Gene Summary

Gene:ROCK2; Rho-associated, coiled-coil containing protein kinase 2
Aliases: ROCK-II
Summary:The protein encoded by this gene is a serine/threonine kinase that regulates cytokinesis, smooth muscle contraction, the formation of actin stress fibers and focal adhesions, and the activation of the c-fos serum response element. This protein, which is an isozyme of ROCK1 is a target for the small GTPase Rho. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:rho-associated protein kinase 2
Source:NCBIAccessed: 25 June, 2015


What does this gene/protein do?
Show (28)
Pathways:What pathways are this gene/protein implicaed in?
Show (7)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 25 June 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Protein Binding
  • Neoplasm Invasiveness
  • siRNA
  • Breast Cancer
  • Prostate Cancer
  • Genotype
  • Hep G2 Cells
  • Gene Expression Profiling
  • rac1 GTP-Binding Protein
  • Hepatocellular Carcinoma
  • Mutation
  • Protein-Serine-Threonine Kinases
  • Myosin Light Chains
  • Single Nucleotide Polymorphism
  • Oligonucleotide Array Sequence Analysis
  • Chromosome 2
  • Transfection
  • Phosphorylation
  • Immunohistochemistry
  • Amides
  • Cytokinesis
  • Cell Movement
  • Up-Regulation
  • Neoplasm Metastasis
  • Signal Transduction
  • Protein Kinase Inhibitors
  • Young Adult
  • Phenotype
  • Tumor Suppressor Proteins
  • Cancer Gene Expression Regulation
  • Pyridines
  • RNA Interference
  • Case-Control Studies
  • Nerve Tissue Proteins
  • Lung Cancer
  • Gene Knockdown Techniques
  • Liver Cancer
  • Messenger RNA
  • RHOA
  • Cell Proliferation
  • MicroRNAs
Tag cloud generated 25 June, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ROCK2 (cancer-related)

Huang D, Du X, Yuan R, et al.
Rock2 promotes the invasion and metastasis of hepatocellular carcinoma by modifying MMP2 ubiquitination and degradation.
Biochem Biophys Res Commun. 2014; 453(1):49-56 [PubMed] Related Publications
Rho-associated coiled-coil-containing protein kinase 2 (Rock2) is a downstream effector of Rho that plays an important role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). Matrix metalloproteinase 2 (MMP2) is a master regulator of tumor metastasis. In this study, we investigated the collections of Rock2 and MMP2 in HCCs and determined the potential role and molecular mechanism of Rock2 in MMP2-mediated invasiveness and metastasis. We found that Rock2 and MMP2 were markedly overexpressed in HCCs compared with the corresponding adjacent tissues, where a positive correlation in their expression was found. The knockdown of Rock2 significantly decreased MMP2 expression and inhibited the invasion and metastasis of HCC in vitro and in vivo. Additionally, the upregulation of MMP2 rescued the decreased migration and invasion induced by the knockdown of Rock2, whereas the knockdown of MMP2 decreased Rock2-enhanced HCC migration and invasion. Mechanistically, Rock2 stabilized MMP2 by preventing its ubiquitination and degradation. Together, our results link two drivers of invasion and metastasis in HCC and identify a novel pathway for MMP2 control.

Tan X, Chen M
MYLK and MYL9 expression in non-small cell lung cancer identified by bioinformatics analysis of public expression data.
Tumour Biol. 2014; 35(12):12189-200 [PubMed] Related Publications
Gene expression microarrays are widely used to investigate molecular targets in cancers, including lung cancer. In this study, we analyzed online non-small cell lung cancer (NSCLC) microarray databases, to screen the key genes and pathways related to NSCLC by bioinformatics analyses. And then, the expression levels of two selected genes in the down-regulated co-pathways, myosin light chain kinase (MYLK) and myosin regulatory light chain 9 (MYL9), were determined in tumor, paired paraneoplastic, and normal lung tissues. First, gene set enrichment analysis and meta-analysis were conducted to identify key genes and pathways that contribute to NSCLC carcinogenesis. Second, using the total RNA and protein extracted from lung cancer tissues (n = 240), adjacent non-cancer tissues (n = 240), and normal lung tissues (n = 300), we examined the MYLK and MYL9 expression levels by quantitative real-time PCR and Western blot. Finally, we explored the correlations between mRNA and protein expressions of these two genes and the clinicopathological parameters of NSCLC. Fifteen up-regulated and nine down-regulated co-pathways were observed. A number of differentially expressed genes (CALM1, THBS1, CSF3, BMP2, IL6ST, MYLK, ROCK2, IL3RA, MYL9, PPP2CA, CSF2RB, CNAQ, GRIA2, IL10RA, IL10RB, IL11RA, LIFR, PLCB4, and RAC3) were identified (P < 0.01) in the down-regulated co-pathways. The expression levels of MYLK and MYL9, which act downstream of the vascular smooth muscle contraction signal pathway and focal adhesion pathway, were significantly lower in cancer tissue than those in the paraneoplastic and normal tissues (P < 0.05). Moreover, the expression levels of these two genes in stages III and IV NSCLC were significantly increased, when compared to stages I and II, and expressions levels in NSCLC with lymphatic metastasis were higher than that without lymphatic metastasis (P < 0.05). Additionally, significant lower expression levels of the two genes were found in smokers than in nonsmokers (P < 0.05). In contrast, gender, differentiated degrees, and pathohistological type appeared to have no impact on these gene expressions (P > 0.05). These findings suggested that low MYLK and MYL9 expressions might be associated with the development of NSCLC. These genes may be also relevant to NSCLC metastasis. Future investigations with large sample sizes needed to verify these findings.

Shen K, Mao R, Ma L, et al.
Post-transcriptional regulation of the tumor suppressor miR-139-5p and a network of miR-139-5p-mediated mRNA interactions in colorectal cancer.
FEBS J. 2014; 281(16):3609-24 [PubMed] Related Publications
MicroRNAs play key roles in many biological processes, and are frequently dysregulated in tumor cells. However, there are few studies on how microRNAs are dysregulated. miR-139-5p, an important tumor suppressor, is often underexpressed in gastrointestinal cancer cells. Here, we describe post-transcriptional regulation of this intronic microRNA in human colorectal cancer. miR-139-5p is expressed independently of its overexpressed host gene PDE2A in colorectal cancer tissues and cell lines. The miR-139-5p target genes IGF1R, ROCK2 and RAP1B exert regulatory effects on the miR-139-5p expression level, relying on their ability to compete for miR-139-5p binding. These overexpressed target genes also regulate each others' protein levels through 3'-UTRs, thus regulating tumor cell growth and motility properties. Our study provides a mechanistic, experimentally validated rationale for intronic microRNA dysregulation in colorectal cancer, revealing novel oncogenic roles of IGF1R, ROCK2 and RAP1B 3'-UTRs.

Jia S, Jia Y, Weeks HP, et al.
Down-regulation of WAVE2, WASP family verprolin-homologous protein 2, in gastric cancer indicates lymph node metastasis and cell migration.
Anticancer Res. 2014; 34(5):2185-94 [PubMed] Related Publications
BACKGROUND: WAVE2 plays a crucial role in actin polymerisation and cell migration. We aimed to investigate the expression and cellular functions of WAVE2 in human gastric cancer (GC).
MATERIALS AND METHODS: The level of WAVE2 was determined using quantitative PCR (Q-PCR) in a cohort of human gastric tissues. Expression of WAVE2, ARP2, NWASP, ROCK1 and ROCK2 was examined using RT-PCR in paired tissues. WAVE2 and ARP2 protein co-expression was examined. Anti-WAVE2 transgene ribozymes were constructed and transiently transfected into human GC cells.
RESULTS: Down-regulation of WAVE2 expression in GC was significantly correlated with lymph node metastasis. WAVE2 was positively correlated with E-cadherin and negatively with TWIST. Immunohistochemically, WAVE2 and ARP2 were not co-expressed in serial mirror sections. In vitro, WAVE2 knockdown was shown to increase cell motility, whilst ROCK inhibitor treatment reduced this effect in HGC27 cells.
CONCLUSION: WAVE2 is down-regulated in GC and loses its metastatic role in GC. Knockdown of WAVE2 could increase metastatic potential by promoting the growth, invasiveness, motility, adhesiveness and suppressing EMT (epithelial-mesenchymal transition) of GC cells.

Oku Y, Tareyanagi C, Takaya S, et al.
Multimodal effects of small molecule ROCK and LIMK inhibitors on mitosis, and their implication as anti-leukemia agents.
PLoS One. 2014; 9(3):e92402 [PubMed] Free Access to Full Article Related Publications
Accurate chromosome segregation is vital for cell viability. Many cancer cells show chromosome instability (CIN) due to aberrant expression of the genes involved in chromosome segregation. The induction of massive chromosome segregation errors in such cancer cells by small molecule inhibitors is an emerging strategy to kill these cells selectively. Here we screened and characterized small molecule inhibitors which cause mitotic chromosome segregation errors to target cancer cell growth. We screened about 300 chemicals with known targets, and found that Rho-associated coiled-coil kinase (ROCK) inhibitors bypassed the spindle assembly checkpoint (SAC), which delays anaphase onset until proper kinetochore-microtubule interactions are established. We investigated how ROCK inhibitors affect chromosome segregation, and found that they induced microtubule-dependent centrosome fragmentation. Knockdown of ROCK1 and ROCK2 revealed their additive roles in centrosome integrity. Pharmacological inhibition of LIMK also induced centrosome fragmentation similar to that by ROCK inhibitors. Inhibition of ROCK or LIMK hyper-stabilized mitotic spindles and impaired Aurora-A activation. These results suggested that ROCK and LIMK are directly or indirectly involved in microtubule dynamics and activation of Aurora-A. Furthermore, inhibition of ROCK or LIMK suppressed T cell leukemia growth in vitro, but not peripheral blood mononuclear cells. They induced centrosome fragmentation and apoptosis in T cell leukemia cells. These results suggested that ROCK and LIMK can be a potential target for anti-cancer drugs.

Ferrer I, Mohan P, Chen H, et al.
Tubers from patients with tuberous sclerosis complex are characterized by changes in microtubule biology through ROCK2 signalling.
J Pathol. 2014; 233(3):247-57 [PubMed] Related Publications
Most patients with tuberous sclerosis complex (TSC) develop cortical tubers that cause severe neurological disabilities. It has been suggested that defects in neuronal differentiation and/or migration underlie the appearance of tubers. However, the precise molecular alterations remain largely unknown. Here, by combining cytological and immunohistochemical analyses of tubers from nine TSC patients (four of them diagnosed with TSC2 germline mutations), we show that alteration of microtubule biology through ROCK2 signalling contributes to TSC neuropathology. All tubers showed a larger number of binucleated neurons than expected relative to control cortex. An excess of normal and altered cytokinetic figures was also commonly observed. Analysis of centrosomal markers suggested increased microtubule nucleation capacity, which was supported by the analysis of an expression dataset from cortical tubers and control cortex, and subsequently linked to under-expression of Rho-associated coiled-coil containing kinase 2 (ROCK2). Thus, augmented microtubule nucleation capacity was observed in mouse embryonic fibroblasts and human fibroblasts deficient in the Tsc2/TSC2 gene product, tuberin. Consistent with ROCK2 under-expression, microtubule acetylation was found to be increased with tuberin deficiency; this alteration was abrogated by rapamycin treatment and mimicked by HDAC6 inhibition. Together, the results of this study support the hypothesis that loss of TSC2 expression can alter microtubule organization and dynamics, which, in turn, deregulate cell division and potentially impair neuronal differentiation.

David MD, Petit D, Bertoglio J
The RhoGAP ARHGAP19 controls cytokinesis and chromosome segregation in T lymphocytes.
J Cell Sci. 2014; 127(Pt 2):400-10 [PubMed] Related Publications
Small GTP-binding proteins of the Rho family orchestrate the cytoskeleton remodelling events required for cell division. Guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs) promote cycling of Rho GTPases between the active GTP-bound and the inactive GDP-bound conformations. We report that ARHGAP19, a previously uncharacterised protein, is predominantly expressed in hematopoietic cells and has an essential role in the division of T lymphocytes. Overexpression of ARHGAP19 in lymphocytes delays cell elongation and cytokinesis. Conversely, silencing of ARHGAP19 or expression of a GAP-deficient mutant induces precocious mitotic cell elongation and cleavage furrow ingression, as well as excessive blebbing. In relation to these phenotypes, we show that ARHGAP19 acts as a GAP for RhoA, and controls recruitment of citron and myosin II to the plasma membrane of mitotic lymphocytes as well as Rock2-mediated phosphorylation of vimentin, which is crucial to maintain the stiffness and shape of lymphocytes. In addition to its effects on cell shape, silencing of ARHGAP19 in lymphocytes also impairs chromosome segregation.

Mertsch S, Thanos S
Opposing signaling of ROCK1 and ROCK2 determines the switching of substrate specificity and the mode of migration of glioblastoma cells.
Mol Neurobiol. 2014; 49(2):900-15 [PubMed] Free Access to Full Article Related Publications
Despite current advances in therapy, the prognosis of patients with glioblastoma has not improved sufficiently in recent decades. This is due mainly to the highly invasive capacity of glioma cells. Little is known about the mechanisms underlying this particular characteristic. While the Rho-kinase (ROCK)-dependent signaling pathways involved in glioma migration have yet to be determined, they show promise as one of the candidates in targeted glioblastoma therapy. There are two ROCK isoforms: ROCK1, which is upregulated in glioblastoma tissue compared to normal brain tissue, and ROCK2, which is also expressed in normal brain tissue. Blockage of both of these ROCK isoforms with pharmacologic inhibitors regulates the migration process. We examined the activities of ROCK1 and ROCK2 using knockdown cell lines and the newly developed stripe assay. Selective knockdown of either ROCK1 or ROCK2 exerted antidromic effects on glioma migration: while ROCK1 deletion altered the substrate-dependent migration, deletion of ROCK2 did not. Furthermore, ROCK1 knockdown reduced cell proliferation, whereas ROCK2 knockdown enhanced it. Along the signaling pathways, key regulators of the ROCK pathway are differentially affected by ROCK1 and ROCK2. These data suggest that the balanced activation of ROCKs is responsible for the substrate-specific migration and the proliferation of glioblastoma cells.

Peng F, Jiang J, Yu Y, et al.
Direct targeting of SUZ12/ROCK2 by miR-200b/c inhibits cholangiocarcinoma tumourigenesis and metastasis.
Br J Cancer. 2013; 109(12):3092-104 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The multidrug resistance and distant metastasis of cholangiocarcinoma result in high postoperative recurrence and low long-term survival rates. It has been demonstrated that the ectopic expression of miR-200 suppresses the multidrug resistance and metastasis of cancer. However, the expression and function of miR-200 in cholangiocarcinoma has not yet been described.
METHODS: In this study, we identified dysregulated microRNAs (miRNAs, miR) in cholangiocarcinoma tissue by microarray analysis, and subsequent real-time PCR and northern blot analyses validated the expression of candidate miR. We performed functional analyses and investigated the relationship between miR-200b/c expression and the properties of cholangiocarcinoma cells. A dual luciferase assay was applied to examine the effect of miRNAs on the 3'-UTR of target genes, and we demonstrated the function of the target gene by siRNA transfection identifying the downstream pathway via western blotting.
RESULTS: We found significantly downregulated expression of four miR-200 family members (miR-200a/b/c/429) and then confirmed that ectopic miR-200b/200c inhibits the migration and invasion of cholangiocarcinoma cells both in vitro and in vivo. We found that miR-200b/c influenced the tumourigenesis of cholangiocarcinoma cells including their tumour-initiating capacity, sphere formation, and drug resistance. We further found that miR-200b/c regulated migration and invasion capacities by directly targeting rho-kinase 2 and regulated tumorigenic properties by directly targeting SUZ12 (a subunit of a polycomb repressor complex).
CONCLUSION: Our study shows that miR-200b/c has a critical role in the regulation of the tumorigenic and metastatic capacity of cholangiocarcinoma and reveals the probable underlying mechanisms.

Zucchini C, Manara MC, Pinca RS, et al.
CD99 suppresses osteosarcoma cell migration through inhibition of ROCK2 activity.
Oncogene. 2014; 33(15):1912-21 [PubMed] Related Publications
CD99, a transmembrane protein encoded by MIC2 gene is involved in multiple cellular events including cell adhesion and migration, apoptosis, cell differentiation and regulation of protein trafficking either in physiological or pathological conditions. In osteosarcoma, CD99 is expressed at low levels and functions as a tumour suppressor. The full-length protein (CD99wt) and the short-form harbouring a deletion in the intracytoplasmic domain (CD99sh) have been associated with distinct functional outcomes with respect to tumour malignancy. In this study, we especially evaluated modulation of cell-cell contacts, reorganisation of the actin cytoskeleton and modulation of signalling pathways by comparing osteosarcoma cells characterised by different metastasis capabilities and CD99 expression, to identify molecular mechanisms responsible for metastasis. Our data indicate that forced expression of CD99wt induces recruitment of N-cadherin and β-catenin to adherens junctions. In addition, transfection of CD99wt inhibits the expression of several molecules crucial to the remodelling of the actin cytoskeleton, such as ACTR2, ARPC1A, Rho-associated, coiled-coil containing protein kinase 2 (ROCK2) as well as ezrin, an ezrin/radixin/moesin family member that has been clearly associated with tumour progression and metastatic spread in osteosarcoma. Functional studies point to ROCK2 as a crucial intracellular mediator regulating osteosarcoma migration. By maintaining c-Src in an inactive conformation, CD99wt inhibits ROCK2 signalling and this leads to ezrin decrease at cell membrane while N-cadherin and β-catenin translocate to the plasma membrane and function as main molecular bridges for actin cytoskeleton. Taken together, we propose that the re-expression of CD99wt, which is generally present in osteoblasts but lost in osteosarcoma, through inhibition of c-Src and ROCK2 activity, manages to increase contact strength and reactivate stop-migration signals that counteract the otherwise dominant promigratory action of ezrin in osteosarcoma cells.

Sari I, Berberoglu B, Ozkara E, et al.
Role of rho-kinase gene polymorphisms and protein expressions in colorectal cancer development.
Pathobiology. 2013; 80(3):138-45 [PubMed] Related Publications
OBJECTIVE: The aim of this study was to investigate a possible association between Rho-kinase (ROCK1 and ROCK2) gene polymorphisms and colorectal cancer (CRC) development.
METHODS: Eighty-five patients operated due to CRC and 178 healthy controls with similar age and sex were included to this study. Genomic DNA from the patients and the healthy control cases was analyzed by a BioMark 96.96 dynamic array system. The protein expressions of ROCK1, ROCK2 and p53 were determined by immunohistochemical staining.
RESULTS: There were significant associations between ROCK1 (rs73963110 and rs35996865) and ROCK2 gene polymorphisms (rs2290156, rs10178332, rs35768389, rs10929732 and rs34945852) with CRC development. However, no marked associations were found between ROCK2 gene rs965665, rs2230774, rs6755196 and rs1515219 polymorphisms and the risk of developing CRC. Rho-kinase and p53 immunohistochemical stainings were markedly elevated in the tumor tissue. There were significant correlations between vascular and perineural invasions with ROCK2 or p53 protein expressions.
CONCLUSIONS: These results are the first to demonstrate the contribution of Rho-kinase in CRC development in patients. Our data showed that the ROCK1 and ROCK2 genes might be a risk factor for CRC development and that genetic polymorphisms in these genes may modify individual susceptibility to CRC in the Turkish population.

Bozóky B, Savchenko A, Csermely P, et al.
Novel signatures of cancer-associated fibroblasts.
Int J Cancer. 2013; 133(2):286-93 [PubMed] Related Publications
Increasing evidence indicates the importance of the tumor microenvironment, in particular cancer-associated fibroblasts, in cancer development and progression. In our study, we developed a novel, visually based method to identify new immunohistochemical signatures of these fibroblasts. The method employed a protein list based on 759 protein products of genes identified by RNA profiling from our previous study, comparing fibroblasts with differential growth-modulating effect on human cancers cells, and their first neighbors in the human protein interactome. These 2,654 proteins were analyzed in the Human Protein Atlas online database by comparing their immunohistochemical expression patterns in normal versus tumor-associated fibroblasts. Twelve new proteins differentially expressed in cancer-associated fibroblasts were identified (DLG1, BHLHE40, ROCK2, RAB31, AZI2, PKM2, ARHGAP31, ARHGAP26, ITCH, EGLN1, RNF19A and PLOD2), four of them can be connected to the Rho kinase signaling pathway. They were further analyzed in several additional tumor stromata and revealed that the majority showed congruence among the different tumors. Many of them were also positive in normal myofibroblast-like cells. The new signatures can be useful in immunohistochemical analysis of different tumor stromata and may also give us an insight into the pathways activated in them in their true in vivo context. The method itself could be used for other similar analysis to identify proteins expressed in other cell types in tumors and their surrounding microenvironment.

Fabris S, Mosca L, Cutrona G, et al.
Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia.
Am J Hematol. 2013; 88(1):24-31 [PubMed] Related Publications
Recent studies have described chromosome 2p gain as a recurrent lesion in chronic lymphocytic leukemia (CLL). We investigated the 2p gain and its relationship with common prognostic biomarkers in a prospective series of 69 clinical monoclonal B-cell lymphocytosis (cMBL) and 218 early stage (Binet A) CLL patients. The 2p gain was detected by FISH in 17 patients (6%, 16 CLL, and 1 cMBL) and further characterized by single nucleotide polymorphism-array. Overall, unfavorable cytogenetic deletions, i.e., del(11)(q23) and del(17)(p13) (P = 0.002), were significantly more frequent in 2p gain cases, as well as unmutated status of IGHV (P < 1 × 10(-4) ) and CD38 (P < 1 × 10(-4) ) and ZAP-70 positive expression (P = 0.003). Furthermore, 2p gain patients had significantly higher utilization of stereotyped B-cell receptors compared with 2p negative patients (P = 0.009), and the incidence of stereotyped subset #1 in 2p gain patients was significantly higher than that found in the remaining CLLs (P = 0.031). Transcriptional profiling analysis identified several genes significantly upregulated in 2p gain CLLs, most of which mapped to 2p. Among these, NCOA1 and ROCK2 are known for their involvement in tumor progression in several human cancers, whereas among those located in different chromosomes, CAV1 at 7q31.1 has been recently identified to play a critical role in CLL progression. Thus, 2p gain can be present since the early stages of the disease, particularly in those cases characterized by other poor prognosis markers. The finding of genes upregulated in the cells with 2p gain provides new insights to define the pathogenic role of this lesion.

Vigil D, Kim TY, Plachco A, et al.
ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion.
Cancer Res. 2012; 72(20):5338-47 [PubMed] Free Access to Full Article Related Publications
Evidence is emerging that the closely related ROCK1 and ROCK2 serine/threonine kinases support the invasive and metastatic growth of a spectrum of human cancer types. Therefore, inhibitors of ROCK are under preclinical development. However, a key step in their development involves the identification of genetic biomarkers that will predict ROCK inhibitor antitumor activity. One identified mechanism for ROCK activation in cancer involves the loss of function of the DLC1 tumor suppressor gene, which encodes a GTPase activating protein (RhoGAP) for the RhoA and RhoC small GTPases. DLC-1 loss may lead to hyperactivation of RhoA/C and its downstream effectors, the ROCK kinases. We therefore determined whether loss of DLC-1 protein expression identifies non-small cell lung carcinoma (NSCLC) cell lines whose growth and invasion phenotypes are sensitive to ROCK inhibition. We identified and characterized a novel small molecule pharmacologic inhibitor of ROCK and additionally applied genetic approaches to impair ROCK1 and/or ROCK2 activity, and we determined that although NSCLC anchorage-dependent growth was ROCK-independent, both anchorage-independent growth and Matrigel invasion were ROCK-dependent. However, loss of DLC-1 expression did not correlate with ROCK activation or with OXA-06 sensitivity. Unexpectedly, suppression of ROCK1 or ROCK2 expression alone was sufficient to impair anchorage-independent growth, supporting their nonoverlapping roles in oncogenesis. Mechanistically, the block in anchorage-independent growth was associated with accumulation of cells in the G(0)-G(1) phase of the cell cycle, but not increased anoikis. We conclude that ROCK may be a useful therapeutic target for NSCLC.

Squadrito ML, Pucci F, Magri L, et al.
miR-511-3p modulates genetic programs of tumor-associated macrophages.
Cell Rep. 2012; 1(2):141-54 [PubMed] Related Publications
Expression of the mannose receptor (MRC1/CD206) identifies macrophage subtypes, such as alternatively activated macrophages (AAMs) and M2-polarized tumor-associated macrophages (TAMs), which are endowed with tissue-remodeling, proangiogenic, and protumoral activity. However, the significance of MRC1 expression for TAM's protumoral activity is unclear. Here, we describe and characterize miR-511-3p, an intronic microRNA (miRNA) encoded by both mouse and human MRC1 genes. By using sensitive miRNA reporter vectors, we demonstrate robust expression and bioactivity of miR-511-3p in MRC1(+) AAMs and TAMs. Unexpectedly, enforced expression of miR-511-3p tuned down the protumoral gene signature of MRC1(+) TAMs and inhibited tumor growth. Our findings suggest that transcriptional activation of Mrc1 in TAMs evokes a genetic program orchestrated by miR-511-3p, which limits rather than enhances their protumoral functions. Besides uncovering a role for MRC1 as gatekeeper of TAM's protumoral genetic programs, these observations suggest that endogenous miRNAs may operate to establish thresholds for inflammatory cell activation in tumors.

Liu T, Yu X, Li G, et al.
Rock2 regulates Cdc25A through ubiquitin proteasome system in hepatocellular carcinoma cells.
Exp Cell Res. 2012; 318(16):1994-2003 [PubMed] Related Publications
Rho-associated coiled-coil containing protein kinase 2 (Rock2) belongs to a family of serine/threonine kinases which are actived via interaction with Rho GTPases. Recently, overexpression of Rock2 has been demonstrated in human hepatocellular carcinoma (HCC), but the potential role of Rock2 in tumorigenesis remains unclear. Cdc25A acts as a key checkpoint during the G1/S phase and has also been found to be overexpressed in HCC. Here, we report that Rock2 regulates cell cycle progression via ubiquitination of Cdc25A in HCC. In HCC tissues, Rock2 and Cdc25A were aberrantly upregulated and revealed a significantly positive correlation. Knockdown of Rock2 inhibited HCC cell growth and promoted cell-cycle arrest at the G1/S phase via regulation of Cdc25A. When cells were exposed to DNA damage, Rock2 increased cell survival by regulating Cdc25A. Co-immunoprecipitation and immunofluorescence analyses indicated that Rock2 regulated Cdc25A via direct binding. Furthermore, knockdown of Rock2 activated Cdc25A ubiquitination and promoted its degradation. Our results defined a role for Rock2 in modulation of Cdc25A ubiquitination, indicating a novel mechanism of Cdc25A regulation and a potential function for Rock2 in the development of HCC.

Rana MK, Worthylake RA
Novel mechanism for negatively regulating Rho-kinase (ROCK) signaling through Coronin1B protein in neuregulin 1 (NRG-1)-induced tumor cell motility.
J Biol Chem. 2012; 287(26):21836-45 [PubMed] Free Access to Full Article Related Publications
Although many mechanisms that activate ROCK are known, corresponding negative regulatory mechanisms required for cytoskeletal plasticity are poorly understood. We have discovered that Coronin1B is a novel attenuator of ROCK signaling. We initially identified Coronin1A in a proteomics screen for ROCK2-binding proteins, and here we demonstrate that Coronin1A/B bind directly to ROCK2 through its PH (Pleckstrin Homology) domain. The consequence of the ROCK2-Coronin1B interaction was tested and revealed that increased expression of Coronin1B inhibited, whereas knockdown of Coronin1B stimulated, phosphorylation of the ROCK substrate myosin light chain phosphatase and subsequently, myosin light chain. Thus, Coronin1B is a previously unrecognized inhibitor of ROCK signaling to myosin. Furthermore, we found that the phosphatase Slingshot IL (SSH1L) was required for Coronin1B to inhibit ROCK signaling. To test the significance of this novel mechanism in tumor cell motility, we investigated its role in neuregulin 1 (NRG-1)-induced cell scattering. Importantly, we found that attenuation of the ROCK signaling by Coronin1B was required for NRG-1 stimulated scattering. Our data support a model in which Coronin1B fine-tunes ROCK signaling to modulate myosin activity, which is important for tumor cell motility.

Liu P, Morrison C, Wang L, et al.
Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing.
Carcinogenesis. 2012; 33(7):1270-6 [PubMed] Free Access to Full Article Related Publications
Lung cancer is the leading cause of cancer-related death, with non-small cell lung cancer (NSCLC) being the predominant form of the disease. Most lung cancer is caused by the accumulation of genomic alterations due to tobacco exposure. To uncover its mutational landscape, we performed whole-exome sequencing in 31 NSCLCs and their matched normal tissue samples. We identified both common and unique mutation spectra and pathway activation in lung adenocarcinomas and squamous cell carcinomas, two major histologies in NSCLC. In addition to identifying previously known lung cancer genes (TP53, KRAS, EGFR, CDKN2A and RB1), the analysis revealed many genes not previously implicated in this malignancy. Notably, a novel gene CSMD3 was identified as the second most frequently mutated gene (next to TP53) in lung cancer. We further demonstrated that loss of CSMD3 results in increased proliferation of airway epithelial cells. The study provides unprecedented insights into mutational processes, cellular pathways and gene networks associated with lung cancer. Of potential immediate clinical relevance, several highly mutated genes identified in our study are promising druggable targets in cancer therapy including ALK, CTNNA3, DCC, MLL3, PCDHIIX, PIK3C2B, PIK3CG and ROCK2.

Ohta T, Takahashi T, Shibuya T, et al.
Inhibition of the Rho/ROCK pathway enhances the efficacy of cisplatin through the blockage of hypoxia-inducible factor-1α in human ovarian cancer cells.
Cancer Biol Ther. 2012; 13(1):25-33 [PubMed] Related Publications
Rho, a Ras-related small GTPase, and Rho-associated coiled coil-containing protein kinase (Rho kinase, ROCK1 and ROCK2) are key regulators of focal adhesion, actomyosin contraction, and thus cell motility. Rho/ROCK kinases also play roles in proliferation, differentiation, apoptosis and oncogenic transformation. In the present study, we have shown that Rho/ROCK pathway inhibition by fasudil, an orally administered inhibitor of Rho kinases, enhanced cisplatin-induced growth inhibition and apoptosis in human ovarian cancer cell lines. Fasudil inhibited hypoxia inducible factor (HIF)-1α protein expression. Knockdown of RhoA, ROCK1 or ROCK2 also attenuated the expression of HIF-1α. Furthermore, knockdown of HIF-1α using small interfering RNA enhanced cisplatin-induced growth inhibition and apoptosis as did inhibition of the Rho/ROCK pathway by fasudil, the Rho/ROCK inhibitor Y27632, or by Rho/ROCK knockdown. Therefore, the Rho/ROCK pathway may modulate HIF-1α signal transduction and blockade of Rho/ROCK enhances the efficacy of cisplatin by inhibiting HIF-1α in ovarian cancer cells. Our findings suggested that the Rho/ROCK pathway may be a new target for molecular targeting therapies against ovarian cancer.

Upadhyaya M, Spurlock G, Thomas L, et al.
Microarray-based copy number analysis of neurofibromatosis type-1 (NF1)-associated malignant peripheral nerve sheath tumors reveals a role for Rho-GTPase pathway genes in NF1 tumorigenesis.
Hum Mutat. 2012; 33(4):763-76 [PubMed] Related Publications
Neurofibromatosis type-1 (NF1) is associated with the growth of benign and malignant tumors. Approximately 15% of NF1 patients develop malignant peripheral nerve sheath tumors (MPNSTs), underlining the need to identify specific diagnostic/prognostic biomarkers associated with MPNST development. The Affymetrix Genome-Wide Human single-nucleotide polymorphism (SNP) Array 6.0 was used to perform SNP genotyping and copy number alteration (CNA), loss-of-heterozygosity (LOH), and copy number neutral-LOH (CNN-LOH) analyses of DNA isolated from 15 MPNSTs, five benign plexiform neurofibromas (PNFs), and patient-matched lymphocyte DNAs. MPNSTs exhibited high-level CNN-LOH, with recurrent changes occurring in MPNSTs but not PNFs. CNN-LOH was evident in MPNSTs but occurred less frequently than genomic deletions. CNAs involving the ITGB8, PDGFA, Ras-related C3 botulinum toxin substrate 1 (RAC1) (7p21-p22), PDGFRL (8p22-p21.3), and matrix metallopeptidase 12 (MMP12) (11q22.3) genes were specific to MPNSTs. Pathway analysis revealed the MPNST-specific amplification of seven Rho-GTPase pathway genes and several cytoskeletal remodeling/cell adhesion genes. In knockdown experiments employing short-hairpin RAC1, ROCK2, PTK2, and LIMK1 RNAs to transfect both control and MPNST-derived cell lines, cell adhesion was significantly increased in the MPNST cell lines, whereas wound healing, cell migration, and invasiveness were reduced, consistent with a role for these Rho-GTPase pathway genes in MPNST development and metastasis. These results suggest new targets for therapeutic intervention in relation to MPNSTs.

Liu X, Wang C, Chen Z, et al.
MicroRNA-138 suppresses epithelial-mesenchymal transition in squamous cell carcinoma cell lines.
Biochem J. 2011; 440(1):23-31 [PubMed] Free Access to Full Article Related Publications
Down-regulation of miR-138 (microRNA-138) has been frequently observed in various cancers, including HNSCC (head and neck squamous cell carcinoma). Our previous studies suggest that down-regulation of miR-138 is associated with mesenchymal-like cell morphology and enhanced cell migration and invasion. In the present study, we demonstrated that these miR-138-induced changes were accompanied by marked reduction in E-cad (E-cadherin) expression and enhanced Vim (vimentin) expression, characteristics of EMT (epithelial-mesenchymal transition). On the basis of a combined experimental and bioinformatics analysis, we identified a number of miR-138 target genes that are associated with EMT, including VIM, ZEB2 (zinc finger E-box-binding homeobox 2) and EZH2 (enhancer of zeste homologue 2). Direct targeting of miR-138 to specific sequences located in the mRNAs of the VIM, ZEB2 and EZH2 genes was confirmed using luciferase reporter gene assays. Our functional analyses (knock-in and knock-down) demonstrated that miR-138 regulates the EMT via three distinct pathways: (i) direct targeting of VIM mRNA and controlling the expression of VIM at a post-transcriptional level, (ii) targeting the transcriptional repressors (ZEB2) which in turn regulating the transcription activity of the E-cad gene, and (iii) targeting the epigenetic regulator EZH2 which in turn modulates its gene silencing effects on the downstream genes including E-cad. These results, together with our previously observed miR-138 effects on cell migration and invasion through targeting RhoC (Rho-related GTP-binding protein C) and ROCK2 (Rho-associated, coiled-coil-containing protein kinase 2) concurrently, suggest that miR-138 is a multi-functional molecular regulator and plays major roles in EMT and in HNSCC progression.

Zheng F, Liao YJ, Cai MY, et al.
The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2.
Gut. 2012; 61(2):278-89 [PubMed] Related Publications
BACKGROUND: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-124) in hepatocellular carcinoma (HCC).
OBJECTIVE: To determine the status of miR-124 expression and its underlying mechanisms in the pathogenesis of HCC.
METHODS: The expression levels of miR-124 were first examined in HCC cell lines and tumour tissues by real-time PCR. The in vitro and in vivo functional effect of miR-124 was examined further. A luciferase reporter assay was conducted to confirm target associations.
RESULTS: The expression levels of miR-124 were frequently reduced in HCC cells and tissues, and low-level expression of miR-124 was significantly associated with a more aggressive and/or poor prognostic phenotype of patients with HCC (p<0.05). In HCC cell lines, stable overexpression of miR-124 was sufficient to inhibit cell motility and invasion in vitro, and suppress intrahepatic and pulmonary metastasis in vivo. In addition, ectopic overexpression of miR-124 in HCC cells inhibited epithelial-mesenchymal cell transition, formation of stress fibres, filopodia and lamellipodia. Further studies showed that miR-124 could directly target the 3'-untranslated region (3'-UTR) of both ROCK2 and EZH2 mRNAs, and suppress their mRNA and protein expressions. These findings suggest that miR-124 plays a critical role in regulating cytoskeletal events and epithelial-mesenchymal cell transition and, ultimately, inhibits the invasive and/or metastatic potential of HCC, probably by its direct target on ROCK2 and EZH2 genes. These results provide functional and mechanistic links between the tumour suppressor miRNA-124 and the two oncogenes ROCK2 and EZH2 on the aggressive nature of HCC.
CONCLUSION: These data highlight an important role for miR-124 in the regulation of invasion and metastasis in the molecular aetiology of HCC, and suggest a potential application of miR-124 in prognosis prediction and cancer treatment.

Wong CC, Wong CM, Tung EK, et al.
The microRNA miR-139 suppresses metastasis and progression of hepatocellular carcinoma by down-regulating Rho-kinase 2.
Gastroenterology. 2011; 140(1):322-31 [PubMed] Related Publications
BACKGROUND & AIMS: We investigated mechanisms of hepatocellular carcinoma (HCC) metastasis and identified an antimetastatic microRNA (miRNA), miR-139, that is down-regulated in human HCC samples.
METHODS: Effects of stable and transient expression of miRNA-139 and its inhibitors were studied in the human HCC cell lines SMMC-7721 and BEL7402; cells were analyzed for migration and invasion. Liver samples from patients with metastatic HCC were analyzed for levels of miRNA-139; data were compared with survival data using the Kaplan-Meier method and compared between groups by the log-rank test. Tumor formation and metastasis from human HCC MHCC97L cells that did or did not express miR-139 were analyzed in mice.
RESULTS: Down-regulation of miR-139 in HCC was associated significantly with poor prognosis of patients and features of metastatic tumors, including venous invasion, microsatellite formation, absence of tumor encapsulation, and reduced differentiation. miR-139 expression was reduced in metastatic HCC tumors compared with primary tumors. Overexpression of miR-139 in HCC cells significantly reduced cell migration and invasion in vitro and the incidence and severity of lung metastasis from orthotopic liver tumors in mice. miR-139 interacted with the 3' untranslated region of Rho-kinase 2 (ROCK2) and reduced its expression in HCC cells. Levels of miR-139 were correlated inversely with ROCK2 protein in human HCC samples. Overexpression of miR-139 did not inhibit HCC cell motility when ROCK2 was knocked down.
CONCLUSIONS: The microRNA miR-139 interacts with ROCK2 and reduces its expression in HCC cells. Down-regulation of miR-139 increased the invasive abilities of HCC cells in vitro and HCC metastasis in vivo. Expression of miR-139 is reduced in human metastatic HCC samples and correlates with prognosis.

Inaba N, Ishizawa S, Kimura M, et al.
Effect of inhibition of the ROCK isoform on RT2 malignant glioma cells.
Anticancer Res. 2010; 30(9):3509-14 [PubMed] Related Publications
BACKGROUND: Malignant glioma is one of the most intractable diseases in the human body. Rho-kinase (ROCK) is overexpressed and has been proposed as the main cause for the refractoriness of the disease. Since efficacious treatment is required, this study investigated the effect of inhibition of ROCK isoforms.
MATERIALS AND METHODS: The short hairpin RNA transcription vector was transfected into the RT2 rat glioma cell line and the characteristics of the cells were investigated. The effect of nimustine hydrochloride (ACNU) anti-neoplastic agent on cells was also measured.
RESULTS: Inhibition of ROCK isoforms did not alter cell growth. Cell cycle analysis revealed that ROCK1 down-regulation reduced the G(0) phase population and ROCK2 down-regulation reduced the G(2)/M phase population. When ROCK1-down-regulated cells were exposed to ACNU, they demonstrated susceptibility to the agent.
CONCLUSION: The roles of ROCK1 and ROCK2 may be different in glioma cells. Furthermore, the combination of ROCK1 down-regulation and an anti-neoplastic agent may be useful for the therapy of malignant glioma.

Kalender ME, Demiryürek S, Oztuzcu S, et al.
Association between the Thr431Asn polymorphism of the ROCK2 gene and risk of developing metastases of breast cancer.
Oncol Res. 2010; 18(11-12):583-91 [PubMed] Related Publications
The objective of this study was to analyze the genotype distributions and allele frequencies for ROCK2 Thr431Asn and Arg83Lys polymorphisms among breast cancer patients. In this case-control study, 223 patients with breast cancer were recruited and divided into two groups according to metastases (n = 128) and without metastases (n = 95). Genomic DNA from the patients and the control cases (n = 150) was analyzed by real-time PCR using a Light-Cycler. Neither genotype distributions nor the allele frequencies for the Arg83Lys polymorphism showed a significant difference between the groups. Although no marked changes were observed with nonmetastatic group, a statistically significant association was found between the control and metastatic group for the Thr431Asn polymorphism. Although homozygous carriers of the Thr431Thr genotype were more frequent, heterozygous carriers of the Thr431Asn genotype were less frequent among the metastatic patients than among controls. There was also an increase in Thr431 allele (60.5% in patients vs. 51.7% in controls) and decrease in Asn431 allele frequencies (48.3% in control vs. 39.5% in metastatic patients) in metastatic groups (p = 0.036). Our results demonstrate that Thr431Asn polymorphism of the ROCK2 gene could be a risk factor for the metastases of the breast cancer, and may help in predicting the prognosis.

Jiang L, Liu X, Kolokythas A, et al.
Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma.
Int J Cancer. 2010; 127(3):505-12 [PubMed] Free Access to Full Article Related Publications
Tumor metastasis is the dominant cause of death in cancer patients, including patients with oral tongue squamous cell carcinoma (TSCC). Previously, we reported that reduced miR-138 level is correlated with enhanced metastatic potential in TSCC cells. Here, we demonstrate that miR-138 suppresses TSCC cell migration and invasion by regulating 2 key genes in the Rho GTPase signaling pathway: RhoC and ROCK2. Direct targeting of miR-138 to specific sequences located in the 3'-untranslated regions of both RhoC and ROCK2 mRNAs was confirmed using luciferase reporter gene assays. Ectopic transfection of miR-138 reduced the expression of both RhoC and ROCK2 in TSCC cells. These reduced expressions, in consequence, led to the reorganization of the stress fibers and the subsequent cell morphology change to a round bleb-like shape as well as the suppression of cell migration and invasion. In contrast, knockdown of miR-138 in TSCC cells enhanced the expression of RhoC and ROCK2, which resulted in an altered, elongated cell morphology, enhanced cell stress fiber formation and accelerated cell migration and invasion. Taken together, our results suggest that miR-138 plays an important role in TSCC cell migration and invasion by concurrently targeting RhoC and ROCK2, and miR-138 may serve as a novel therapeutic target for TSCC patients at risk of metastatic disease.

Borikova AL, Dibble CF, Sciaky N, et al.
Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype.
J Biol Chem. 2010; 285(16):11760-4 [PubMed] Free Access to Full Article Related Publications
Cerebral cavernous malformations (CCM) are vascular lesions causing seizures and stroke. Mutations causing inactivation of one of three genes, ccm1, -2, or -3, are sufficient to induce vascular endothelial cell defects resulting in CCM. Herein, we show that loss of expression of the CCM1, -2, or -3 proteins causes a marked increase in expression of the GTPase RhoA. Live cell imaging with a RhoA-specific biosensor demonstrates increased RhoA activity with loss of CCM1, -2, or -3, with an especially pronounced RhoA activation in both the cytosol and the nucleus with loss of CCM1 expression. Increased RhoA activation was associated with Rho kinase-dependent phosphorylation of myosin light chain 2. Functionally, loss of CCM1, -2, or -3 inhibited endothelial cell vessel-like tube formation and extracellular matrix invasion, each of which is rescued by chemical inhibition or short hairpin RNA knockdown of Rho kinase. The findings, for the first time, define a signaling network for CCM1, -2, and -3 in CCM pathology, whereby loss of CCM1, -2, or -3 protein expression results in increased RhoA activity, with the activation of Rho kinase responsible for endothelial cell dysregulation. The results define Rho kinase as a therapeutic target to rescue endothelial cells from loss of CCM protein function.

Lochhead PA, Wickman G, Mezna M, Olson MF
Activating ROCK1 somatic mutations in human cancer.
Oncogene. 2010; 29(17):2591-8 [PubMed] Related Publications
Cancer cells acquire characteristics of deregulated growth, survival and increased metastatic potential. Genetic mutations that provide a selective advantage by promoting these characteristics have been termed 'drivers,' whereas mutations that do not contribute to disease initiation/progression are termed 'passengers.' The advent of high-throughput methodologies has facilitated large-scale screening of cancer genomes and the subsequent identification of novel somatic mutations. Although this approach has generated valuable results, the data remain incomplete until the functional consequences of these mutations are determined to differentiate potential drivers from passengers. ROCK1 is an essential effector kinase downstream of Rho GTPases, an important pathway involved in cell migration. The Cancer Genome Project identified three nonsynonymous mutations in the ROCK1 gene. We now show that these somatic ROCK1 mutations lead to elevated kinase activity and drive actin cytoskeleton rearrangements that promote increased motility and decreased adhesion, characteristics of cancer progression. Mapping of the kinase-interacting regions of the carboxy terminus combined with structural modeling provides an insight into how these mutations likely affect the regulation of ROCK1. Consistent with the frequency of ROCK1 mutations in human cancer, these results support the conclusion that there is selective pressure for the ROCK1 gene to acquire 'driver' mutations that result in kinase activation.

Wong CC, Wong CM, Tung EK, et al.
Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion.
Hepatology. 2009; 49(5):1583-94 [PubMed] Related Publications
UNLABELLED: Deregulation of Rho family small guanosine triphosphatases has been implicated in human carcinogenesis. Rho-kinases are downstream effectors of Rho guanosine triphosphatases in the regulation of cytoskeletal reorganization and cell motility. However, their functions in human cancers remain elusive. In this study, we aimed to investigate the role of Rho-kinases in hepatocellular carcinoma (HCC) tumor progression and invasion. We first examined the expression of the two Rho-kinases (ROCK1 and ROCK2) in human HCC, and found that ROCK2 was frequently overexpressed in primary HCCs (22/41 [53.66%]). Clinico-pathological analysis revealed that overexpression of ROCK2 was significantly associated with the presence of tumor microsatellite formation (P = 0.005), suggesting that deregulation of ROCK2 may contribute to the intrahepatic metastasis of HCC. Consistently, we demonstrated that stable overexpression of ROCK2 significantly enhanced cell motility and invasiveness in HCC cells. Conversely, stable knockdown of ROCK2 by short hairpin RNA approach remarkably reduced HCC cell migration and invasion. Moreover, orthotopic liver xenograft models provided further support that stable knockdown of ROCK2 suppressed HCC invasion in vivo. Stable knockdown of ROCK2 in HCC cells significantly inhibited Golgi reorientation, myosin phosphatase phosphorylation, and formations of stress fibers, filopodia, and lamellipodia; these molecular and cellular events are crucial for cell motility and cancer invasion.
CONCLUSION: Our results indicate that ROCK2 was overexpressed in human HCCs, and this overexpression was associated with a more aggressive biological behavior. Our findings also demonstrate that ROCK2 played a significant role in regulating cytoskeletal events and contributed to the invasion of HCC.

Maschietto M, de Camargo B, Brentani H, et al.
Molecular profiling of isolated histological components of wilms tumor implicates a common role for the Wnt signaling pathway in kidney and tumor development.
Oncology. 2008; 75(1-2):81-91 [PubMed] Related Publications
Wilms tumor (WT), a tumor composed of three histological components - blastema (BL), epithelia and stroma - is considered an appropriate model system to study the biological relationship between differentiation and tumorigenesis. To investigate molecular associations between nephrogenesis and WT, the gene expression pattern of individual cellular components was analyzed, using a customized platform containing 4,608 genes. WT gene expression patterns were compared to genes regulated during kidney differentiation. BL had a closer gene expression pattern to the earliest stage of normal renal development. The BL gene expression pattern was compared to that of fetal kidney (FK) and also between FK and mature kidney, identifying 25 common deregulated genes supposedly involved in the earliest events of WT onset. Quantitative RT-PCR was performed, confirming the difference in expression levels for 13 of 16 genes (81.2%) in the initial set and 8 of 13 (61.5%) in an independent set of samples. An overrepresentation of genes belonging to the Wnt signaling pathway was identified, namely PLCG2, ROCK2 and adenomatous polyposis coli (APC). Activation of the Wnt pathway was confirmed in WT, using APC at protein level and PLCG2 at mRNA and protein level. APC showed positive nuclear immunostaining for an independent set of WT samples, similarly to the FK in week 11. Lack of PLCG2 expression was confirmed in WT and in FK until week 18. Taken together, these results provided molecular evidence of the recapitulation of the embryonic kidney by WT as well as involvement of the Wnt pathway in the earliest events of WT onset.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ROCK2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 25 June, 2015     Cancer Genetics Web, Established 1999