %) pmucBC were ER+, 18 (82 %) were PR+, and 3 (14 %) were HER2+ by IHC and/or FISH. A total of 132 GA were identified (6.0 GA per tumor), including 53 CRGA, for a mean of 2.4 GA per tumor. Amplification of FGFR1 or ZNF703, located within the same amplicon, was found in 8 of 22 cases (36 %). This enrichment of FGFR1 amplification in 36 % of pmucBC versus 11 % of non-mucinous ER+ BC (601 cases) was significant (p < 0.005). Other frequently altered genes of interest in pmucBC were CCND1 and the FGF3/FGF4/FGF19 amplicon (27 %), often co-amplified together. ERBB2/HER2 alterations were identified in 5 pmucBC (23 %): ERBB2 amplification was found in 3 of 3 cases (100 %) that were HER2+ by IHC and/or FISH; 1 pmucBC was negative for HER2 overexpression by IHC, but positive for amplification by CGP; and 2 pmucBC harbored the ERBB2 substitutions D769Y and V777L (one sample also featured ERBB2 amplification). The enrichment of ERBB2 GA in metastatic pmucBC versus non-metastatic primary pmucBC was significant (p = 0.03). CRGA were also found in 20 additional genes including PIK3CA (5), BRCA1 (1), TSC2 (1), STK11 (1), AKT3 (1), and ESR1 (1).
CONCLUSIONS: Metastatic pmucBC is a distinct form of breast cancer that features a relatively high frequency of CRGA, including a significant enrichment of FGFR1 alterations and a high frequency of ERBB2 alterations when compared with non-metastatic pmucBC. These findings suggest that CGP can identify a variety of known and emerging therapy targets that have the potential to improve outcomes for patients with clinically advanced and metastatic forms of this disease.

Lu F, Chen HS, Kossenkov AV, et al.
EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-jκ and EBF1.
PLoS Pathog. 2016; 12(1):e1005339 [PubMed] Free Access to Full Article Related Publications
Epstein-Barr Virus (EBV) transforms resting B-lymphocytes into proliferating lymphoblasts to establish latent infections that can give rise to malignancies. We show here that EBV-encoded transcriptional regulator EBNA2 drives the cooperative and combinatorial genome-wide binding of two master regulators of B-cell fate, namely EBF1 and RBP-jκ. Previous studies suggest that these B-cell factors are statically bound to target gene promoters. In contrast, we found that EBNA2 induces the formation of new binding for both RBP-jκ and EBF1, many of which are in close physical proximity in the cellular and viral genome. These newly induced binding sites co-occupied by EBNA2-EBF1-RBP-jκ correlate strongly with transcriptional activation of linked genes that are important for B-lymphoblast function. Conditional expression or repression of EBNA2 leads to a rapid alteration in RBP-jκ and EBF1 binding. Biochemical and shRNA depletion studies provide evidence for cooperative assembly at co-occupied sites. These findings reveal that EBNA2 facilitate combinatorial interactions to induce new patterns of transcription factor occupancy and gene programming necessary to drive B-lymphoblast growth and survival.

Choi KW, Suh H, Oh HL, et al.
p21CIP1 Induces Apoptosis via Binding to BCL2 in LNCaP Prostate Cancer Cells Treated with MCS-C3, A Novel Carbocyclic Analog of Pyrrolopyrimidine.
Anticancer Res. 2016; 36(1):213-20 [PubMed] Related Publications
BACKGROUND: Previously, we synthesized a new carbocyclic analog of pyrrolo[2,3-d]pyrimidine nucleoside, designated MCS-C3. Recently, we found that LNCaP androgen-responsive prostate cancer cells treated with MCS-C3 rapidly undergo intrinsic apoptosis through dramatic up-regulation of p21(CIP1). The present study aimed to evaluate the cellular functions and underlying molecular mechanisms of p21(CIP1) on apoptotic induction in LNCaP cells treated with 6 μM MCS-C3.
MATERIALS AND METHODS: Western blots, flow cytometric assay, immunoprecipitation, and transmission electron microscopy analysis were used to measure apoptotic induction in 6-μM MCS-C3-treated LNCaP cells. Effects of MCS-C3 on gene expression of p21(CIP1) were measured by semi-quantitative real-time polymerase chain reaction, and small interfering RNA transfection.
RESULTS: MCS-C3 induced appreciable caspase-dependent apoptosis associated with the significant up-regulation of p53-dependent p21(CIP1) in LNCaP cells. Moreover, this apoptotic induction was caused by direct binding of p21(CIP1) to anti-apoptotic B-cell lymphoma 2 (BCL2) protein, and antagonizing BCL2 function. In addition, MCS-C3-mediated apoptotic induction, and up-regulation of p21(CIP1) were almost completely blocked by the treatment of androgen-responsive LNCaP cells with flutamide, an androgen receptor (AR) antagonist.
CONCLUSION: We identified that induction of intrinsic apoptosis in LNCaP cells by 6 μM MCS-C3 is associated not only with p53 activation but also with mediation of AR. In the present study, we identified the cellular functions and underlying molecular mechanisms of p53-dependent and AR-associated p21(CIP1) on apoptotic induction via direct binding to BCL2 in LNCaP cells treated with 6 μM MCS-C3.

Wang A, Welch R, Zhao B, et al.
Epstein-Barr Virus Nuclear Antigen 3 (EBNA3) Proteins Regulate EBNA2 Binding to Distinct RBPJ Genomic Sites.
J Virol. 2015; 90(6):2906-19 [PubMed] Free Access to Full Article Related Publications
UNLABELLED: Latent infection of B lymphocytes by Epstein-Barr virus (EBV) in vitro results in their immortalization into lymphoblastoid cell lines (LCLs); this latency program is controlled by the EBNA2 viral transcriptional activator, which targets promoters via RBPJ, a DNA binding protein in the Notch signaling pathway. Three other EBNA3 proteins (EBNA3A, EBNA3B, and EBNA3C) interact with RBPJ to regulate cell gene expression. The mechanism by which EBNAs regulate different genes via RBPJ remains unclear. Our chromatin immunoprecipitation with deep sequencing (ChIP-seq) analysis of the EBNA3 proteins analyzed in concert with prior EBNA2 and RBPJ data demonstrated that EBNA3A, EBNA3B, and EBNA3C bind to distinct, partially overlapping genomic locations. Although RBPJ interaction is critical for EBNA3A and EBNA3C growth effects, only 30 to 40% of EBNA3-bound sites colocalize with RBPJ. Using LCLs conditional for EBNA3A or EBNA3C activity, we demonstrate that EBNA2 binding at sites near EBNA3A- or EBNA3C-regulated genes is specifically regulated by the respective EBNA3. To investigate EBNA3 binding specificity, we identified sequences and transcription factors enriched at EBNA3A-, EBNA3B-, and EBNA3C-bound sites. This confirmed the prior observation that IRF4 is enriched at EBNA3A- and EBNA3C-bound sites and revealed IRF4 enrichment at EBNA3B-bound sites. Using IRF4-negative BJAB cells, we demonstrate that IRF4 is essential for EBNA3C, but not EBNA3A or EBNA3B, binding to specific sites. These results support a model in which EBNA2 and EBNA3s compete for distinct subsets of RBPJ sites to regulate cell genes and where EBNA3 subset specificity is determined by interactions with other cell transcription factors.
IMPORTANCE: Epstein-Barr virus (EBV) latent gene products cause human cancers and transform B lymphocytes into immortalized lymphoblastoid cell lines in vitro. EBV nuclear antigens (EBNAs) and membrane proteins constitutively activate pathways important for lymphocyte growth and survival. An important unresolved question is how four different EBNAs (EBNA2, -3A, -3B, and -3C) exert unique effects via a single transcription factor, RBPJ. Here, we report that each EBNA binds to distinct but partially overlapping sets of genomic sites. EBNA3A and EBNA3C specifically regulate EBNA2's access to different RBPJ sites, providing a mechanism by which each EBNA can regulate distinct cell genes. We show that IRF4, an essential regulator of B cell differentiation, is critical for EBNA3C binding specificity; EBNA3A and EBNA3B specificities are likely due to interactions with other cell transcription factors. EBNA3 titration of EBNA2 transcriptional function at distinct sites likely limits cell defenses that would be triggered by unchecked EBNA2 prooncogenic activity.

Just PA, Poncy A, Charawi S, et al.
LKB1 and Notch Pathways Interact and Control Biliary Morphogenesis.
PLoS One. 2015; 10(12):e0145400 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: LKB1 is an evolutionary conserved kinase implicated in a wide range of cellular functions including inhibition of cell proliferation, regulation of cell polarity and metabolism. When Lkb1 is inactivated in the liver, glucose homeostasis is perturbed, cellular polarity is affected and cholestasis develops. Cholestasis occurs as a result from deficient bile duct development, yet how LKB1 impacts on biliary morphogenesis is unknown.
METHODOLOGY/PRINCIPAL FINDINGS: We characterized the phenotype of mice in which deletion of the Lkb1 gene has been specifically targeted to the hepatoblasts. Our results confirmed that lack of LKB1 in the liver results in bile duct paucity leading to cholestasis. Immunostaining analysis at a prenatal stage showed that LKB1 is not required for differentiation of hepatoblasts to cholangiocyte precursors but promotes maturation of the primitive ductal structures to mature bile ducts. This phenotype is similar to that obtained upon inactivation of Notch signaling in the liver. We tested the hypothesis of a functional overlap between the LKB1 and Notch pathways by gene expression profiling of livers deficient in Lkb1 or in the Notch mediator RbpJκ and identified a mutual cross-talk between LKB1 and Notch signaling. In vitro experiments confirmed that Notch activity was deficient upon LKB1 loss.
CONCLUSION: LKB1 and Notch share a common genetic program in the liver, and regulate bile duct morphogenesis.

Giachino C, Boulay JL, Ivanek R, et al.
A Tumor Suppressor Function for Notch Signaling in Forebrain Tumor Subtypes.
Cancer Cell. 2015; 28(6):730-42 [PubMed] Related Publications
In the brain, Notch signaling maintains normal neural stem cells, but also brain cancer stem cells, indicating an oncogenic role. Here, we identify an unexpected tumor suppressor function for Notch in forebrain tumor subtypes. Genetic inactivation of RBP-Jκ, a key Notch mediator, or Notch1 and Notch2 receptors accelerates PDGF-driven glioma growth in mice. Conversely, genetic activation of the Notch pathway reduces glioma growth and increases survival. In humans, high Notch activity strongly correlates with distinct glioma subtypes, increased patient survival, and lower tumor grade. Additionally, simultaneous inactivation of RBP-Jκ and p53 induces primitive neuroectodermal-like tumors in mice. Hence, Notch signaling cooperates with p53 to restrict cell proliferation and tumor growth in mouse models of human brain tumors.

Onishi H, Yamasaki A, Kawamoto M, et al.
Hypoxia but not normoxia promotes Smoothened transcription through upregulation of RBPJ and Mastermind-like 3 in pancreatic cancer.
Cancer Lett. 2016; 371(2):143-50 [PubMed] Related Publications
We previously demonstrated that Hedgehog (Hh) signaling is activated under hypoxia through upregulation of transcription of Smoothened (SMO) gene. However, the mechanism of hypoxia-induced activation of SMO transcription remains unclear. In the analysis of altered expressions of genes related to Hh signaling between under normoxia and hypoxia by DNA microarray analysis, we picked up 2 genes, a transcriptional regulator, recombination signal binding protein for immunoglobulin-kappa-J region (RBPJ) and a transcriptional co-activator, Mastermind-like 3 (MAML3). Expressions of SMO, MAML3 and RBPJ were increased under hypoxia in pancreatic ductal adenocarcinoma cells (PDAC). RBPJ and MAML3 inhibition under hypoxia led to decreased SMO and GLI1 expressions, whereas SMO expression in MAML3-inhibited and RBPJ-inhibited cells under normoxia showed no change. However, overexpression of RBPJ under normoxia led to increased SMO expression. Additionally, cells knocked down for MAML3 and RBPJ inhibition under hypoxia showed decreased invasiveness through matrix metalloproteinase-2 suppression and decreased proliferation. Xenograft mouse models showed that MAML3 and RBPJ knockdown inhibited tumorigenicity and tumor volume. Our results suggest that hypoxia promotes SMO transcription through upregulation of MAML3 and RBPJ to induce proliferation, invasiveness and tumorigenesis in pancreatic cancer.

Choi EJ, Seo EJ, Kim DK, et al.
FOXP1 functions as an oncogene in promoting cancer stem cell-like characteristics in ovarian cancer cells.
Oncotarget. 2016; 7(3):3506-19 [PubMed] Free Access to Full Article Related Publications
Ovarian cancer has the highest mortality rate of all gynecological cancers with a high recurrence rate. It is important to understand the nature of recurring cancer cells to terminally eliminate ovarian cancer. The winged helix transcription factor Forkhead box P1 (FOXP1) has been reported to function as either oncogene or tumor-suppressor in various cancers. In the current study, we show that FOXP1 promotes cancer stem cell-like characteristics in ovarian cancer cells. Knockdown of FOXP1 expression in A2780 or SKOV3 ovarian cancer cells decreased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment, whereas overexpression of FOXP1 in A2780 or SKOV3 ovarian cancer cells increased spheroid formation, expression of stemness-related genes and epithelial to mesenchymal transition-related genes, cell migration, and resistance to Paclitaxel or Cisplatin treatment. In addition, overexpression of FOXP1 increased promoter activity of ABCG2, OCT4, NANOG, and SOX2, among which the increases in ABCG2, OCT4, and SOX2 promoter activity were dependent on the presence of FOXP1-binding site. In xenotransplantation of A2780 ovarian cancer cells into nude mice, knockdown of FOXP1 expression significantly decreased tumor size. These results strongly suggest FOXP1 functions as an oncogene by promoting cancer stem cell-like characteristics in ovarian cancer cells. Targeting FOXP1 may provide a novel therapeutic opportunity for developing a relapse-free treatment for ovarian cancer patients.

Poli A, Billi AM, Mongiorgi S, et al.
Nuclear Phosphatidylinositol Signaling: Focus on Phosphatidylinositol Phosphate Kinases and Phospholipases C.
J Cell Physiol. 2016; 231(8):1645-55 [PubMed] Related Publications
Phosphatidylinositol (PI) metabolism represents the core of a network of signaling pathways which modulate many cellular functions including cell proliferation, cell differentiation, apoptosis, and membrane trafficking. An array of kinases, phosphatases, and lipases acts on PI creating an important number of second messengers involved in different cellular processes. Although, commonly, PI signaling was described to take place at the plasma membrane, many evidences indicated the existence of a PI cycle residing in the nuclear compartment of eukaryotic cells. The discovery of this mechanism shed new light on many nuclear functions, such as gene transcription, DNA modifications, and RNA expression. As these two PI cycles take place independently of one another, understanding how nuclear lipid signaling functions and modulates nuclear output is fundamental in the study of many cellular processes. J. Cell. Physiol. 231: 1645-1655, 2016. © 2015 Wiley Periodicals, Inc.

Zeng C, Xing R, Liu J, Xing F
Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.
Apoptosis. 2016; 21(1):1-12 [PubMed] Related Publications
Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

Al-Rohil RN, Tarasen AJ, Carlson JA, et al.
Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies.
Cancer. 2016; 122(2):249-57 [PubMed] Related Publications
BACKGROUND: The authors hypothesized that comprehensive genomic profiling of advanced-stage cutaneous squamous cell carcinoma (cSCC) could identify genomic-derived drug targets of therapy for patients with conventional therapy-resistant disease.
METHODS: Comprehensive genomic profiling of 315 cancer genes was applied to 50 ng of DNA from 122 cSCC cases for the evaluation of all classes of genomic alterations (GAs). Clinically relevant genomic alterations (CRGAs) were defined as those identifying anticancer drugs on the market or in registered clinical trials.
RESULTS: There were 21 women (17%) and 101 men (83%) with a median age of 64.9 years (range, 21-87 years). Eleven cSCC cases (9%) were histologic AJCC grade 1, 69 (57%) were grade 2, and 42 (34%) were grade 3. The primary cSCC was used for sequencing in 77 cases (63%). Metastatic lesions were sequenced in 37% of cases. There were 1120 total GAs identified (average of 9.2 GAs per tumor), with 100% of cases harboring at least 1 alteration. Of the 122 cSCCs, 107 (88%) harbored at least 1 CRGA (2.5 CRGAs per cSCC) includingNOTCH1 (43%); patched 1 (PTCH1) (11%); BRCA2 (10%); HRAS (8%); ataxia telangiectasia mutated (ATM) (7%); erb-B2 receptor tyrosine kinase 4 (ERBB4) (7%); neurofibromatosis type 1 (NF1) (7%); erb-B2 receptor tyrosine kinase 2 (ERBB2) (6%); phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) (6%); cyclin D1 (CCND1) (6%); epidermal growth factor receptor (EGFR) (5%); and F-box and WD repeat domain containing 7, E3 ubiquitin protein ligase (FBXW7) (5%).
CONCLUSIONS: In the current study, approximately 88% of patients with cSCC were found to harbor clinically relevant GAs that have the potential to guide the treatment of patients with advanced-stage tumors with targeted therapeutic agents. Cancer 2016;122:249-257. © 2015 American Cancer Society.

Lee KH, Lee KB, Kim TY, et al.
Clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma.
BMC Cancer. 2015; 15:721 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: More knowledge about genetic and molecular features of cholangiocarcinoma is needed to develop effective therapeutic strategies. We investigated the clinical and pathological significance of ROS1 expression in intrahepatic cholangiocarcinoma.
METHODS: One hundred ninety-four patients with curatively resected intrahepatic cholangiocarcinoma were included in this study. Tumor tissue specimens were collected and analyzed for ROS1 gene rearrangement using fluorescence in situ hybridization (FISH) and ROS1 protein expression using immunohistochemistry (IHC).
RESULTS: ROS1 immunohistochemistry was positive (moderate or strong staining) in 72 tumors (37.1 %). ROS1 protein expression was significantly correlated with well differentiated tumors, papillary or mucinous histology, oncocytic/hepatoid or intestinal type tumors, and periductal infiltrating or intraductal growing tumors (vs. mass-forming cholangiocarcinoma). ROS-expressing tumors were associated with better disease-free survival (30.1 months for ROS1 expression (+) tumors vs. 9.0 months for ROS1 (-) tumors, p = 0.006). Moreover, ROS1 expression was an independent predictor of better disease-free survival in a multivariate analysis (HR 0.607, 95 % CI 0.377-0.976; p = 0.039). Although break-apart FISH was successfully performed in 102 samples, a split pattern indicative of ROS1 gene rearrangement was not found in the examined samples.
CONCLUSION: ROS1 protein expression was associated with well-differentiated histology and better survival in our patients with resected intrahepatic cholangiocarcinoma. ROS1 gene rearrangement by break-apart FISH was not found in the examined samples.

Wang H, Zhang L, Fu Y, et al.
CSL regulates AKT to mediate androgen independence in prostate cancer progression.
Prostate. 2016; 76(2):140-50 [PubMed] Related Publications
BACKGROUND: Aberrant signaling pathways leads to cancer initiation and progression. Both Notch and PI3K/AKT signaling pathways are believed to be involved in prostate cancer. How the interaction between the two pathways contributes to prostate cancer progression to androgen independence is still elusive.
METHODS: Prostate cancer cells were grown in RPMI 1,640 supplemented with 10% heat-inactivated fetal bovine serum (FBS) or 10% charcoal-stripped heat-inactivated fetal bovine serum (FCS), 1% penicillin-streptomycin in 75 cm2 polystyrene flasks, and maintained at 37 °C in a humidified atmosphere with 5% CO2 . Cell proliferation, invasion were performed with cell counting, matrigel assay in vitro. Dual luciferase assays were performed using reporter plasmids with ARE (Androgen Response Element, ARE). RNA interference was applied to gene silence. Tumorigenicity of cancer cells was evaluated by mouse xenograft in vivo.
RESULTS: A subpopulation of casodex resistant prostate cancer cells were identified with an overexpressed androgen receptor (AR) and aggressive phenotypes, characterized with high proliferation, invasion in vitro and enhanced tumorigenesis in vivo. Gene profiling for androgen-dependent LNCaP and androgen-independent LNCaP-CR revealed that both CSL and AKT gave the similar expressional pattern upon casodex treatment. Immunoblot demonstrated that CSL and AKT were dramatically suppressed in androgen dependent LNCaP cells, but slightly inhibited in LNCaP-CR cells as well as other androgen independent prostate cancer cells. Further studies indicated that CSL regulates AKT, and subsequently AR in prostate cancer cells. AKT mediates casodex resistance and androgen independence through regulation of cyclin D1.
CONCLUSION: CSL-AKT-AR axis might play an important role in prostate cancer progression. Targeting CSL depleted the casodex resistant population through inhibition of the AKT, suggesting a more effective therapeutic strategy for abrogating casodex resistance in advanced prostate cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. RBPJ, Cancer Genetics Web: http://www.cancer-genetics.org/RBPJ.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 16 March, 2017     Cancer Genetics Web, Established 1999