Gene Summary

Gene:TM4SF1; transmembrane 4 L six family member 1
Aliases: L6, H-L6, M3S1, TAAL6
Summary:The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the presence of four hydrophobic domains. The proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility. This encoded protein is a cell surface antigen and is highly expressed in different carcinomas. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:transmembrane 4 L6 family member 1
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TM4SF1 (cancer-related)

Harris RM, Williams TD, Waring RH, Hodges NJ
Molecular basis of carcinogenicity of tungsten alloy particles.
Toxicol Appl Pharmacol. 2015; 283(3):223-33 [PubMed] Related Publications
The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91-6-3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91-6-3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91-6-3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91-6-3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91-6-3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97-2-1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97-2-1 elicited similar responses to WNC 91-6-3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes.

Lin CI, Merley A, Sciuto TE, et al.
TM4SF1: a new vascular therapeutic target in cancer.
Angiogenesis. 2014; 17(4):897-907 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
Transmembrane-4 L-six family member-1 (TM4SF1) is a small plasma membrane glycoprotein that regulates cell motility and proliferation. TM4SF1 is an attractive cancer target because of its high expression in both tumor cells and on the vascular endothelial cells lining tumor blood vessels. We generated mouse monoclonal antibodies against human TM4SF1 in order to evaluate their therapeutic potential; 13 of the antibodies we generated reacted with extracellular loop-2 (EL2), TM4SF1's larger extracellular, lumen-facing domain. However, none of these antibodies reacted with mouse TM4SF1, likely because the EL2 of mouse TM4SF1 differs significantly from that of its human counterpart. Therefore, to test our antibodies in vivo, we employed an established model of engineered human vessels in which human endothelial colony-forming cells (ECFC) and human mesenchymal stem cells (MSC) are incorporated into Matrigel plugs that are implanted subcutaneously in immunodeficient nude mice. We modified the original protocol by (1) preculturing human ECFC on laminin, fibronectin, and collagen-coated plates, and (2) increasing the ECFC/MSC ratio. These modifications significantly increased the human vascular network in Matrigel implants. Two injections of one of our anti-TM4SF1 EL2 monoclonal antibodies, 8G4, effectively eliminated the human vascular component present in these plugs; they also abrogated human PC3 prostate cancer cells that were incorporated into the ECFC/MSC Matrigel mix. Together, these studies provide a mouse model for assessing tumor xenografts that are supplied by a human vascular network and demonstrate that anti-TM4SF1 antibodies such as 8G4 hold promise for cancer therapy.

Xu L, Li Q, Xu D, et al.
hsa-miR-141 downregulates TM4SF1 to inhibit pancreatic cancer cell invasion and migration.
Int J Oncol. 2014; 44(2):459-66 [PubMed] Related Publications
Expression of the transmembrane-4-L-six-family-1 (TM4SF1) is high in human pancreatic cancer cells, but the underlying mechanism remains unclear. In this study, we aimed to identify and characterize microRNAs that regulate TM4SF1 expression in PC cells. Western blot analysis and quantitative polymerase chain reaction were used to detect TM4SF1 and hsa-miR-141 levels in four PC cell lines. SW1990 and BxPc-3 cells were transfected with the inhibitor miR-141, the inhibitor negative control, the miR-141 mimic and the mimic negative control; and cell invasion, migration, proliferation, cell cycle progression and apoptosis were detected by Transwell, MTT and flow cytometry assays, respectively. The miR-141 levels negatively correlated with the TM4SF1 protein levels in PC cells. The TM4SF1 protein levels were lower in the 141M group but higher in the 141I group, although the TM4SF1 mRNA levels had no significant changes, compared to the negative controls. Luciferase assays demonstrated that hsa-miR-141 directly targeted the 3'-untranslated region of the TM4SF1 gene. In addition, miR-141 downregulated TM4SF1 expression to inhibit invasion and migration of PC cells but had no effects on cell proliferation, cell cycle progression or apoptosis. TM4SF1 is a direct target of miR-141. Our findings that TM4SF1 expression was inhibited by miR-141 provide new insights into the oncogenic mechanism of TM4SF1 and suggest that miR-141 represents a novel molecular target for PC therapy.

Hammoudi A, Song F, Reed KR, et al.
Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).
Biochem Biophys Res Commun. 2013; 440(3):364-70 [PubMed] Related Publications
Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC.

Sengupta JN, Pochiraju S, Pochiraju S, et al.
MicroRNA-mediated GABA Aα-1 receptor subunit down-regulation in adult spinal cord following neonatal cystitis-induced chronic visceral pain in rats.
Pain. 2013; 154(1):59-70 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
The nociceptive transmission under pathological chronic pain conditions involves transcriptional and/or translational alteration in spinal neurotransmitters, receptor expressions, and modification of neuronal functions. Studies indicate the involvement of microRNA (miRNA) - mediated transcriptional deregulation in the pathophysiology of acute and chronic pain. In the present study, we tested the hypothesis that long-term cross-organ colonic hypersensitivity in neonatal zymosan-induced cystitis is due to miRNA-mediated posttranscriptional suppression of the developing spinal GABAergic system. Cystitis was produced by intravesicular injection of zymosan (1% in saline) into the bladder during postnatal (P) days P14 through P16 and spinal dorsal horns (L6-S1) were collected either on P60 (unchallenged groups) or on P30 after a zymosan re-challenge on P29 (re-challenged groups). miRNA arrays and real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed significant, but differential, up-regulation of mature miR-181a in the L6-S1 spinal dorsal horns from zymosan-treated rats compared with saline-treated controls in both the unchallenged and re-challenged groups. The target gene analysis demonstrated multiple complementary binding sites in miR-181a for GABA(A) receptor subunit GABA(Aα-1) gene with a miRSVR score of -1.83. An increase in miR-181a concomitantly resulted in significant down-regulation of GABA(Aα-1) receptor subunit gene and protein expression in adult spinal cords from rats with neonatal cystitis. Intrathecal administration of the GABA(A) receptor agonist muscimol failed to attenuate the viscero-motor response (VMR) to colon distension in rats with neonatal cystitis, whereas in adult zymosan-treated rats the drug produced significant decrease in VMR. These results support an integral role for miRNA-mediated transcriptional deregulation of the GABAergic system in neonatal cystitis-induced chronic pelvic pain.

Tu SH, Huang HI, Lin SI, et al.
A novel HLA-A2-restricted CTL epitope of tumor-associated antigen L6 can inhibit tumor growth in vivo.
J Immunother. 2012; 35(3):235-44 [PubMed] Related Publications
Vaccines utilizing cytotoxic T lymphocyte (CTL) epitopes are promising for the treatment of cancer and chronic infectious diseases. Tumor-associated antigen L6 (TAL6) is overexpressed in some epithelial cancer cells. In this report, we detected TAL6 expression in breast cancer tissue using quantitative reverse-transcriptase-polymerase chain reaction. We found that >80% of breast tumor tissue highly expressed TAL6 compared with adjacent normal breast tissue. To identify CTL epitopes from TAL6, we synthesized 18 peptides for HLA-A2-binding assay based on the MHC-binding motif using 4 computer prediction programs. Positive binders identified by ELISA were immunized in HLA-A2 transgenic (A2 Tg) mice. Two peptides, peptide 2 and peptide 5, induced T-cell responses in A2 Tg mice. To confirm whether these peptides could be processed and presented to induce T-cell responses in vivo, A2 Tg mice were immunized with plasmid DNA encoding TAL6. We found that both peptides 2 and 5 stimulated splenocytes from TAL6-immunized mice to secrete interferon-γ. However, only peptide 5 could induce expression of the cytolytic molecule CD107a on CD8+ T cells after immunization. Furthermore, peptide 5-immunized A2 Tg mice could inhibit the growth of TAL6-positive tumors (EL4/TAL6/HLA-A2) in A2 Tg mice but not in wild-type mice. These results demonstrate that the TAL6-derived CTL epitope could induce HLA-A2-restricted immunity against TAL6-expressing tumor cells.

Huang YK, Fan XG, Qiu F, Wang ZM
Genomics of hepatitis B virus-related hepatocellular carcinoma and adjacent noncancerous tissues with cDNA microarray.
Chin Med J (Engl). 2011; 124(13):2057-64 [PubMed] Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is a common primary cancer frequently associated with hepatitis B virus (HBV) infection. However, whether these identified genes are particularly associated with HBV-related HCC remains unknown. The aim of this study was to investigate the differential gene expression between HBV-related HCC tissues and adjacent noncancerous tissues.
METHODS: cDNA microarray was used to detect the differential gene expression profile in the HBV-related HCC tissues and adjacent noncancerous tissues, and reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the differential expression of candidate genes obtained from cDNA microarray experiment.
RESULTS: In this study, 1369 genes or expressed sequence tags (ESTs) including 121 genes or ESTs with at least two-fold expression alterations between cancerous and noncancerous tissues were identified. Special AT-rich sequence binding protein 1 (SATB-1) expression was positive in 73% (16/22) of cancerous tissues and negative (0/22) in all noncancerous tissues of HBV-related HCC patients. Transmembrane 4 superfamily member 1 (TM4SF-1) expression was positive in 86% (19/22) of cancerous tissues and negative (0/22) in all noncancerous tissues. Suppression of tumorigenicity 14 (ST-14) expression was positive in 73% (16/22) of noncancerous tissues in patients with HBV-related HCC and negative in all HCC tissues (0/22).
CONCLUSION: This study provided the gene expression profile of HBV-related HCC and presented differential expression patterns of SATB-1, TM4SF-1 and ST-14 between cancerous and noncancerous tissues in patients with HBV-related HCC.

Chen XJ, Duan FD, Zhang HH, et al.
Sodium selenite-induced apoptosis mediated by ROS attack in human osteosarcoma U2OS cells.
Biol Trace Elem Res. 2012; 145(1):1-9 [PubMed] Related Publications
Sodium selenite (Na(2)SeO(3), SSE) is an inorganic Se compound that is widely used in cancer chemoprevention studies. SSE has been shown to have anti-proliferative effects on several types of human cancer cells, but its effect on osteosarcoma cells has thus far not been reported. In this study, the cytotoxic effect of SSE on osteosarcoma cells U2OS was investigated in vitro and found to be higher than on comparable non-cancer cell lines 293 and L6. Treatment with SSE decreased cell growth in a dose- and time-dependent manner and altered cellular morphology. SSE also inhibited cell viability by inducing apoptosis, as evidenced by the formation of apoptotic bodies, generation of reactive oxygen species (ROS), and accumulation of cells during the advanced phase of apoptosis. SSE-induced apoptosis correlated with the activation of CASP 3, downregulation of BCL-2, and upregulation of P53 and PTEN in U2OS cells. These results indicated that SSE induces apoptosis in U2OS cells mainly through an ROS-mediated caspase pathway. This is the first report to show a possible mechanism of the anti-proliferative effect of SSE for the prevention of osteosarcoma in cell culture models.

Allioli N, Vincent S, Vlaeminck-Guillem V, et al.
TM4SF1, a novel primary androgen receptor target gene over-expressed in human prostate cancer and involved in cell migration.
Prostate. 2011; 71(11):1239-50 [PubMed] Related Publications
BACKGROUND: The Androgen Receptor (AR) plays a key role in controlling prostate gland homeostasis and contributes to prostate carcinogenesis. The identification of its target genes should provide new candidates that may be implicated in cancer initiation and progression.
METHODS: Transcriptomic experiments and chromatin immunoprecipitation were combined to identify direct androgen regulated genes. Real-time quantitative PCR (RT-qPCR) analyses were performed to measure TM4SF1 mRNA levels in prostate cancer and benign prostatic hyperplasia (BPH) specimens. Immunohistochemical methods were used to compare TM4SF1 protein expression profiles in the same cohort. A targeted siRNAs knockdown strategy was used, prior to wound healing assays, to analyze the role of TM4SF1 in cell migration in vitro.
RESULTS: We demonstrate for the first time that TM4SF1 is a direct target gene of the AR, a transcription factor of the steroid nuclear receptor family. A functional androgen response element was identified in the promoter region of the gene. In addition, TM4SF1 mRNA expression was higher in cancer samples compared to BPH tissues. The TM4SF1 protein mediates cell motility of prostate cancer cells where it is predominantly localized in the cytoplasm, in contrast to its apical membrane localization in normal prostate epithelial cells.
CONCLUSIONS: Our results reveal a novel function for TM4SF1 in AR signaling. The TM4SF1 mRNA expression is higher in prostate cancer tissues as compared to BPH samples. Inhibition of cell migration after targeted knockdown of TM4SF1 protein expression suggests its contribution to prostate cancer cell metastasis.

Gordon GJ, Bueno R, Sugarbaker DJ
Genes associated with prognosis after surgery for malignant pleural mesothelioma promote tumor cell survival in vitro.
BMC Cancer. 2011; 11:169 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Mesothelioma is an aggressive neoplasm with few effective treatments, one being cytoreductive surgery. We previously described a test, based on differential expression levels of four genes, to predict clinical outcome in prospectively consented mesothelioma patients after surgery. In this study, we determined whether any of these four genes could be linked to a cancer relevant phenotype.
METHODS: We conducted a high-throughput RNA inhibition screen to knockdown gene expression levels of the four genes comprising the test (ARHGDIA, COBLL1, PKM2, TM4SF1) in both a human lung-derived normal and a tumor cell line using three different small inhibitory RNA molecules per gene. Successful knockdown was confirmed using quantitative RT-PCR. Detection of statistically significant changes in apoptosis and mitosis was performed using immunological assays and quantified using video-assisted microscopy at a single time-point. Changes in nuclear shape, size, and numbers were used to provide additional support of initial findings. Each experiment was conducted in triplicate. Specificity was assured by requiring that at least 2 different siRNAs produced the observed change in each cell line/time-point/gene/assay combination.
RESULTS: Knockdown of ARHGDIA, COBLL1, and TM4SF1 resulted in 2- to 4-fold increased levels of apoptosis in normal cells (ARHGDIA only) and tumor cells (all three genes). No statistically significant changes were observed in apoptosis after knockdown of PKM2 or for mitosis after knockdown of any gene.
CONCLUSIONS: We provide evidence that ARHGDIA, COBLL1, and TM4SF1 are negative regulators of apoptosis in cultured tumor cells. These genes, and their related intracellular signaling pathways, may represent potential therapeutic targets in mesothelioma.

Simpson NE, Lambert WM, Watkins R, et al.
High levels of Hsp90 cochaperone p23 promote tumor progression and poor prognosis in breast cancer by increasing lymph node metastases and drug resistance.
Cancer Res. 2010; 70(21):8446-56 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
p23 is a heat shock protein 90 (Hsp90) cochaperone located in both the cytoplasm and nucleus that stabilizes unliganded steroid receptors, controls the catalytic activity of certain kinases, regulates protein-DNA dynamics, and is upregulated in several cancers. We had previously shown that p23-overexpressing MCF-7 cells (MCF-7+p23) exhibit increased invasion without affecting the estrogen-dependent proliferative response, which suggests that p23 differentially regulates genes controlling processes linked to breast tumor metastasis. To gain a comprehensive view of the effects of p23 on estrogen receptor (ER)-dependent and -independent gene expression, we profiled mRNA expression from control versus MCF-7+p23 cells in the absence and presence of estrogen. A number of p23-sensitive target genes involved in metastasis and drug resistance were identified. Most striking is that many of these genes are also misregulated in invasive breast cancers, including PMP22, ABCC3, AGR2, Sox3, TM4SF1, and p8 (NUPR1). Upregulation of the ATP-dependent transporter ABCC3 by p23 conferred resistance to the chemotherapeutic agents etoposide and doxorubicin in MCF-7+p23 cells. MCF-7+p23 cells also displayed higher levels of activated Akt and an expanded phosphoproteome relative to control cells, suggesting that elevated p23 also enhances cytoplasmic signaling pathways. For breast cancer patients, tumor stage together with high cytoplasmic p23 expression more accurately predicted disease recurrence and mortality than did stage alone. High nuclear p23 was found to be associated with high cytoplasmic p23, therefore both may promote tumor progression and poor prognosis by increasing metastatic potential and drug resistance in breast cancer patients.

Teutschbein J, Haydn JM, Samans B, et al.
Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins.
BMC Cancer. 2010; 10:386 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation.
METHODS: Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated.
RESULTS: Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration.
CONCLUSION: Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development. Specifically, a role of FOSL1 in melanomagenic processes is demonstrated. These data are the basis for future detailed analyses of the investigated target genes.

Bühler P, Fischer T, Wolf P, et al.
Comparison of gene expression in LNCaP prostate cancer cells after treatment with bicalutamide or 5-alpha-reductase inhibitors.
Urol Int. 2010; 84(2):203-11 [PubMed] Related Publications
INTRODUCTION: Androgen deprivation is the preferred treatment for disseminated prostate cancer. However, it mostly leads to the development of incurable androgen-independent disease. The aim of the present study was to compare gene expression changes that occur after treatment with either the antiandrogen bicalutamide or the 5-alpha-reductase inhibitors finasteride (MK906) and MK386.
MATERIALS AND METHODS: LNCaP cells of low passages were treated with MK906 and MK386 at 5 microM each or with bicalutamide at 10 microM for 48 h. In these cultures we analyzed the expression of 22,500 transcripts on the Affymetrix Human U133+ 2.0 GeneChip platform. Gene expression was verified by real-time quantitative Taqman PCR.
RESULTS: Our studies revealed 312 differentially regulated genes upon bicalutamide treatment and 68 differentially regulated genes upon treatment with the 5-alpha-reductase inhibitors. There were 35 genes equally regulated by both drugs. This subset of genes included those with the highest fold change in both treatment groups. In the subset KlK2, TMPRSS2, TRGC2, PMEPA1 and TM4SF1 were downregulated, whereas EGR1, DDC and OPRK1 were upregulated.
CONCLUSIONS: A cohort of interesting genes that are differentially expressed after androgen withdrawal could be found in this study. Investigation into these genes could contribute to a better understanding of antiandrogen treatment and development of androgen-independent prostate cancer.

Hamatake M, Komano J, Urano E, et al.
Inhibition of HIV replication by a CD4-reactive Fab of an IgM clone isolated from a healthy HIV-seronegative individual.
Eur J Immunol. 2010; 40(5):1504-9 [PubMed] Related Publications
HIV replication is restricted by some anti-CD4 mouse mAb in vitro and in vivo. However, a human monoclonal anti-CD4 Ab has not been isolated. We screened EBV-transformed peripheral B cells from 12 adult donors for CD4-reactive Ab production followed by functional reconstitution of Fab genes. Three independent IgM Fab clones reactive specifically to CD4 were isolated from a healthy HIV-seronegative adult (approximately 0.0013% of the peripheral B cells). The germ line combinations for the VH and VL genes were VH3-33/L6, VH3-33/L12, and VH4-4/L12, respectively, accompanied by somatic hypermutations. Genetic analysis revealed a preference for V-gene usage to develop CD4-reactive Ab. Notably, one of the CD4-reactive clones, HO538-213, with an 1 x 10(-8) M dissociation constant (Kd) to recombinant human CD4, limited the replication of R5-tropic and X4-tropic HIV-1 strains at 1-2.5 microg/mL in primary mononuclear cells. This is the first clonal genetic analysis of human monoclonal CD4-reactive Ab. A mAb against CD4 isolated from a healthy individual could be useful in the intervention of HIV/AIDS.

Gordon GJ, Dong L, Yeap BY, et al.
Four-gene expression ratio test for survival in patients undergoing surgery for mesothelioma.
J Natl Cancer Inst. 2009; 101(9):678-86 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: Malignant pleural mesothelioma has few effective treatments, one being cytoreductive surgery. We previously developed a gene ratio test to predict outcome of malignant pleural mesothelioma patients undergoing surgery. In this study, we investigated the predictive value and technical assay performance of this test in patients with malignant pleural mesothelioma.
METHODS: Clinical data were obtained prospectively from 120 consecutive patients with malignant pleural mesothelioma who were scheduled for debulking surgery at one institution. Specimens were obtained at surgery or by pleural biopsy examination. Expression data for four genes were collected from tumor specimens, and three ratios of gene expression (TM4SF1/PKM2, TM4SF1/ARHGDIA, and COBLL1/ARHGDIA) were determined by quantitative reverse transcriptase-polymerase chain reaction. Patients were assigned to good or poor outcome groups by the gene ratio test. Survival was estimated by the Kaplan-Meier method and the log-rank test in univariate analyses. A multivariable Cox proportional hazards model was used to control for prognostic factors. Technical robustness was determined by using up to 30 specimens per patient, two biopsy techniques, and two performance sites. All statistical tests were two-sided.
RESULTS: The test predicted overall survival (P < .001) and cancer-specific survival (P = .007) in univariate analysis and overall survival in multivariable analysis (hazard ratio for death = 2.09, 95% confidence interval [CI] = 1.27 to 3.45, P = .004). The test was reproducible within patients and repeatable between two determinations for specimens with widely varying tumor cell contents. Repeatability between two determinations was 88.5% (95% CI = 84.0% to 92.2%) or, when technically unacceptable test values were excluded, 91.9% (95% CI = 87.4% to 95.1%). Reproducibility between two determinations was 96.1% (95% CI = 86.5% to 99.5%). Combining the gene ratio test and other prognostic factors allowed prospective discrimination between patients at high risk (median survival = 6.9 months, 95% CI = 2.6 to 8.9 months; 3-year survival = 0%) and low risk (median survival = 31.9 months, 95% CI = 21.9 to 41.7 months; 3-year survival = 42%).
CONCLUSION: The gene ratio test for survival of patients with malignant pleural mesothelioma has robust predictive value and technical assay performance.

Lin X, Ma L, Fitzgerald RL, Ostlund RE
Human sodium/inositol cotransporter 2 (SMIT2) transports inositols but not glucose in L6 cells.
Arch Biochem Biophys. 2009; 481(2):197-201 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
To characterize the function of the sodium/inositol symporter SMIT2 in skeletal muscle, human SMIT2 cDNA was transfected into L6 myoblasts using pcDNA3.1 expression vector. Compared with the pcDNA3.1 vector only transfection, this overexpression increased the uptake of [(3)H]D-chiro-inositol (DCI) by 159-fold. [(3)H]myo-Inositol uptake increased by 37-fold. In contrast, [(14)C]D-glucose, [(14)C]2-deoxy-D-glucose, or [(14)C]3-O-methyl-D-glucose uptake remained unchanged in the presence of either 0, 5.5, or 25 mM unlabeled glucose. The K(m) of DCI and myo-inositol for DCI uptake was 111.0 and 158.0 microM, respectively, whereas glucose competed for DCI uptake with a K(i) of 6.1 mM. Insulin treatment of non-transfected L6 cells (2 microM for 24 h) increased [(3)H]DCI specific uptake 18-fold. DCI transport is up regulated by insulin and competitively inhibited by millimolar levels of glucose. Therefore, expression and/or function of SMIT2, a high affinity transporter specific for DCI and myo-inositol, may be reduced in diabetes mellitus, insulin resistance and polycystic ovary syndrome causing the abnormal DCI metabolism observed in these conditions.

Pabalan N, Bapat B, Sung L, et al.
Cyclin D1 Pro241Pro (CCND1-G870A) polymorphism is associated with increased cancer risk in human populations: a meta-analysis.
Cancer Epidemiol Biomarkers Prev. 2008; 17(10):2773-81 [PubMed] Related Publications
The G870A polymorphism in the CCND1 gene may influence cancer risk. However, data from published studies with individual low statistical power have been controversial. To evaluate whether combined evidence shows an association between this polymorphism and cancer, we considered all available studies in a meta-analysis. Sixty studies were combined representing data for 18,411 cases and 22,209 controls. In our meta-analysis, we investigated overall sample and two ethnic populations (Caucasians and Asians) as well as nine cancer subtypes. Individuals who are homozygous for A allele (AA) were found to be associated with significantly increased cancer risk in overall sample [odds ratio (OR), 1.23; 95% confidence interval (95% CI), 1.13-1.33; P

Grempler R, Leicht S, Kischel I, et al.
Inhibition of SH2-domain containing inositol phosphatase 2 (SHIP2) in insulin producing INS1E cells improves insulin signal transduction and induces proliferation.
FEBS Lett. 2007; 581(30):5885-90 [PubMed] Related Publications
Inhibition of the lipid phosphatase SH2-domain containing inositol phosphatase 2 (SHIP2) in L6-C10 muscle cells, in 3T3-L1 adipocytes and in the liver of db/db mice has been shown to ameliorate insulin signal transduction and established SHIP2 as a negative regulator of insulin action. Here we show that SHIP2 inhibition in INS1E insulinoma cells increased Akt, glycogen synthase kinase 3 and extracellular signal-regulated kinases 1 and 2 phosphorylation. SHIP2 inhibition did not prevent palmitate-induced apoptosis, but increased cell proliferation. Our data raise the interesting possibility that SHIP2 inhibition exerts proliferative effects in beta-cells and further support the attractiveness of a specific inhibition of SHIP2 for the treatment of type 2 diabetes.

Seo DC, Sung JM, Cho HJ, et al.
Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells.
Mol Cancer. 2007; 6:75 [PubMed] Article available free on PMC after 01/10/2015 Related Publications
BACKGROUND: The studies on cancer-stem-cells (CSCs) have attracted so much attention in recent years as possible therapeutic implications. This study was carried out to investigate the gene expression profile of CSCs in human lung adenocarcinoma A549 cells.
RESULTS: We isolated CSCs from A549 cell line of which side population (SP) phenotype revealed several stem cell properties. After staining the cell line with Hoechst 33342 dye, the SP and non-side population (non-SP) cells were sorted using flow cytometric analysis. The mRNA expression profiles were measured using an Affymetrix GeneChip(R) oligonucleotide array. Among the sixty one differentially expressed genes, the twelve genes inclusive three poor prognostic genes; Aldo-keto reductase family 1, member C1/C2 (AKR1C1/C2), Transmembrane 4 L six family member 1 nuclear receptor (TM4SF1), and Nuclear receptor subfamily 0, group B, member 1 (NR0B1) were significantly up-regulated in SP compared to non-SP cells.
CONCLUSION: This is the first report indicating the differences of gene expression pattern between SP and non-SP cells in A549 cells. We suggest that the up-regulations of the genes AKR1C1/C2, TM4SF1 and NR0B1 in SP of human adenocarcinoma A549 cells could be a target of poor prognosis in anti-cancer therapy.

Graves ML, Zhou L, MacDonald G, et al.
Regulation of the BRCA1 promoter in ovarian surface epithelial cells and ovarian carcinoma cells.
FEBS Lett. 2007; 581(9):1825-33 [PubMed] Related Publications
As BRCA1 expression is often suppressed in sporadic ovarian carcinoma we characterized the regulation of the 231nt proximal 'L6' fragment of the BRCA1 promoter in two human ovarian surface epithelial cell and two sporadic ovarian carcinoma cell lines. Two individual regulatory elements within L6, the 'RIBS' element and the potential 'CRE' element were each necessary, but alone not sufficient for L6 activation in all four cell lines. The latter element showed some affinity for the CREB transcription factor, but cAMP pathway stimulation failed to promote its activation. This element did, however, interact with, and was activated by, c-Jun and Fra2 which suggests that it can interact with AP1-like transcription factors and that it may act co-operatively with RIBS-binding factors to regulate BRCA1 transcription in ovarian cells.

Hu X, Feng Y, Liu X, et al.
Effect of a novel non-thiazolidinedione peroxisome proliferator-activated receptor alpha/gamma agonist on glucose uptake.
Diabetologia. 2007; 50(5):1048-57 [PubMed] Related Publications
AIMS/HYPOTHESIS: The effect of the benzopyran derivative T33, a novel non-thiazolidinedione agent, was studied on peroxisome proliferator-activated receptors (PPARs), insulin signalling and glucose uptake in adipocytes and skeletal muscle. We hypothesised that T33 could activate PPARgamma and exert a beneficial effect on insulin action on glucose uptake and lipid metabolism.
MATERIALS AND METHODS: Using a cell-based reporter gene assay, T33 was identified as a PPARalpha/gamma dual agonist, which activated human PPARgamma and PPARalpha with EC50 values of 19 and 148 nmol/l, respectively. The effect of T33 on glucose metabolism was studied in cultured 3T3-L1 adipocytes and L6 myotubes. In vivo effects of T33 on skeletal muscle were determined in ob/ob mice treated with 8 mg/kg T33. The effect of T33 on metabolic abnormalities was observed in diet-induced obese mice.
RESULTS: Exposure of 3T3-L1 adipocytes to T33 for 4 days increased basal and insulin-stimulated glucose uptake, with no effect noted in L6 myotubes. Treatment of ob/ob mice for 20 days with T33 normalised basal and insulin-stimulated glucose uptake and increased phosphorylation of Akt and p38 mitogen-activated protein kinase in skeletal muscle. In contrast, phosphorylation of AMP-activated protein kinase was unaltered. Moreover, T33 improved insulin sensitivity and lipid metabolism in diet-induced obese mice.
CONCLUSIONS/INTERPRETATION: T33 is non-thiazolidinedione PPARalpha/gamma dual agonist which directly increases basal and insulin-stimulated glucose uptake in adipocytes and secondarily improves insulin action on insulin signalling and glucose metabolism in skeletal muscle from diabetic ob/ob mice.

Chen Q, Watson JT, Marengo SR, et al.
Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo.
Cancer Lett. 2006; 244(2):274-88 [PubMed] Related Publications
Identification of the genes involved in prostate cancer (PCa) progression to a virulent and androgen-independent (AI) form is a major focus in the field. cDNA microarray was used to compare the gene expression profile of the indolent, androgen sensitive (AS) LNCaP PCa cell line to the aggressively metastatic, AI C4-2. Thirty-eight unique sequences from a 6388 cDNA array were found differentially expressed (> or =2-fold, 95% CI). The expression of 14 genes was lower in C4-2 than in LNCaP cells, while the reverse was true for 24 genes. Twelve genes were validated using Q-PCR, Western blotting and immunohistochemistry (IHC) of LNCaP and C4-2 xenograft. Q-PCR showed that 10 of 12 (83.3%) genes had similar patterns of expression to the array (LNCaP>C4-2: TMEFF2, ATP1B1, IL-8, BTG1, BChE, NKX3.1; LNCaP

Santen RJ, Lobenhofer EK, Afshari CA, et al.
Adaptation of estrogen-regulated genes in long-term estradiol deprived MCF-7 breast cancer cells.
Breast Cancer Res Treat. 2005; 94(3):213-23 [PubMed] Related Publications
First line treatment of hormone dependent breast cancer initially causes tumor regression but later results in adaptive changes and tumor re-growth. Responses to second line treatments occur but tumors again begin to progress after a period of 12???18??months. In depth understanding of the adaptive process would allow the identification of targets to abrogate the development of hormonal resistance and prolong the efficacy of endocrine therapy. We have developed a model system to examine adaptive changes in human MCF-7 breast cancer cells. Upon deprivation of estradiol for a prolonged period of time, a maneuver analogous to surgical oophorectomy in pre-menopausal women and use of aromatase inhibitors in post-menopausal patients, tumor cells adapt and become hypersensitive to estradiol. We reasoned that the expression pattern of multiple genes would change in response to estradiol deprivation and that cDNA microarrays would provide an efficient means of assessing these changes. Accordingly, we examined the transcriptional responses to estradiol in long-term estradiol deprived (LTED) MCF-7 cells with a cDNA microarray containing 1901 known genes and ESTs. To assess the changes induced by long-term estradiol deprivation, we compared the effects of estradiol administration in LTED cells with those in MCF-7 cells, which we had previously reported, and confirmed with real time PCR using the parental and LTED cells. Seven genes and one EST were induced by estradiol in LTED but not in wild type MCF-7 cells, whereas ten genes were down-regulated by estradiol only in LTED cells. The expression of seven genes increased concurrently and five decreased in response to estradiol in both cell types. From these observations, we generated testable hypotheses regarding several genes including DKFZP, RAP-1, ribosomal protein S6, and TM4SF1. Based upon the known functions of these genes and the patterns of observed changes, we postulate that divergent regulation of these genes may contribute to the different biologic responses to estrogen in these cell lines. These results provide targets for further mechanistic studies in our experimental system. Our findings indicate that long-term estradiol deprivation causes expression changes in multiple genes and emphasizes the complexity of the process of cellular adaptation.

Du J, Shi Y, Pan Y, et al.
Regulation of multidrug resistance by ribosomal protein l6 in gastric cancer cells.
Cancer Biol Ther. 2005; 4(2):242-7 [PubMed] Related Publications
Ribosomal proteins (RP) L6 was previously identified as an up-regulated gene in multidrug-resistant gastric cancer cells SGC7901/ADR comparing to its parental cells SGC7901 by subtractive hybridization. The aim of this study was to explore the roles of RPL6 in multidrug resistance (MDR) in gastric cancer cells. Northern and Western blot analysis confirmed that RPL6 was overexpressed in SGC7901/ADR cells. By gene transfection, RPL6 was genetically upregulated in SGC7901 or down-regulated in SGC7901/ ADR cells. Upregulation of RPL6 was associated with enhanced resistance to multiple anticancer drugs (adriamycin, vincristine, etoposide, 5-fluorouracil and cisplatin) and to adriamycin-induced apoptosis. Downregulation of RPL6 reversed MDR and sensitized cells to adriamycin-induced apoptosis. Alteration of RPL6 showed no obvious influence on intracellular adriamycin accumulation, glutathione content and expression of glutathione S-transferase. RPL6 could upregulate Bcl-2 and downregulate Bax in cells. Together, this work demonstrates that RPL6 could regulate MDR in gastric cancer cells by suppressing drug-induced apoptosis.

Chang YW, Chen SC, Cheng EC, et al.
CD13 (aminopeptidase N) can associate with tumor-associated antigen L6 and enhance the motility of human lung cancer cells.
Int J Cancer. 2005; 116(2):243-52 [PubMed] Related Publications
Cancer metastasis is a multiple-step process that involves the regulated interaction of diverse cellular proteins. We recently reported that the expression of tumor-associated antigen L6 (TAL6) promoted the invasiveness of lung cancer cells and was inversely correlated with disease-free survival of squamous lung carcinoma patients. We now report that CD13 (aminopeptidase N) can associate with TAL6 and can enhance cancer cell migration. CD13 was shown by coimmunoprecipitation to associate in vitro with TAL6 on several cancer cell lines and to associate in vivo by antibody-mediated copatching immunofluorescence. CD13 was selectively expressed on highly invasive CL1-5 lung cancer cells as compared to poorly invasive CL1-0 lung cancer cells. The role of CD13 aminopeptidase activity in regulating cell motility was investigated with chemical inhibitors, specific antibodies and a catalytically inactive CD13 protein. Inhibition of CD13 aminopeptidase activity by nontoxic concentrations of leuhistin modestly decreased the migration of CL1-5 cells. In contrast, binding of CD13 by specific antibodies significantly reduced both the migration and the invasion of CL1-5 cells. Poorly invasive CL1-0 cells that stably expressed CD13 displayed significantly (p < or = 0.0005) enhanced cell migration (300% of control). Expression of an enzymatically inactive CD13 mutant on CL1-0 cells also significantly (p < or = 0.0005) enhanced cell migration (200% of control). Our results show that TAL6 and CD13 can form a complex on lung cancer cells, that these molecules can modulate cell migration and invasion and that the influence of CD13 on cell motility did not strictly depend on its aminopeptidase activity.

Rimon E, Sasson R, Dantes A, et al.
Gonadotropin-induced gene regulation in human granulosa cells obtained from IVF patients: modulation of genes coding for growth factors and their receptors and genes involved in cancer and other diseases.
Int J Oncol. 2004; 24(5):1325-38 [PubMed] Related Publications
Gonadotropins play a crucial role in ovarian homeostasis and fertilization. However, hypergonadotropin stimulation has been thought to increase the risk for ovarian cancer. Moreover, some correlation between high levels of gonadotropins in the circulation and Alzheimer's disease has been implicated, with no clear evidence on the molecular mechanism involved. Using DNA microarray technology and RNA from gonadotropin-stimulated human granulosa cells, which comprise the main bulk of the ovarian follicular somatic cells, we discovered that stimulation of cells with saturating doses of gonadotropins gives rise to the expression of genes coding for presenilin 1 and 2, along with the up-regulation of genes involved in steroidogenesis such as StAR, cytochrome P450scc enzyme system and aromatase. Moreover, gonadotropin stimulation in these cells dramatically elevates activity of genes coding for epiregulin and amphiregulin, which can bind and activate the EGF receptor and ERB4. These gene products may elevate the risk for ovarian, breast, endometrial and other non-gynecological cancers. Gene transcripts for oncogenes and tumor markers such as pleiomorphic adenoma gene-like 1 (Plagl1) tumor antigen (L6) and claudin 3 were markedly elevated following LH and FSH stimulation. In parallel, downregulation in ovarian cancer 1 (DOC1) and suppression of tumorigenicity (ST5) genes was observed, suggesting a potential increase for cancer development. In contrast, increase in tumor rejection antigen (gp96) 1 and decrease in connective tissue growth factor (CTGF), transforming growth factor-beta 1 induced transcript 1 (TGFB1Il), pim-1 oncogene (PIM1), v-maf musculoaponeurotic fibrosarcoma oncogene homologue (MAF) and CD24 antigen may be associated with a decreased risk for specific cancers. In conclusion, gonadotropin stimulation may modulate specific sets of gene transcripts that may either elevate or reduce the risk for specific diseases.

Patel NA, Apostolatos HS, Mebert K, et al.
Insulin regulates protein kinase CbetaII alternative splicing in multiple target tissues: development of a hormonally responsive heterologous minigene.
Mol Endocrinol. 2004; 18(4):899-911 [PubMed] Related Publications
Cells respond to external signals like insulin to alter metabolic pathways in response to varying physiological environments. Insulin stimulates the protein kinase C beta (PKCbeta) isozymes and preferentially switches the expression to PKCbetaII isozyme, which is shown to have a crucial role in glucose uptake, cellular proliferation, and differentiation. We have developed an insulin-responsive PKCbetaII heterologous minigene to identify cis-elements in vivo in eukaryotes by cloning the PKCbetaII exon and its flanking intronic sequences into the splicing vector pSPL3. The transfected minigene mimicked the endogenous insulin response of PKCbetaII alternative splicing in five distinct cell types, i.e. L6 skeletal muscle, 3T3-L1 pre-adipocytes, HepG2 human hepatoma cells, A10 vascular smooth muscle cells, and murine embryonic fibroblasts within 30 min of insulin stimulation. Sequential deletions of the flanking introns in the minigene demonstrated that insulin regulated elements within the 5'-intron flanking the PKCbetaII exon. Mutational studies indicated the SRp40 binding site promotes splice site selection. In these cases, splicing appears to be regulated by a phosphatidylinositol 3-kinase signaling pathway because LY294002 and wortmannin, its specific inhibitors, blocked exon inclusion. Cotransfection with constitutively active Akt2 kinase mimicked insulin action. Signal-dependent regulation of splicing by insulin is unique from tissue-specific and developmentally regulated mechanisms previously reported and serves as a prototype for studies of alternative splicing involving protein phosphorylation.

Nakano T, Tani M, Ishibashi Y, et al.
Biological properties and gene expression associated with metastatic potential of human osteosarcoma.
Clin Exp Metastasis. 2003; 20(7):665-74 [PubMed] Related Publications
Lung metastasis has a great influence on the prognosis of patients with osteosarcoma. We previously established two high-metastatic sublines, M112 and M132, from the HuO9 human osteosarcoma cell line by in vivo selection. In this study, we newly isolated a high-metastatic subline, H3, and three low-metastatic sublines, L6, L12 and L13, from HuO9 by the dilution plating method. Three high-metastatic sublines produced more than 200 metastatic nodules in the lung, while three low-metastatic sublines produced no or few nodules after injection of 2 x 10(6) cells into the tail vein of nude mice. There were significant differences in the motility and invasiveness between high- and low-metastatic sublines, whereas the growth rates in vitro and the tumorigenicity in vivo showed no correlation with their metastatic abilities. Early adherence to culture plates was significantly lower in two of three low-metastatic sublines, which occupied smaller surface areas on the culture plates than other sublines did. Comparison of the expression of 637 cancer-related genes by cDNA microarray revealed that seven genes were differentially expressed between high- and low-metastatic sublines. Among them, five genes (AXL, TGFA, COLL7A1, WNT5A, and MKK6) were associated with adherence, motility, and/or invasiveness. These results suggest that the differences in motility/invasiveness and adhesive abilities are key determinants of lung metastasis in osteosarcoma.

Wang LX, Wang ZJ
Animal and cellular models of chronic pain.
Adv Drug Deliv Rev. 2003; 55(8):949-65 [PubMed] Related Publications
Chronic pain, especially neuropathic pain and cancer pain, is often not adequately treated by currently available analgesics. Animal models provide pivotal systems for preclinical study of pain. This article reviews some of the most widely used or promising new models for chronic pain. Partial spinal ligation, chronic constriction injury, and L5/L6 spinal nerve ligation represent three of the best characterized rodent models of peripheral neuropathy. Recently, several mouse and rat bone cancer pain models have been reported. Primary or permanent cultures of sensory neurons have been established to study the molecular mechanism of pain, especially for neurotransmitter release and signal transduction. The emerging gene microarray, genomics and proteomics methods may be applied to throughly characterize these cells. Each model is uniquely created with distinct mechanisms, it is therefore essential to report and interpret results in the context of a specific model.

Ohmine K, Nagai T, Tarumoto T, et al.
Analysis of gene expression profiles in an imatinib-resistant cell line, KCL22/SR.
Stem Cells. 2003; 21(3):315-21 [PubMed] Related Publications
The BCR/ABL tyrosine kinase inhibitor, imatinib, has shown substantial effects in blast crises of chronic myelogenous leukemia. However, most patients relapse after an initial clinical response, indicating that drug resistance is a major problem for patients being treated with imatinib. In this study, we generated a new imatinib-resistant BCR/ABL-positive cell line, KCL22/SR. The 50% inhibitory concentration of imatinib was 11-fold higher in KCL22/SR than in the imatinib-sensitive parental cell line, KCL22. However, KCL22/SR showed no mutations in the BCR/ABL gene and no increase in the levels of BCR/ABL protein and P-glycoprotein. Furthermore, the level of phosphorylated BCR/ABL protein was suppressed by imatinib treatment, suggesting that mechanisms independent of BCR/ABL signaling are involved in the imatinib resistance in KCL22/SR cells. DNA microarray analyses demonstrated that the signal transduction-related molecules, RAS p21 protein activator and RhoA, which could affect Ras signaling, and a surface tumor antigen, L6, were upregulated, while c-Myb and activin A receptor were downregulated in KCL22/SR cells. Furthermore, imatinib treatment significantly suppressed the level of phosphorylated p44/42 in KCL22 cells but not in KCL22/SR cells, even when BCR/ABL was inhibited by imatinib. These results suggest that various mechanisms, including disturbance of Ras-mitogen-activated protein kinase signaling, are involved in imatinib resistance.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TM4SF1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999