Gene Summary

Gene:TFPI2; tissue factor pathway inhibitor 2
Aliases: PP5, REF1, TFPI-2
Summary:This gene encodes a member of the Kunitz-type serine proteinase inhibitor family. The protein can inhibit a variety of serine proteases including factor VIIa/tissue factor, factor Xa, plasmin, trypsin, chymotryspin and plasma kallikrein. This gene has been identified as a tumor suppressor gene in several types of cancer. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Aug 2012]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tissue factor pathway inhibitor 2
Source:NCBIAccessed: 15 March, 2017


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 15 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 15 March, 2017 using data from PubMed, MeSH and CancerIndex

Latest Publications: TFPI2 (cancer-related)

Ma K, Cao B, Guo M
The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma.
Clin Epigenetics. 2016; 8:43 [PubMed] Free Access to Full Article Related Publications
Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.

Nadir Y, Brenner B
Heparanase procoagulant activity in cancer progression.
Thromb Res. 2016; 140 Suppl 1:S44-8 [PubMed] Related Publications
Heparanase is an endo-β-D-glucuronidase that is capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans on cell surfaces and the extracellular matrix. This activity is strongly implicated in tumor metastasis and angiogenesis. We have earlier demonstrated that apart of its well characterized enzymatic activity, heparanase may also affect the hemostatic system in a non-enzymatic manner. We showed that heparanase up-regulated the expression of the blood coagulation initiator-tissue factor (TF) and interacted with the tissue factor pathway inhibitor (TFPI) on the cell surface membrane of endothelial and tumor cells, leading to dissociation of TFPI and resulting in increased cell surface coagulation activity. Moreover, we demonstrated that heparanase directly enhanced TF activity, which led to increased factor Xa production and subsequent activation of the coagulation system. In patients with cancer, increased heparanase procoagulant activity appeared to be a potential predictor of survival. We have also shown that JAK-2 is involved in heparanase up-regulation via the erythropoietin receptor, a finding that may point to a new mechanism of thrombosis in JAK-2 positive patents with essential thrombocytosis. Recently, we found that the solvent accessible surface of TFPI-2 first Kunitz domain had a role in TF/heparanase complex inhibition. Peptides derived from TFPI-2 inhibitory site were shown to reduce coagulation activation induced by heparanase and to attenuate sepsis severity and tumor growth in a mouse model, without predisposing to significant bleeding tendency. These data imply that inhibition of heparanase procoagulant domain is potentially a good target for sepsis and cancer therapy.

Liu T, Zhang X, Ke B, et al.
F-127-PEI co-delivering docetaxel and TFPI-2 plasmid for nasopharyngeal cancer therapy.
Mater Sci Eng C Mater Biol Appl. 2016; 61:269-77 [PubMed] Related Publications
The co-delivery of drug and gene has become the primary strategy in cancer therapy. However, to construct one safe co-delivering system with higher drug loading and gene transfection efficiency for cancer therapy is still challenging. Herein, a novel degradable nanocarriers were synthesized and characterized in this study, which was composed of polyethylenimine (PEI)-linked PEO-PPO-PEO (Pluronic F127), called F127-PEI. Then the nanocarrier was used for hydrophobic docetaxel (DOC) and functional gene (TFPI-2 plasmid) co-delivery to treat nasopharyngeal cancer (NPC). The results indicated that F127-PEI nanocarriers had higher DOC loading amount and possessed good gene delivery effect in vitro. For co-delivery analysis, the obtained F127-PEI/DOC/TFPI-2 complexes could induce a more significant apoptosis than DOC or TFPI-2 alone, and decreased invasive capacity of NPC HNE-1 cells more obviously. Moreover, the F127-PEI copolymer exhibited better blood compatibility and lower cytotoxicity compared to PEI-25k by the hemolysis and MTT assays, which suggests a promising potential for NPC therapy.

Huisman C, van der Wijst MG, Schokker M, et al.
Re-expression of Selected Epigenetically Silenced Candidate Tumor Suppressor Genes in Cervical Cancer by TET2-directed Demethylation.
Mol Ther. 2016; 24(3):536-47 [PubMed] Free Access to Full Article Related Publications
DNA hypermethylation is extensively explored as therapeutic target for gene expression modulation in cancer. Here, we re-activated hypermethylated candidate tumor suppressor genes (TSGs) (C13ORF18, CCNA1, TFPI2, and Maspin) by TET2-induced demethylation in cervical cancer cell lines. To redirect TET2 to hypermethylated TSGs, we engineered zinc finger proteins (ZFPs), which were first fused to the transcriptional activator VP64 to validate effective gene re-expression and confirm TSG function. ChIP-Seq not only revealed enriched binding of ZFPs to their intended sequence, but also considerable off-target binding, especially at promoter regions. Nevertheless, results obtained by targeted re-expression using ZFP-VP64 constructs were in line with cDNA overexpression; both revealed strong growth inhibition for C13ORF18 and TFPI2, but not for CCNA1 and Maspin. To explore effectivity of locus-targeted demethylation, ZFP-TET2 fusions were constructed which efficiently demethylated genes with subsequent gene re-activation. Moreover, targeting TET2 to TFPI2 and C13ORF18, but not CCNA1, significantly decreased cell growth, viability, and colony formation in cervical cancer cells compared to a catalytically inactive mutant of TET2. These data underline that effective re-activation of hypermethylated genes can be achieved through targeted DNA demethylation by TET2, which can assist in realizing sustained re-expression of genes of interest.

Koroknai V, Ecsedi S, Vízkeleti L, et al.
Genomic profiling of invasive melanoma cell lines by array comparative genomic hybridization.
Melanoma Res. 2016; 26(2):100-7 [PubMed] Related Publications
Malignant melanoma is one of the most aggressive human cancers. Invasion of cells is the first step in metastasis, resulting in cell migration through tissue compartments. We aimed to evaluate genomic alterations specifically associated with the invasive characteristics of melanoma cells. Matrigel invasion assays were used to determine the invasive properties of cell lines that originated from primary melanomas. Array comparative genomic hybridization analyses were carried out to define the chromosome copy number alterations (CNAs). Several recurrent CNAs were identified by array comparative genomic hybridization that affected melanoma-related genes. Invasive primary cell lines showed high frequencies of CNAs, including the loss of 7q and gain of 12q chromosomal regions targeting PTPN12, ADAM22, FZD1, TFPI2, GNG11, COL1A2, SMURF1, VGF, RELN and GLIPR1 genes. Gain of the GDNF (5p13.1), GPAA1, PLEC and SHARPIN (8q24.3) genes was significantly more frequent in invasive cell lines compared with the noninvasive ones. Importantly, copy number gains of these genes were also found in cell lines that originated from metastases, suggesting their role in melanoma metastasis formation. The present study describes genomic differences between invasive and noninvasive melanoma cell lines that may contribute toward the aggressive phenotype of human melanoma cells.

Wu L, Zhang J, Wu H, Han E
DNA-PKcs interference sensitizes colorectal cancer cells to a mTOR kinase inhibitor WAY-600.
Biochem Biophys Res Commun. 2015; 466(3):547-53 [PubMed] Related Publications
Colorectal cancer (CRC) is one leading contributor of cancer-related mortalities. Mammalian target of rapamycin (mTOR), existing in two complexes (mTORC1/2), is a valuable target for possible CRC interference. In the current study, we showed that WAY-600, a potent mTOR inhibitor, only exerted moderate activity against primary and HT-29 CRC cells. We proposed that DNA-dependent protein kinase catalytic subunit (DNA-PKcs) could be the major resistance factor of WAY-600 in CRC cells. DNA-PKcs inhibitors, including NU7026 and NU7441, dramatically enhanced WAY-600-induced cytotoxic and pro-apoptotic effect against the CRC cells. Further, WAY-600-exerted cytotoxicity was significantly increased in DNA-PKcs-silenced (by targeted siRNA/shRNA) CRC cells, but was attenuated with DNA-PKcs overexpression. Our evidence suggested that DNA-PKcs Thr-2609 phosphorylation might be critical for WAY-600's resistance. Mutation of this site through introducing a dominant negative DNA-PKcs (T2609A) dramatically potentiated WAY-600's sensitivity in HT-29 cells. Meanwhile, overexpression of protein phosphatase 5 (PP5) dephosphorylated DNA-PKcs at Thr-2609, and significantly increased WAY-600's sensitivity in HT-29 cells. In vivo, WAY-600-induced anti-HT-29 xenograft growth activity was significantly potentiated with NU7026 co-administration. These results suggest that DNA-PKcs could be the major resistance factor of WAY-600 in CRC cells.

Ghilardi C, Silini A, Figini S, et al.
Trypsinogen 4 boosts tumor endothelial cells migration through proteolysis of tissue factor pathway inhibitor-2.
Oncotarget. 2015; 6(29):28389-400 [PubMed] Free Access to Full Article Related Publications
Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.

Sun FK, Sun Q, Fan YC, et al.
Methylation of tissue factor pathway inhibitor 2 as a prognostic biomarker for hepatocellular carcinoma after hepatectomy.
J Gastroenterol Hepatol. 2016; 31(2):484-92 [PubMed] Related Publications
BACKGROUND AND AIM: Methylation of tissue factor pathway inhibitor 2 (TFPI2) gene has been detected in hepatocellular carcinoma (HCC). However, the clinicopathologcial significance and prognostic value of TFPI2 methylation in HCC remains largely unknown. This study aimed to investigate the prognostic value of TFPI2 methylation in HCC after hepatectomy.
METHODS: Methylation status of TFPI2 gene was examined in 178 surgical specimens of HCC and 20 normal liver samples using methylation-specific polymerase chain reaction.
RESULTS: Methylation of TFPI2 gene was detected in 44.9% (80 of 178) of primary HCC samples, 10.7% (19 of 178) of the corresponding non-tumorous liver samples, and 5.0% (1/20) of the normal liver samples. The mRNA concentrations of TFPI2 in primary HCC tissues were significantly lower than those in corresponding non-tumorous liver tissues and those in normal liver tissues. TFPI2 methylation was significantly associated with higher TNM stage. Patients with TFPI2 methylation demonstrated a significantly poorer prognosis than those without TFPI2 methylation for both overall survival and disease-free survival (P < 0.001, respectively). Multivariate analyses confirmed that TFPI2 methylation was an independent prognostic factor for both overall survival (P = 0.002) and disease-free survival (P = 0.000) in HCC after hepatectomy. Moreover, TFPI2 methylation was found to be the only independent predictor for early tumor recurrence of HCC after resection based on multivariate analysis (P = 0.002).
CONCLUSIONS: Methylation of TFPI2 predicts high risk of advanced tumor stage, early tumor recurrence, and poor prognosis, and it could be a potential prognostic biomarker in patients with HCC after hepatectomy.

Kanda M, Shimizu D, Fujii T, et al.
Function and diagnostic value of Anosmin-1 in gastric cancer progression.
Int J Cancer. 2016; 138(3):721-30 [PubMed] Related Publications
Gastric cancer (GC) is a major global health problem that urgently requires novel molecular biomarkers for patient stratification as well as therapeutic targets. Anosmin-1 (ANOS1) gene encodes a cell adhesion molecule that plays diverse roles in multiple malignancies. We performed global expression profiling of GC cell lines and small interfering RNA (siRNA) experiments to determine the effect of ANOS1 expression on phenotype. We evaluated the association of ANOS1 mRNA and protein levels in patients' tissue and sera with clinicopathological factors of GC subtypes. Differential expression of ANOS1 mRNA by GC cell lines correlated positively to levels of ITGAV, FOXC2 and NODAL mRNAs and inversely with those of TFPI2. Inhibiting ANOS1 expression decreased the proliferation, invasion and migration of GC cells. The mean level of ANOS1 mRNA was significantly higher in 237 GC tissues compared with the corresponding noncancerous adjacent tissues. Elevated ANOS1 levels associated significantly with the phenotypes of GC, shorter disease-free and overall survival. ANOS1 expression was a more significant prognostic marker for diffuse and distal nondiffuse GC. ANOS1 concentrations in sera increased sequentially in sera of healthy subjects, localized GC and disseminated GCs. Prognosis was worse for patients with preoperative serum ANOS1 ≥ 600 pg/ml compared with those with <600 pg/ml. ANOS1 may represent a biomarker for GC phenotypes and as a target for therapy.

Ratajczak T
Steroid Receptor-Associated Immunophilins: Candidates for Diverse Drug-Targeting Approaches in Disease.
Curr Mol Pharmacol. 2015; 9(1):66-95 [PubMed] Related Publications
The steroid receptor-associated TPR cochaperones FKBP51, FKBP52, CyP40 and PP5 have non-redundant roles in steroid receptor function that impact steroid hormone-binding affinity, nucleocyoplasmic shuttling and transcriptional activation of target genes in a tissue-specific manner. Aberrant expression of these TPR immunophilins has the potential to cause steroid-based diseases, including breast and prostate cancer, diabetes and metabolic disorders, male and female infertility and major depressive and neurodegenerative disorders. This review summaries the function of these proteins as cochaperones in steroid receptor-Hsp90 complexes and elaborates on their role in alternative, Hsp90-dependent and -independent signalling pathways not involving steroid receptors. The review also extensively covers current knowledge of the link between the steroid receptor-associated immunophilins and human disease. An improved understanding of their mechanisms of action has revealed opportunities for molecular therapies to enhance or inhibit cellular processes under their control that contribute both to human health and disease.

Dong Y, Tan Q, Tao L, et al.
Hypermethylation of TFPI2 correlates with cervical cancer incidence in the Uygur and Han populations of Xinjiang, China.
Int J Clin Exp Pathol. 2015; 8(2):1844-54 [PubMed] Free Access to Full Article Related Publications
Tissue factor pathway inhibitor 2 (TFPI2) is a Kunitz-type serine proteinase inhibitor, which plays an important role in the etiology of human malignancies. DNA methylation is a common epigenetic modification of the genome that is involved in regulating many cellular processes. In addition to human papilloma virus (HPV) infection, DNA methylation may play a role in the carcinogenesis of cervical cancer. Methylation of 22 CpG sites in the promoter region of the TFPI2 gene was detected by MassARRAY spectrometry and a gene mass spectrogram was drawn using MALDI-TOF MS. HPV16 was detected by PCR. We show that aberrant methylation of TFPI2 is present in a higher proportion of invasive cervical carcinoma (ICC) clinical samples as compared to normal cervical samples in Uygur and Han. Across the four pathologic lesions of the progression of cervical cancer, ICC showed the highest level of aberrant methylation, and with a stronger correlation between CpG site and lesion grade in Uygur than in Han. Moreover, a difference in TFPI2 methylation between Uygur patients positive and negative for HPV16 infection was observed at CpG_6 (P = 0.028) and CpG_15 (P = 0.007). Altogether, these results indicate that DNA methylation of TFPI2 may play an important role in the carcinogenesis of cervical cancer and that the differential methylation of TFPI2 may at least partially explain the disparity in cervical cancer incidence between Uygur and Han women.

Gerecke C, Scholtka B, Löwenstein Y, et al.
Hypermethylation of ITGA4, TFPI2 and VIMENTIN promoters is increased in inflamed colon tissue: putative risk markers for colitis-associated cancer.
J Cancer Res Clin Oncol. 2015; 141(12):2097-107 [PubMed] Related Publications
PURPOSE: Epigenetic silencing of tumor suppressor genes is involved in early transforming events and has a high impact on colorectal carcinogenesis. Likewise, colon cancers that derive from chronically inflamed bowel diseases frequently exhibit epigenetic changes. But there is little data about epigenetic aberrations causing colorectal cancer in chronically inflamed tissue. The aim of the present study was to evaluate the aberrant gain of methylation in the gene promoters of VIM, TFPI2 and ITGA4 as putative early markers in the development from inflamed tissue via precancerous lesions toward colorectal cancer.
METHODS: Initial screening of different cancer cell lines by using methylation-specific PCR revealed a putative colon cancer-specific methylation pattern. Additionally, a demethylation assay was performed to investigate the methylation-dependent gene silencing of ITGA4. The candidate markers were analyzed in colonic tissue specimens from patients with colorectal cancer (n = 15), adenomas (n = 76), serrated lesions (n = 13), chronic inflammation (n = 10) and normal mucosal samples (n = 9).
RESULTS: A high methylation frequency of VIM (55.6 %) was observed in normal colon tissue, whereas ITGA4 and TFPI2 were completely unmethylated in controls. A significant gain of methylation frequency with progression of disease as well as an age-dependent effect was detectable for TFPI2. ITGA4 methylation frequency was high in precancerous and cancerous tissues as well as in inflammatory bowel diseases (IBD).
CONCLUSION: The already established methylation marker VIM does not permit a specific and sensitive discrimination of healthy and neoplastic tissue. The methylation markers ITGA4 and TFPI2 seem to be suitable risk markers for inflammation-associated colon cancer.

Wang B, Yu L, Yang GZ, et al.
Application of multiplex nested methylated specific PCR in early diagnosis of epithelial ovarian cancer.
Asian Pac J Cancer Prev. 2015; 16(7):3003-7 [PubMed] Related Publications
OBJECTIVE: To explore the application of multiplex nested methylated specific polymerase chain reaction (PCR) in the early diagnosis of epithelial ovarian carcinoma (EOC).
MATERIALS AND METHODS: Serum and fresh tissue samples were collected from 114 EOC patients. RUNX3, TFPI2 and OPCML served as target genes. Methylation levels of tissues were assessed by multiplex nested methylated specific PCR, the results being compared with those for carcinoma antigen 125 (CA125).
RESULTS: The serum free deoxyribose nucleic acid (DNA) methylation spectrum of EOC patients was completely contained in the DNA spectrum of cancer tissues, providing an accurate reflection of tumor DNA methylation conditions. Serum levels of CA125 and free DNA methylation in the EOC group were evidently higher than those in benign lesion and control groups (p<0.05). Patients with early EOC had markedly lower serum CA125 than those with advanced EOC (p<0.05), but there was no significant difference in free DNA methylation (p>0.05). The sensitivity, specificity and positive predicative value (PPV) of multiplex nested methylated specific PCR were significantly higher for detection of all patients and those with early EOC than those for CA125 (p<0.05). In the detection of patients with advanced EOC, the PPV of CA125 detection was obviously lower than that of multiplex nested methylated specific PCR (p>0.05), but there was no significant difference in sensitivity (p>0.05).
CONCLUSIONS: Serum free DNA methylation can be used as a biological marker for EOC and multiplex nested methylated specific PCR should be considered for early diagnosis since it can accurately determine tumor methylation conditions.

Zhi X, Zhang H, He C, et al.
Serine/Threonine Protein Phosphatase-5 Accelerates Cell Growth and Migration in Human Glioma.
Cell Mol Neurobiol. 2015; 35(5):669-77 [PubMed] Related Publications
Glioma is the most common type of primary central nervous system tumor. Ser/Thr protein phosphatase 5 (PP5) has been shown to regulate multiple signaling cascades that suppress growth and facilitate apoptosis in several human cancer cells. However, the role of PP5 in human gliomas remains unclear. Herein, the relationship between PP5 expression and glioma cell growth was investigated, and the therapeutic value of PP5 in glioma was further evaluated. We employed a short hairpin RNA targeting PPP5C gene to knock down PP5 expression in human glioma cell lines U251 and U373. Depletion of PPP5C via RNAi remarkably inhibited glioma cell proliferation and colony formation, and arrested cell cycle in the G0/G1 phase. Moreover, knockdown of PP5 markedly suppressed glioma cell migration, as determined by Transwell assay. Our findings suggest that PPP5C could be essential for glioma cell growth and serve as a promising therapeutic target in human gliomas.

Li YF, Hsiao YH, Lai YH, et al.
DNA methylation profiles and biomarkers of oral squamous cell carcinoma.
Epigenetics. 2015; 10(3):229-36 [PubMed] Free Access to Full Article Related Publications
Oral squamous cell carcinoma (OSCC) constitutes >90% of oral cancers and is the sixth most common malignancy among males worldwide and the fourth leading cause of death due to cancer among males in Taiwan. However, most patients do not receive a diagnosis of OSCC until the late stages, which have a lower survival rate. The use of molecular marker analysis to identify early-stage OSCC would permit optimal timing for treatments and consequently prolong survival. The aim of this study was to identify biomarkers of OSCC using the Illumina GoldenGate Methylation Cancer Panel, which comprised a total of 1,505 CpG sites covering 807 genes. Samples of buccal mucosa resected from 40 OSCC patients and normal tissue samples obtained from 15 patients (normal mucosa from OSCC patients or from patients undergoing surgery unrelated to OSCC) were analyzed. Fms-related tyrosine kinase 4 (FLT4) methylation exhibited a perfect specificity for detecting OSCC, with an area under the receiver operating characteristic curve of 0.91 for both all-stage and early-stage OSCC. Methylation of 7 genes (ASCL1, FGF3, FLT4, GAS7, KDR, TERT, and TFPI2) constitutes the top-20 panels for detecting OSCC. The top-20 panels for detecting early-stage OSCC contain 8 genes: ADCYAP1, EPHA7, FLT4, GSTM2, KDR, MT1A, NPY, and TFPI2. FLT4 RNA expression and methylation level were validated using RT-PCR and a pyrosequencing methylation assay. The median level of FLT4 expression was 2.14-fold for normal relative to OSCC tissue samples (P < 0.0001). Among the 8 pyrosequenced FLT4 CpG sites, methylation level was much higher in the OSCC samples. In conclusion, methylation statuses of selected genes, and especially FLT4, KDR, and TFPI2, might be of great potential as biomarkers for early detection of buccal OSCC.

Hamamoto J, Soejima K, Naoki K, et al.
Methylation-induced downregulation of TFPI-2 causes TMPRSS4 overexpression and contributes to oncogenesis in a subset of non-small-cell lung carcinoma.
Cancer Sci. 2015; 106(1):34-42 [PubMed] Free Access to Full Article Related Publications
We identified transmembrane protease, serine 4 (TMPRSS4) as a putative, druggable target by screening surgically resected samples from 90 Japanese non-small-cell lung cancer (NSCLC) patients using cDNA microarray. TMPRSS4 has two druggable domains and was upregulated in 94.5% of the lung cancer specimens. Interestingly, we found that TMPRSS4 expression was associated with tissue factor pathway inhibitor 2 (TFPI-2) expression in these clinical samples. In contrast to TMPRSS4, TFPI-2 expression was downregulated in NSCLC samples. The in vitro induction of TFPI-2 in lung cancer cell lines decreased the expression of TMPRSS4 mRNA levels. Reporter assay showed that TFPI-2 inhibited transcription of TMPRSS4, although partially. Knockdown of TMPRSS4 reduced the proliferation rate in several lung cancer cell lines. When lung cancer cell lines were treated with 5-aza-2'-deoxycytidine or trichostatin A, their proliferation rate and TMPRSS4 mRNA expression levels were also reduced through the upregulation of TFPI-2 by decreasing its methylation in vitro. The TFPI-2 methylation level in the low TMPRSS4 group appeared to be significantly low in NSCLC samples (P = 0.02). We found a novel molecular mechanism that TFPI-2 negatively regulates cell growth by inhibiting transcription of TMPRSS4. We suggest that TMPRSS4 is upregulated by silencing of TFPI-2 through aberrant DNA methylation and contributes to oncogenesis in NSCLC.

Yang S, Lai Y, Xiao L, et al.
Susceptibility and REF1 gene polymorphism towards colorectal cancer.
Cell Biochem Biophys. 2015; 71(2):977-82 [PubMed] Related Publications
Published data on the relation between REF1 polymorphism and colorectal cancer risk showed inconclusive results. The aim of this study was to derive a comprehensive estimation of the association. Data on association between REF1 polymorphism and colorectal cancer risk were summarized. The association was estimated by calculating an odds ratio (OR) with corresponding 95 % confidence interval (95 % CI) with the fixed effects model when P > 0.1 (from heterogeneity test) or with the random effects model when P < 0.1. No significant association was revealed in any genetic model assumed for the overall analysis (OR = 1.03, 95 % CI = 0.81-1.32 for Glu/Glu vs. Asp/Asp; OR = 1.05, 95 % CI = 0.96-1.15 for Glu/Glu + Asp/Glu vs. Asp/Asp; OR = 0.97, 95 % CI = 0.76-1.23 for Glu/Glu vs. Asp/Glu + Asp/Asp; OR = 1.03, 95 % CI = 0.92-1.16 for Glu vs. Asp; OR = 1.09, 95 % CI = 0.93-1.27 for Asp/Glu vs. Asp/Asp). In Caucasian population, nor did we find a significant association. This research indicates that REF1 polymorphism is unlikely to be associated with colorectal cancer risk.

Wang J, Zhu J, Dong M, et al.
Inhibition of protein phosphatase 5 (PP5) suppresses survival and growth of colorectal cancer cells.
Biotechnol Appl Biochem. 2015 Sep-Oct; 62(5):621-7 [PubMed] Related Publications
Protein phosphatase 5 (PP5) is a unique member of the protein phosphatases family that functions in multiple signaling pathways involved in DNA damage, cell cycle control, cell growth, and apoptosis. Recent evidence indicated that PP5 may play a role in cancer progression. In this study, we aimed to examine the biological effect of PP5 on cell growth and apoptosis in human colorectal cancer (CRC). We first knocked down PP5 expression in RKO cells via a short hairpin RNA containing lentivirus system. Then, methylthiazoletetrazolium assay, colony formation assay, and flow cytometry analysis were performed. The proliferation and colony formation ability of RKO cells were remarkably suppressed in PP5-silenced groups, as compared with control groups. Moreover, downregulation of PP5 resulted in a significant G0/G1 phase cell cycle arrest and an induction of apoptosis. In all, these results demonstrated the importance of PP5 in CRC cell growth, and it might be used as a potential therapeutic target for the treatment of CRC.

Lai YH, He RY, Chou JL, et al.
Promoter hypermethylation and silencing of tissue factor pathway inhibitor-2 in oral squamous cell carcinoma.
J Transl Med. 2014; 12:237 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The treatment of oral squamous cell carcinoma (OSCC) following early detection is associated with good outcomes. Therefore, the survival and prognosis of OSCC patients could be hugely improved by identifying reliable biomarkers for the early diagnosis of the disease. Our previous methylation microarray analysis results have suggested that the gene encoding tissue factor pathway inhibitor-2 (TFPI-2) is a potential clinical predictor as well as a key regulator involved in OSCC malignancy.
METHODS: Methylation of the TFPI-2 promoter in oral tissue specimens was evaluated by bisulfite sequencing assay, quantitative methylation-specific PCR, and pyrosequencing assay. The differences in methylation levels among the groups were compared using the Mann-Whitney U test. The area under the receiver operating characteristic curve (AUROC) was used to evaluate the discrimination ability for detecting OSCC. Cellular TFPI-2 expression was analyzed by quantitative reverse-transcription PCR before and after treatment with 5'-aza-2'-deoxycytidine and trichostatin A, to confirm whether TFPI-2 was epigenetically silenced in OSCC cells. We investigated whether TFPI-2 plays a role as a tumor suppressor by establishing TFPI-2-overexpressing OSCC cells and subjecting them to in vitro cellular proliferation, migration, and invasion assays, as well as an in vivo metastasis assay.
RESULTS: TFPI-2 was hypermethylated in OSCC tissues versus normal oral tissues (P < 0.0001), with AUROC = 0.91, when using a pyrosequencing assay to quantify the methylation level. TFPI-2 silencing in OSCC was regulated by both DNA methylation and chromatin histone modification. Restoration of TFPI-2 counteracted the invasiveness of OSCC by inhibiting the enzymatic activity of matrix metalloproteinase-2, and consequently interfered with OSCC metastasis in vivo.
CONCLUSIONS: Our data suggest strongly that TFPI-2 is a down-regulated tumor suppressor gene in OSCC, probably involving epigenetic silencing mechanisms. The loss of TFPI-2 expression is a key event for oral tumorigenesis, especially in the process of tumor metastasis.

Mino K, Nishimura S, Ninomiya S, et al.
Regulation of tissue factor pathway inhibitor-2 (TFPI-2) expression by lysine-specific demethylase 1 and 2 (LSD1 and LSD2).
Biosci Biotechnol Biochem. 2014; 78(6):1010-7 [PubMed] Related Publications
Tissue factor pathway inhibitor-2 (TFPI-2) is a major inhibitor of extracellular matrix degradation. Decreases in TFPI-2 contribute to malignant tumor cell production, and TFPI-2 is a presumed tumor suppressor. TFPI-2 gene transcription is regulated by two epigenetic mechanisms: DNA methylation of the promoter and K4 methylation of histone 3 (H3). Lysine-specific demethylase 1 (LSD1) and LSD2 demethylate H3K4me2/1. LSD1 has been implicated in TFPI-2 regulation through both epigenetic mechanisms, but the involvement of LSD2 remains unknown. We prepared a monoclonal anti-LSD2 antibody that clearly distinguishes LSD2 from LSD1. Knockdown of LSD1 or LSD2 by siRNAs increased TFPI-2 protein and mRNA. Simultaneous knockdown of both LSD1 and LSD2 showed additive effects. Bisulfite sequencing revealed that CpG sites in the TFPI-2 promoter region were unmethylated. These results indicate that LSD2 also contributes to TFPI-2 regulation through histone modification, and that further studies of the involvement of LSD2 in tumor malignancy are warranted.

Liu Z, Zhang J, Gao Y, et al.
Large-scale characterization of DNA methylation changes in human gastric carcinomas with and without metastasis.
Clin Cancer Res. 2014; 20(17):4598-612 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Metastasis is the leading cause of death for gastric carcinoma. An epigenetic biomarker panel for predicting gastric carcinoma metastasis could have significant clinical impact on the care of patients with gastric carcinoma. The main purpose of this study is to characterize the methylation differences between gastric carcinomas with and without metastasis.
EXPERIMENTAL DESIGN: Genome-wide DNA methylation profiles between 4 metastatic and 4 nonmetastatic gastric carcinomas and their surgical margins (SM) were analyzed using methylated-CpG island amplification with microarray. The methylation states of 73 candidate genes were further analyzed in patients with gastric carcinoma in a discovery cohort (n=108) using denatured high performance liquid chromatography, bisulfite-sequencing, and MethyLight. The predictive values of potential metastasis-methylation biomarkers were validated in cohorts of patients with gastric carcinoma in China (n=330), Japan (n=129), and Korea (n=153).
RESULTS: The gastric carcinoma genome showed significantly higher proportions of hypomethylation in the promoter and exon-1 regions, as well as increased hypermethylation of intragenic fragments when compared with SMs. Significant differential methylation was validated in the CpG islands of 15 genes (P<0.05) and confirmed using bisulfite sequencing. These genes included BMP3, BNIP3, CDKN2A, ECEL1, ELK1, GFRA1, HOXD10, KCNH1, PSMD10, PTPRT, SIGIRR, SRF, TBX5, TFPI2, and ZNF382. Methylation changes of GFRA1, SRF, and ZNF382 resulted in up- or downregulation of their transcription. Most importantly, the prevalence of GFRA1, SRF, and ZNF382 methylation alterations was consistently and coordinately associated with gastric carcinoma metastasis and the patients' overall survival throughout discovery and validation cohorts in China, Japan, and Korea.
CONCLUSION: Methylation changes of GFRA1, SRF, and ZNF382 may be a potential biomarker set for prediction of gastric carcinoma metastasis.

Ferraresso S, Bresolin S, Aricò A, et al.
Epigenetic silencing of TFPI-2 in canine diffuse large B-cell lymphoma.
PLoS One. 2014; 9(4):e92707 [PubMed] Free Access to Full Article Related Publications
Epigenetic modifications are important early events during carcinogenesis. In particular, hypermethylation of CpG islands in the promoter region of tumor suppressor genes is a well-known mechanism of gene silencing that contributes to cancer development and progression. Tissue factor pathway inhibitor 2 (TFPI-2) is a tumor suppressor involved in invasiveness inhibition. Although TFPI-2 transcriptional silencing, through promoter hypermethylation, has been widely reported in several human malignancies, it has never been explored in lymphoma. In the present study TFPI-2 methylation and gene expression have been investigated in canine Diffuse Large B-cell lymphomas (cDLBCL). The methylation level of 23 CpGs located within the TFPI-2 promoter was investigated by bisulfite-specific PCR and next generation amplicon deep sequencing (GS Junior 454, Roche) in 22 cDLBCLs and 9 controls. For the same specimens, TFPI-2 gene expression was assessed by means of Real-time RT-PCR. Sequence analysis clearly demonstrated that TFPI2 is frequently hypermethylated in cDLBCL. Hypermethylation of the TFPI-2 promoter was found in 77% of DLBCLs (17 out of 22) and in one normal lymph node. Globally, dogs with DLBCL showed a mean methylation level significantly increased compared to controls (p<0.01) and analysis of hypermethylation by site identified 19 loci out of 23 (82%) with mean methylation levels from 2- to 120-fold higher in cDLBCL. Gene expression analysis confirmed a significant down-regulation of TFPI-2 (p<0.05) in DLBCLs compared with normal lymph nodes, suggesting that TFPI-2 hypermethylation negatively regulates its transcription. In addition, a significant positive correlation (p<0.01) was found between TFPI-2 methylation levels and age providing the first indication of age-associated epigenetic modifications in canine DLBCL. To conclude, our findings demonstrated that epigenetic dysregulation of TFPI-2, leading to its reduced expression, is frequently detected in canine DLBCL. In the next future, the aberrant TFPI-2 promoter hypermethylation may be considered in association with prognosis and therapy.

Zhu B, Zhang P, Zeng P, et al.
Tissue factor pathway inhibitor-2 silencing promotes hepatocellular carcinoma cell invasion in vitro.
Anat Rec (Hoboken). 2013; 296(11):1708-16 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death in the world and metastasis is an essential aspect of HCC progression. Tissue factor pathway inhibitor-2 (TFPI-2) has been implicated as a potential suppressor gene to regulate tumor invasion and metastasis. In this study, we silenced TFPI-2 in the HCC cell line MHCC97-L and evaluated the role of TFPI-2 in cell invasion and its impact on gene expression. We showed in this study that stable TFPI-2 downregulation in MHCC97-L cells resulted in increased cell adhesion and invasion. We also showed that mRNA and protein expression levels of MMP-1/3, CD44, and ICAM-1 were increased, while those of MMP-2/9 were not changed by TFPI-2 silencing. Furthermore, silencing of TFPI-2 caused increased Akt phosphorylation level and NF-κB transcription in MHCC97-L cells. In conclusion, this study confirms that TFPI-2 downregulation can contribute to tumor invasion of HCC cells through alteration in the expression of metastasis-related genes.

De Summa S, Pinto R, Pilato B, et al.
Expression of base excision repair key factors and miR17 in familial and sporadic breast cancer.
Cell Death Dis. 2014; 5:e1076 [PubMed] Free Access to Full Article Related Publications
Understanding of BRCA1/2 interaction with the base excision repair (BER) pathway could improve therapy based on 'synthetic lethality', whose effectiveness is based on homologous recombination deficiency in cells lacking functional BRCA genes. However, poly (ADP-ribose) polymerase (PARP) inhibitors failed in some patients and for this reason we explored BER key enzyme expression. In this study, the expression of BER enzymes (redox factor 1/apurinic-apyrimidinic endonuclease 1 (REF1/APEX1), NTH endonuclease III-like 1 (NTHL1), 8-oxoguanine DNA glycosylase (OGG1), PARP1) and of the scaffold protein XRCC1 (X-ray repair complementing defective repair in Chinese hamster cells 1) were investigated in familial (BRCA-related and not) and sporadic breast cancer cases. Furthermore, miR17 expression was measured because of its role in the epigenetic regulation of BRCA1. Gene expression was evaluated in BRCA1-mutated cell lines, SUM149PT and SUM1315MO2, and in a BRCA1-proficient triple-negative MDA-MB-231 cell line. A cohort of 27 familial and 16 sporadic breast cancer patients was then examined to confirm results obtained from the cell line model. APEX1/REF1 was found to be upregulated in familial BRCA-wild-type and sporadic cases, indicating this enzyme as a potential therapeutic target. Furthermore, XRCC1 was overexpressed in BRCAX patients; consequently, we suggest to test the effectiveness of inhibitors targeting two different BER components in preclinical studies. XRCC1, which is also involved in the non-homologous end-joining pathway, was found to be downregulated in BRCA2-related patients concurrently with no change in PARP1 expression. Interestingly, no difference in PARP1 and miR17 expression was found in BRCA-related and sporadic breast cancer cases. PARP1 and miR17 could therefore be further investigated as molecular biomarkers of 'BRCAness' phenotype, indicating patients which could really benefit from PARP inhibitor therapies.

Zerrouqi A, Pyrzynska B, Brat DJ, Van Meir EG
P14ARF suppresses tumor-induced thrombosis by regulating the tissue factor pathway.
Cancer Res. 2014; 74(5):1371-8 [PubMed] Free Access to Full Article Related Publications
How necrotic areas develop in tumors is incompletely understood but can impact progression. Recent findings suggest that the formation of vascular microthrombi contributes to tumor necrosis, prompting investigation of coagulation cascades. Here, we report that loss of tumor suppressor P14ARF can contribute to activating the clotting cascade in glioblastoma. P14ARF transcriptionally upregulated TFPI2, a Kunitz-type serine protease in the tissue factor pathway that inhibits the initiation of thrombosis reactions. P14ARF activation in tumor cells delayed their ability to activate plasma clotting. Mechanistically, P14ARF activated the TFPI2 promoter in a p53-independent manner that relied upon c-JUN, SP1, and JNK activity. Taken together, our results identify the critical signaling pathways activated by P14ARF to prevent vascular microthrombosis triggered by glioma cells. Stimulation of this pathway might be used as a therapeutic strategy to reduce aggressive phenotypes associated with necrotic tumors, including glioblastoma.

Katayama K, Yamaguchi M, Noguchi K, Sugimoto Y
Protein phosphatase complex PP5/PPP2R3C dephosphorylates P-glycoprotein/ABCB1 and down-regulates the expression and function.
Cancer Lett. 2014; 345(1):124-31 [PubMed] Related Publications
P-glycoprotein (P-gp)/ABCB1 is a key molecule of multidrug resistance in cancer. Protein phosphatase (PP) 2A, regulatory subunit B, gamma (PPP2R3C), which is a regulatory subunit of PP2A and PP5, was identified as a binding candidate to P-gp. Immunoprecipitation-western blotting revealed that PP5 and PPP2R3C were coprecipitated with P-gp, while PP2A was not. PP5/PPP2R3C dephosphorylated protein kinase A/protein kinase C-phosphorylation of P-gp. Knockdown of PP5 and/or PPP2R3C increased P-gp expression and lowered the sensitivity to vincristine and doxorubicin. Consequently, our results indicate that PP5/PPP2R3C negatively regulates P-gp expression and function.

Dong YQ, Liang JS, Zhu SB, et al.
Effect of 5-aza-2'-deoxycytidine on cell proliferation of non- small cell lung cancer cell line A549 cells and expression of the TFPI-2 gene.
Asian Pac J Cancer Prev. 2013; 14(7):4421-6 [PubMed] Related Publications
OBJECTIVE: The present study employed 5-aza-2'-deoxycytidine (5-Aza-CdR) to treat non-small cell lung cancer (NSCLC) cell line A549 to investigate the effects on proliferation and expression of the TFPI-2 gene.
METHODS: Proliferation was assessed by MTT assay after A549 cells were treated with 0, 1, 5, 10 μmol/L 5-Aza-CdR, a specific demethylating agent, for 24 ,48 and 72h. At the last time point cells were also analyzed by flow cytometry (FCM) to identify any change in their cell cycle profiles. Methylation-specific polymerase chain reaction (MSPCR), real time polymerase chain reaction(real-time PCR) and western blotting were carried out to determine TFPI-2 gene methylation status, mRNA expression and protein expression.
RESULTS: MTT assay showed that the growth of A549 cells which were treated with 5-Aza-CdR was significantly suppressed as compared with the control group (0 μmol/L 5-Aza-CdR). After treatment with 0, 1, 5, 10 μmol/L 5-Aza-CdR for 72h, FCM showed their proportion in G0/G1 was 69.7±0.99%, 76.1±0.83%, 83.8±0.35%, 95.5±0.55% respectively (P<0.05), and the proportion in S was 29.8±0.43%, 23.7±0.96%, 15.7±0.75%, 1.73±0.45%, respectively (P<0.05), suggesting 5-Aza-CdR treatment induced G0/G1 phase arrest. MSPCR showed that hypermethylation in the promoter region of TFPI-2 gene was detected in control group (0 μmol/L 5-Aza-CdR), and demethylation appeared after treatment with 1, 5, 10 μmol/L 5-Aza-CdR for 72h. Real-time PCR showed that the expression levels of TFPI-2 gene mRNA were 1±0, 1.49±0.14, 1.86±0.09 and 5.80±0.15 (P<0.05) respectively. Western blotting analysis showed the relative expression levels of TFPI-2 protein were 0.12±0.01, 0.23±0.02, 0.31±0.02, 0.62±0.03 (P<0.05). TFPI-2 protein expression in A549 cells was gradually increased significantly with increase in the 5-Aza-CdR concentration.
CONCLUSIONS: TFPI-2 gene promoter methylation results in the loss of TFPI-2 mRNA and protein expression in the non-small cell lung cancer cell line A549, and 5-Aza-CdR treatment could induce the demethylation of TFPI-2 gene promoter and restore TFPI-2 gene expression. These findings provide theoretic evidence for clinical treatment of advanced non-small cell lung cancer with the demethylation agent 5-Aza-CdR. TFPI-2 may be one molecular marker for effective treatment of advanced non-small cell lung cancer with 5-Aza-CdR.

Ashktorab H, Rahi H, Wansley D, et al.
Toward a comprehensive and systematic methylome signature in colorectal cancers.
Epigenetics. 2013; 8(8):807-15 [PubMed] Free Access to Full Article Related Publications
CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approach). Pyrosequencing was performed for the validation of nine genes. A meta-analysis was used to identify CIMP and non-CIMP markers that were hypermethylated in CRC but did not yet make it to the CIMP genes' list. Our 1st approach for array data analysis demonstrated the limitations in selecting genes for further validation, highlighting the need for the 2nd bioinformatics approach to adequately select genes with differential aberrant methylation. A more comprehensive list, which included non-CIMP genes, such as APC, EVL, CD109, PTEN, TWIST1, DCC, PTPRD, SFRP1, ICAM5, RASSF1A, EYA4, 30ST2, LAMA1, KCNQ5, ADHEF1, and TFPI2, was established. Array data are useful to categorize and cluster colonic lesions based on their global methylation profiles; however, its usefulness in identifying robust methylation markers is limited and rely on the data analysis method. We have identified 16 non-CIMP-panel genes for which we provide rationale for inclusion in a more comprehensive characterization of CIMP+ CRCs. The identification of a definitive list for methylome specific genes in CRC will contribute to better clinical management of CRC patients.

Schmidt J, Weijdegård B, Mikkelsen AL, et al.
Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women.
Mol Hum Reprod. 2014; 20(1):49-58 [PubMed] Related Publications
Polycystic ovary syndrome (PCOS) is the most common female endocrine disorder. Ovarian changes in PCOS women are well characterized by ultrasound. However, the ovarian pathophysiology is not fully understood. The aim of this study was to characterize the expression, in both the central ovarian stroma and in granulosa cells (GCs), of a number of genes, including several inflammation-related genes, which have been hypothesized to be involved in the pathophysiology of PCOS. Biopsies of the central ovarian stroma were obtained from PCOS women (Rotterdam criteria) and from normally ovulating women in follicular phase. GCs were retrieved from PCOS-women and non-PCOS women, undergoing in vitro maturation. The expressions of 57 genes were analyzed by quantitative-PCR using a low-density-gene array. The main outcome measures were over-expression or under-expression of the specific genes. The results showed that in the central stroma of PCOS ovaries, five inflammation-related genes (CCL2, IL1R1, IL8, NOS2, TIMP1), the leukocyte marker CD45, the inflammation-related transcription factor RUNX2 and the growth factor AREG were under-expressed. The growth factor DUSP12 and the coagulation factor TFPI2 were over-expressed. In the GC of PCOS, all of the differentially expressed genes were over-expressed; the inflammation-related IL1B, IL8, LIF, NOS2 and PTGS2, the coagulation-related F3 and THBS1, the growth factors BMP6 and DUSP12, the permeability-related AQ3 and the growth-arrest-related GADD45A. In conclusion, the results indicate major alterations in the local ovarian immune system of PCOS ovaries. This may have implications for the PCOS-related defects in the inflammation-like ovulatory process and for the susceptibility to acquire the inflammatory state of ovarian hyperstimulation syndrome.

Jacobs DI, Mao Y, Fu A, et al.
Dysregulated methylation at imprinted genes in prostate tumor tissue detected by methylation microarray.
BMC Urol. 2013; 13:37 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Imprinting is an important epigenetic regulator of gene expression that is often disrupted in cancer. While loss of imprinting (LOI) has been reported for two genes in prostate cancer (IGF2 and TFPI2), disease-related changes in methylation across all imprinted gene regions has not been investigated.
METHODS: Using an Illumina Infinium Methylation Assay, we analyzed methylation of 396 CpG sites in the promoter regions of 56 genes in a pooled sample of 12 pairs of prostate tumor and adjacent normal tissue. Selected LOI identified from the array was validated using the Sequenom EpiTYPER assay for individual samples and further confirmed by expression data from publicly available datasets.
RESULTS: Methylation significantly increased in 52 sites and significantly decreased in 17 sites across 28 unique genes (P < 0.05), and the strongest evidence for loss of imprinting was demonstrated in tumor suppressor genes DLK1, PLAGL1, SLC22A18, TP73, and WT1. Differential expression of these five genes in prostate tumor versus normal tissue using array data from a publicly available database were consistent with the observed LOI patterns, and WT1 hypermethylation was confirmed using quantitative DNA methylation analysis.
CONCLUSIONS: Together, these findings suggest a more widespread dysregulation of genetic imprinting in prostate cancer than previously reported and warrant further investigation.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TFPI2, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 15 March, 2017     Cancer Genetics Web, Established 1999