AGR2

Gene Summary

Gene:AGR2; anterior gradient 2, protein disulphide isomerase family member
Aliases: AG2, AG-2, HPC8, GOB-4, HAG-2, XAG-2, PDIA17, HEL-S-116
Location:7p21.1
Summary:This gene encodes a member of the disulfide isomerase (PDI) family of endoplasmic reticulum (ER) proteins that catalyze protein folding and thiol-disulfide interchange reactions. The encoded protein has an N-terminal ER-signal sequence, a catalytically active thioredoxin domain, and a C-terminal ER-retention sequence. This protein plays a role in cell migration, cellular transformation and metastasis and is as a p53 inhibitor. As an ER-localized molecular chaperone, it plays a role in the folding, trafficking, and assembly of cysteine-rich transmembrane receptors and the cysteine-rich intestinal gylcoprotein mucin. This gene has been implicated in inflammatory bowel disease and cancer progression. [provided by RefSeq, Mar 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:anterior gradient protein 2 homolog
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (6)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Cell Proliferation
  • Cancer Gene Expression Regulation
  • Neoplasm Metastasis
  • Sequence Analysis, Protein
  • Colorectal Cancer
  • Sequence Alignment
  • Cell Movement
  • Uroplakin II
  • Molecular Sequence Data
  • Oligonucleotide Array Sequence Analysis
  • Prostate Cancer
  • RT-PCR
  • Drug Resistance
  • RNA Interference
  • Staging
  • Carrier Proteins
  • Estrogen Receptors
  • Gene Expression Profiling
  • Gene Expression
  • Ovarian Cancer
  • MCF-7 Cells
  • Transfection
  • Messenger RNA
  • Breast Cancer
  • Adenocarcinoma
  • Ductan Pancreatic Carcinoma
  • Lung Cancer
  • Lymphatic Metastasis
  • Disease Progression
  • Chromosome 7
  • Neoplasm Invasiveness
  • Western Blotting
  • Biomarkers, Tumor
  • Immunohistochemistry
  • Proteins
  • Amino Acid Sequence
  • Xenopus Proteins
  • Pancreatic Cancer
  • siRNA
  • Neoplasm Proteins
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: AGR2 (cancer-related)

Zhang Y, Xia F, Zhang F, et al.
miR-135b-5p enhances doxorubicin-sensitivity of breast cancer cells through targeting anterior gradient 2.
J Exp Clin Cancer Res. 2019; 38(1):26 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The pro-oncogenic anterior gradient 2 (AGR2) is involved in tumor growth and drug resistance of breast cancer. Mechanisms that regulate expression of AGR2 still need to be elucidated.
METHODS: In this study, expression levels of AGR2 and miR-135b-5p were analyzed in different breast cancer cell lines as well as in clinical breast cancer tissues. The in vitro and in vivo functional effect of AGR2 and miR-135b-5p were also investigated. A luciferase reporter assay was applied to confirm the interaction between miR-135b-5p and AGR2 mRNA.
RESULTS: We identified AGR2 as a target of miR-135b-5p. Expression of AGR2 was up-regulated in doxorubicin-resistant breast cancer cells. AGR2 mediated doxorubicin-sensitivity of breast cancer cells both in vitro and in vivo. miR-135b-5p negatively regulated AGR2-expression of breast cancer cells increasing doxorubicin-sensitivity. However, miR-135b-5p was down-regulated in doxorubicin-resistant breast cancer cells as well as during treatment with doxorubicin, which might be a probable reason for over-expression of AGR2. Up-regulation of miR-135b-5p increased doxorubicin-sensitivity of breast cancer cells in vivo. In addition, levels of AGR2 negatively correlated with levels of miR-135b-5p in clinical breast cancer tissue samples.
CONCLUSION: Our results highlight the potential of miR-135b-5p as a target for treating AGR2-expressing breast cancer with doxorubicin-resistance.

Pan B, Yang J, Wang X, et al.
miR-217 sensitizes chronic myelogenous leukemia cells to tyrosine kinase inhibitors by targeting pro-oncogenic anterior gradient 2.
Exp Hematol. 2018; 68:80-88.e2 [PubMed] Related Publications
BCR-ABL1-independent mechanisms had been thought to mediate drug resistance to tyrosine kinase inhibitors (TKIs) in patients with chronic myelogenous leukemia (CML). The pro-oncogenic anterior gradient 2 (AGR2) mediates drug resistance of cancer cells. In this study, we observed an increased level of AGR2 in TKI-resistant CML cells. Silence of AGR2 in dasatinib-resistant K562 (K562DR) cells led to restored sensitivity to dasatinib both in vitro and in vivo. Exposure to dasatinib induced upregulation of AGR2 in K562 cells, which indicated a probable treatment-related drug resistance. We further investigated the potential interaction between microRNA (miRNA) and AGR2 in K562DR cells and found that downregulation of miR-217 was associated with overexpression of AGR2 in K562DR cells. Luciferase reporter assay identified that miR-217 negatively regulated expression of AGR2 through binding the 3'-untranslated region of AGR2. Hypermethylation of the CpG island on the promoter region of the MIR217 gene is a probable reason for the downregulation of miR-217 in dasatinib-treated K562 cells. Forced expression of miR-217 led to decreased expression of AGR2 as well as compromised TKI-resistant potential of K562DR cells. Similarly, overexpression of miR-217 resensitized K562DR cells to dasatinib treatment in a murine xenograft transplantation model. TKI treatment-induced drug resistance is correlated with a decrease of miR-217 and upregulation of AGR2. The miR-217/AGR2 interaction might be a potential therapeutic target in treating CML patients with TKI resistance.

Yosudjai J, Inpad C, Chomwong S, et al.
An aberrantly spliced isoform of anterior gradient-2, AGR2vH promotes migration and invasion of cholangiocarcinoma cell.
Biomed Pharmacother. 2018; 107:109-116 [PubMed] Related Publications
Cholangiocarcinoma (CCA) is a cancer of bile duct, considered to be an incurable and lethal cancer. High mortality rate of CCA patients is underlined by cancer metastasis, an ability of the cancer cells that spread to secondary organs. Recently, we have identified Anterior Gradient-2 (AGR2), from a pair of non-metastatic/metastatic cell lines (KKU-213/KKU-213L5), as a gene that is highly and specifically upregulated in the metastatic cell line. AGR2 encodes for a disulfide isomerase enzyme, ubiquitously detected in mucus-secreting tissues. Overexpression of AGR2 has been reported in several types of human cancer. Role of the overexpressed AGR2 in cancer is still unclear. Here, we found that upregulation of AGR2 in metastatic CCA cells coincides with an aberrant splicing of AGR2 mRNA, and that isoforms of AGR2 RNA, such as AGR2vE, AGR2vF, and AGR2vH are specific to the metastatic cells. We demonstrated that the AGR2vH isoform enables metastatic-associated phenotypes in CCA cells. Depletion of AGR2vH by an isoform-specific interfering RNA in metastatic KKU-213L5 cell results in significant reduction of cancer cell migration and invasion, and a slight decrease of cell adhesion. Overexpression of AGR2vH in non-metastatic KKU-213 cells promotes cancer cell migration, invasion, adhesion, and moderate cell proliferation. Moreover, we found that expression of a metastasis-associated gene, vimentin, positively correlates with expression of AGR2vH. Our results support the notion that aberrant alternative splicing of AGR2 facilitates an accumulation of the oncogenic AGR2vH isoform, in turn, contributes to the pathogenesis and severity of CCA.

Liu QG, Li YJ, Yao L
Knockdown of AGR2 induces cell apoptosis and reduces chemotherapy resistance of pancreatic cancer cells with the involvement of ERK/AKT axis.
Pancreatology. 2018; 18(6):678-688 [PubMed] Related Publications
BACKGROUND: Pancreatic cancer (PC), an aggressive human malignancy, presents with a striking resistance to chemotherapy. Interesting, AGR2 has been found to be upregulated in various cancers and has been found to promote the dissemination of PC cells. Thereby, a series of in-vitro experiments were performed to investigate the relationship between AGR2 and the ERK/AKT axis, and to explore whether it affects PC cells.
METHODS: Positive expression of AGR2 protein in the PC and paracancerous tissues collected from 138 patients with PC was detected using immunohistochemistry. After treatment with FGF2 (an ERK/AKT axis agonist), siRNA against AGR2 or their combination respectively, cell viability, chemotherapy resistance, radiotherapy resistance, migration, invasion and apoptosis in PC cells were detected using CCK8 assay, MTT assay, clone formation assay, wound healing assay, Transwell assay and flow cytometry, respectively. The expressions of AGR2 and ERK/AKT axis-related genes and proteins in tissues and cells were detected using reverse transcription quantitative polymerase chain reaction and Western blot assay.
RESULTS: PC tissues exhibited highly-expressed AGR2 and abnormally activated ERK/AKT axis. FGF2 promoted the expression of AGR2, ERK/AKT axis activation, cell viability, chemotherapy resistance, migration and invasion, but decreased cell apoptosis in PC cells. However, knockdown of AGR2 resulted in inhibition of the ERK/AKT axis, reduced PC cell viability, chemotherapy resistance, migration and invasion but increased cell apoptosis in PC cells.
CONCLUSION: The findings reveal that AGR2 silencing could promote cell apoptosis and inhibit cell migration, invasion and chemotherapy resistance of PC cell with the involvement of the ERK/AKT axis.

Milewski D, Balli D, Ustiyan V, et al.
FOXM1 activates AGR2 and causes progression of lung adenomas into invasive mucinous adenocarcinomas.
PLoS Genet. 2017; 13(12):e1007097 [PubMed] Free Access to Full Article Related Publications
Lung cancer remains one of the most prominent public health challenges, accounting for the highest incidence and mortality among all human cancers. While pulmonary invasive mucinous adenocarcinoma (PIMA) is one of the most aggressive types of non-small cell lung cancer, transcriptional drivers of PIMA remain poorly understood. In the present study, we found that Forkhead box M1 transcription factor (FOXM1) is highly expressed in human PIMAs and associated with increased extracellular mucin deposition and the loss of NKX2.1. To examine consequences of FOXM1 expression in tumor cells in vivo, we employed an inducible, transgenic mouse model to express an activated FOXM1 transcript in urethane-induced benign lung adenomas. FOXM1 accelerated tumor growth, induced progression from benign adenomas to invasive, metastatic adenocarcinomas, and induced SOX2, a marker of poorly differentiated tumor cells. Adenocarcinomas in FOXM1 transgenic mice expressed increased MUC5B and MUC5AC, and reduced NKX2.1, which are characteristics of mucinous adenocarcinomas. Expression of FOXM1 in KrasG12D transgenic mice increased the mucinous phenotype in KrasG12D-driven lung tumors. Anterior Gradient 2 (AGR2), an oncogene critical for intracellular processing and packaging of mucins, was increased in mouse and human PIMAs and was associated with FOXM1. FOXM1 directly bound to and transcriptionally activated human AGR2 gene promoter via the -257/-247 bp region. Finally, using orthotopic xenografts we demonstrated that inhibition of either FOXM1 or AGR2 in human PIMAs inhibited mucinous characteristics, and reduced tumor growth and invasion. Altogether, FOXM1 is necessary and sufficient to induce mucinous phenotypes in lung tumor cells in vivo.

Tian SB, Tao KX, Hu J, et al.
The prognostic value of AGR2 expression in solid tumours: a systematic review and meta-analysis.
Sci Rep. 2017; 7(1):15500 [PubMed] Free Access to Full Article Related Publications
The prognostic value of anterior gradient-2 (AGR2) in tumours remains inconclusive. Here, we systematically reviewed the literature evidence and assessed the association between AGR2 expression and prognosis in solid tumours. The primary outcomes were overall survival (OS), disease-specific survival (DSS), and disease-free survival (DFS)/recurrence-free survival (RFS)/progression-free survival (PFS). All analyses were performed by STATA 12.0, with the hazard ratio (HR) or odds ratios (OR), and 95% confidence interval (CI) as the effect size estimate. A total of 20 studies containing 3285 cases were included. Pooled analyses revealed that AGR2 overexpression had an unfavourable impact on OS (HR 1.93, 95% CI 1.32-2.81) and time to tumour progression (TTP) (DFS/RFS/PFS) (HR 1.60 95% CI 1.06-2.40) in solid tumour patients. Subgroup analyses indicated that AGR2 overexpression in breast cancer patients was significantly associated with poor OS (HR 3.02, 95% CI 1.03-8.81) and TTP (HR 1.93, 95% CI 1.17-3.20). Excluding breast cancer, AGR2 overexpression was also found to have a significant correlation with poor OS in the remaining solid tumour patients (HR 1.51, 95% CI 1.04-2.19). Overall, AGR2 might be a potential biomarker to predict prognosis in solid tumour patients.

Zaytouni T, Tsai PY, Hitchcock DS, et al.
Critical role for arginase 2 in obesity-associated pancreatic cancer.
Nat Commun. 2017; 8(1):242 [PubMed] Free Access to Full Article Related Publications
Obesity is an established risk factor for pancreatic ductal adenocarcinoma (PDA). Despite recent identification of metabolic alterations in this lethal malignancy, the metabolic dependencies of obesity-associated PDA remain unknown. Here we show that obesity-driven PDA exhibits accelerated growth and a striking transcriptional enrichment for pathways regulating nitrogen metabolism. We find that the mitochondrial form of arginase (ARG2), which hydrolyzes arginine into ornithine and urea, is induced upon obesity, and silencing or loss of ARG2 markedly suppresses PDA. In vivo infusion of

Pan F, Yang W, Li W, et al.
Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.
Tumour Biol. 2017; 39(7):1010428317708547 [PubMed] Related Publications
Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize vessels by interfering anterior gradient 2-mediated angiogenesis in metastatic colorectal cancer.

Guo J, Gong G, Zhang B
Identification and prognostic value of anterior gradient protein 2 expression in breast cancer based on tissue microarray.
Tumour Biol. 2017; 39(7):1010428317713392 [PubMed] Related Publications
Breast cancer has attracted substantial attention as one of the major cancers causing death in women. It is crucial to find potential biomarkers of prognostic value in breast cancer. In this study, the expression pattern of anterior gradient protein 2 in breast cancer was identified based on the main molecular subgroups. Through analysis of 69 samples from the Gene Expression Omnibus database, we found that anterior gradient protein 2 expression was significantly higher in non-triple-negative breast cancer tissues compared with normal tissues and triple-negative breast cancer tissues (p < 0.05). The data from a total of 622 patients from The Cancer Genome Atlas were analysed. The data from The Cancer Genome Atlas and results from quantitative reverse transcription polymerase chain reaction also verified the anterior gradient protein 2 expression pattern. Furthermore, we performed immunohistochemical analysis. The quantification results revealed that anterior gradient protein 2 is highly expressed in non-triple-negative breast cancer (grade 3 excluded) and grade 1 + 2 (triple-negative breast cancer excluded) tumours compared with normal tissues. Anterior gradient protein 2 was significantly highly expressed in non-triple-negative breast cancer (grade 3 excluded) and non-triple-negative breast cancer tissues compared with triple-negative breast cancer tissues (p < 0.01). In addition, anterior gradient protein 2 was significantly highly expressed in grade 1 + 2 (triple-negative breast cancer excluded) and grade 1 + 2 tissues compared with grade 3 tissues (p < 0.05). Analysis by Fisher's exact test revealed that anterior gradient protein 2 expression was significantly associated with histologic type, histological grade, oestrogen status and progesterone status. Univariate analysis of clinicopathological variables showed that anterior gradient protein 2 expression, tumour size and lymph node status were significantly correlated with overall survival in patients with grade 1 and 2 tumours. Cox multivariate analysis revealed anterior gradient protein 2 as a putative independent indicator of unfavourable outcomes (p = 0.031). All these data clearly showed that anterior gradient protein 2 is highly expressed in breast cancer and can be regarded as a putative biomarker for breast cancer prognosis.

Matoulkova E, Sommerova L, Pastorek M, et al.
Regulation of AGR2 expression via 3'UTR shortening.
Exp Cell Res. 2017; 356(1):40-47 [PubMed] Related Publications
One recently discussed general mechanism affecting gene expression is 3'-untranslated region (3'UTR) length. Events such as shortening, translocation or loss of 3'UTRs are observed within oncogenes and are proposed to associate with increased expression. Thus, increased efforts are being made to understand constitutive and differential transcript 3'end formation. Investigation of AGR2 mRNA revealed a direct impact of its 3'UTR length on AGR2 expression. In silico analyses identified several regulatory sequences within the distal part of AGR2 mRNA that may regulate 3'UTR length and associated protein levels. Short 3'UTRs were observed in a panel of AGR2-positive cancer cell lines and in human breast cancer specimens, in which more extensive 3'UTR shortening correlated with increased AGR2 protein levels. AGR2 is an important member of PI3K/AKT signalling pathway, which along with the proposed involvement of mTOR in the regulation of alternative polyadenylation, prompted us to study the role of mTOR in relation to AGR2 mRNA 3'UTR shortening. A direct impact of mTOR signalling on AGR2 3'UTR shortening associated with increased protein synthesis was found, which led to the identification of a novel molecular mechanism involved in upregulation of AGR2 levels in mTOR-activated cells via modulating the 3'UTR length of AGR2 mRNA.

Ondrouskova E, Sommerova L, Nenutil R, et al.
AGR2 associates with HER2 expression predicting poor outcome in subset of estrogen receptor negative breast cancer patients.
Exp Mol Pathol. 2017; 102(2):280-283 [PubMed] Related Publications
Expression of the AGR2 oncogene was shown to be associated with estrogen receptor positive tumors. This gene contributes to enhanced cellular proliferation, drug resistance, metastasis development and may also serve as a predictor of poor prognosis. However, our analysis of AGR2 expression in a subset of estrogen-receptor negative tumors revealed that AGR2 could also be upregulated in hormone-independent manner. AGR2 expression was shown to be significantly increased in HER2 positive breast tumors on both the mRNA and the protein level. Moreover, in a subset of estrogen- and progesterone-receptor negative and simultaneously HER2-positive cases, increased AGR2 expression significantly correlated with worse patient prognosis. Subsequent analysis of independent data sets either collected in our institute or obtained from Oncomine cancer microarray database confirmed all these findings.

Procházková I, Lenčo J, Fučíková A, et al.
Targeted proteomics driven verification of biomarker candidates associated with breast cancer aggressiveness.
Biochim Biophys Acta Proteins Proteom. 2017; 1865(5):488-498 [PubMed] Related Publications
Breast cancer is the most common and molecularly relatively well characterized malignant disease in women, however, its progression to metastatic cancer remains lethal for 78% of patients 5years after diagnosis. Novel markers could identify the high risk patients and their verification using quantitative methods is essential to overcome genetic, inter-tumor and intra-tumor variability and translate novel findings into cancer diagnosis and treatment. We recently identified 13 proteins associated with estrogen receptor, tumor grade and lymph node status, the key factors of breast cancer aggressiveness, using untargeted proteomics. Here we verified these findings in the same set of 96 tumors using targeted proteomics based on selected reaction monitoring with mTRAQ labeling (mTRAQ-SRM), transcriptomics and immunohistochemistry and validated in 5 independent sets of 715 patients using transcriptomics. We confirmed: (i) positive association of anterior gradient protein 2 homolog (AGR2) and periostin (POSTN) and negative association of annexin A1 (ANXA1) with estrogen receptor status; (ii) positive association of stathmin (STMN1), cofilin-1 (COF1), plasminogen activator inhibitor 1 RNA-binding protein (PAIRBP1) and negative associations of thrombospondin-2 (TSP2) and POSTN levels with tumor grade; and (iii) positive association of POSTN, alpha-actinin-4 (ACTN4) and STMN1 with lymph node status. This study highlights a panel of gene products that can contribute to breast cancer aggressiveness and metastasis, the understanding of which is important for development of more precise breast cancer treatment.

Ahmad R, Nicora CD, Shukla AK, et al.
An efficient method for native protein purification in the selected range from prostate cancer tissue digests.
Chin Clin Oncol. 2016; 5(6):78 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in the clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen.
METHODS: In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen were pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction.
RESULTS: The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well.
CONCLUSIONS: Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any desired size range with minor modifications.

Uthaisar K, Vaeteewoottacharn K, Seubwai W, et al.
Establishment and characterization of a novel human cholangiocarcinoma cell line with high metastatic activity.
Oncol Rep. 2016; 36(3):1435-46 [PubMed] Related Publications
Cholangiocarcinoma (CCA) is a highly metastatic tumor, and the lung is a common site of metastasis. A greater understanding of the biology of metastases is needed to improve treatment outcomes. Herein, a highly metastatic human CCA subline, KKU-213L5 from an original cell line, KKU-213 that has marginally metastatic ability, was established and characterized. KKU-213L5 was selected in vivo through the fifth serial passage of pulmonary metastasized tissues via tail-vein injection in NOD/scid/Jak3 mice. The metastatic abilities of the KKU-213L5 cells were compared with the parental line in vitro and in vivo. The expression profile of this metastatic cell line was determined using real-time PCR. KKU-213L5 cells were found to possess higher metastatic phenotypes, i.e., growth rates, stem cell surface markers (CD133), migration and invasion characteristics when compared with the parental cells. Compared to the KKU-213 cells, KKU-213L5 cells formed larger tumors in subcutaneous xenografted mice and had a >10-fold increase in lung metastases in the tail-vein injected metastatic mouse model. Mice injected intravenously with KKU-213L5 cells had a significantly shorter survival. Analysis of the expressed genes related to progression of cancer revealed significant upregulation of anterior gradient protein-2 (AGR2) and suppression of KiSS-1 in the KKU-213L5 cells. The association of these two genes with metastasis was affirmed in CCA patient tissues since increased AGR2 expression and decreased KiSS-1 expression were found in higher stage patient tumors. In conclusion, a highly metastatic human CCA cell line was established and characterized. It is plausible that the differential expression between the parental KKU-213 and highly metastatic KKU-213L5 cells may be beneficial to classify novel genes associated with metastasis. The KKU-213L5 cell line should serve as a valued device for discovering the molecular mechanisms of CCA metastasis and enabling the search for an effective therapy for the unmet clinical need in CCA.

Tu MJ, Pan YZ, Qiu JX, et al.
MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis.
Oncotarget. 2016; 7(29):45547-45561 [PubMed] Free Access to Full Article Related Publications
Pancreatic cancer is the fourth leading cause of cancer death in the United States. Better understanding of pancreatic cancer biology may help identify new oncotargets towards more effective therapies. This study investigated the mechanistic actions of microRNA-1291 (miR-1291) in the suppression of pancreatic tumorigenesis. Our data showed that miR-1291 was downregulated in a set of clinical pancreatic carcinoma specimens and human pancreatic cancer cell lines. Restoration of miR-1291 expression inhibited pancreatic cancer cell proliferation, which was associated with cell cycle arrest and enhanced apoptosis. Furthermore, miR-1291 sharply suppressed the tumorigenicity of PANC-1 cells in mouse models. A proteomic profiling study revealed 32 proteins altered over 2-fold in miR-1291-expressing PANC-1 cells that could be assembled into multiple critical pathways for cancer. Among them anterior gradient 2 (AGR2) was reduced to the greatest degree. Through computational and experimental studies we further identified that forkhead box protein A2 (FOXA2), a transcription factor governing AGR2 expression, was a direct target of miR-1291. These results connect miR-1291 to the FOXA2-AGR2 regulatory pathway in the suppression of pancreatic cancer cell proliferation and tumorigenesis, providing new insight into the development of miRNA-based therapy to combat pancreatic cancer.

Vitello EA, Quek SI, Kincaid H, et al.
Cancer-secreted AGR2 induces programmed cell death in normal cells.
Oncotarget. 2016; 7(31):49425-49434 [PubMed] Free Access to Full Article Related Publications
Anterior Gradient 2 (AGR2) is a protein expressed in many solid tumor types including prostate, pancreatic, breast and lung. AGR2 functions as a protein disulfide isomerase in the endoplasmic reticulum. However, AGR2 is secreted by cancer cells that overexpress this molecule. Secretion of AGR2 was also found in salamander limb regeneration. Due to its ubiquity, tumor secretion of AGR2 must serve an important role in cancer, yet its molecular function is largely unknown. This study examined the effect of cancer-secreted AGR2 on normal cells. Prostate stromal cells were cultured, and tissue digestion media containing AGR2 prepared from prostate primary cancer 10-076 CP and adenocarcinoma LuCaP 70CR xenograft were added. The control were tissue digestion media containing no AGR2 prepared from benign prostate 10-076 NP and small cell carcinoma LuCaP 145.1 xenograft. In the presence of tumor-secreted AGR2, the stromal cells were found to undergo programmed cell death (PCD) characterized by formation of cellular blebs, cell shrinkage, and DNA fragmentation as seen when the stromal cells were UV irradiated or treated by a pro-apoptotic drug. PCD could be prevented with the addition of the monoclonal AGR2-neutralizing antibody P3A5. DNA microarray analysis of LuCaP 70CR media-treated vs. LuCaP 145.1 media-treated cells showed downregulation of the gene SAT1 as a major change in cells exposed to AGR2. RT-PCR analysis confirmed the array result. SAT1 encodes spermidine/spermine N1-acetyltransferase, which maintains intracellular polyamine levels. Abnormal polyamine metabolism as a result of altered SAT1 activity has an adverse effect on cells through the induction of PCD.

Zakaria R, Platt-Higgins A, Rathi N, et al.
Metastasis-inducing proteins are widely expressed in human brain metastases and associated with intracranial progression and radiation response.
Br J Cancer. 2016; 114(10):1101-8 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Understanding the factors that drive recurrence and radiosensitivity in brain metastases would improve prediction of outcomes, treatment planning and development of therapeutics. We investigated the expression of known metastasis-inducing proteins in human brain metastases.
METHODS: Immunohistochemistry on metastases removed at neurosurgery from 138 patients to determine the degree and pattern of expression of the proteins S100A4, S100P, AGR2, osteopontin (OPN) and the DNA repair marker FANCD2. Validation of significant findings in a separate prospective series with the investigation of intra-tumoral heterogeneity using image-guided sampling. Assessment of S100A4 expression in brain metastatic and non-metastatic primary breast carcinomas.
RESULTS: There was widespread staining for OPN, S100A4, S100P and AGR2 in human brain metastases. Positive staining for S100A4 was independently associated with a shorter time to intracranial progression after resection in multivariate analysis (hazard ratio for negative over positive staining=0.17, 95% CI: 0.04-0.74, P=0.018). S100A4 was expressed at the leading edge of brain metastases in image guided sampling and overexpressed in brain metastatic vs non-brain metastatic primary breast carcinomas. Staining for OPN was associated with a significant increase in survival time after post-operative whole-brain radiotherapy in retrospective (OPN negative 3.43 months, 95% CI: 1.36-5.51 vs OPN positive, 11.20 months 95% CI: 7.68-14.72, Log rank test, P<0.001) and validation populations.
CONCLUSIONS: Proteins known to be involved in cellular adhesion and migration in vitro, and metastasis in vivo are significantly expressed in human brain metastases and may be useful biomarkers of intracranial progression and radiosensitivity.

Matsuda Y, Miura K, Yamane J, et al.
SERPINI1 regulates epithelial-mesenchymal transition in an orthotopic implantation model of colorectal cancer.
Cancer Sci. 2016; 107(5):619-28 [PubMed] Free Access to Full Article Related Publications
An increasingly accepted concept is that the progression of colorectal cancer is accompanied by epithelial-mesenchymal transition (EMT). In our study, in order to characterize the properties of EMT in 16 colorectal cancer cell lines, the cells were first orthotopically implanted into nude mice, and the tumors in vivo, as well as cells cultured in vitro, were immunostained for EMT markers. The immunostaining revealed that seven of the cells had an epithelial phenotype with a high expression of E-cadherin, whereas other cells showed opposite patterns, such as a high expression of vimentin (CX-1, COLO205, CloneA, HCT116, and SW48). Among the cells expressing vimentin, some expressed vimentin in the orthotopic tumors but not in the cultured cells (SW480, SW620, and COLO320). We evaluated these findings in combination with microarray analyses, and selected five genes: CHST11, SERPINI1, AGR2, FBP1, and FOXA1. Next, we downregulated the expression of SERPINI1 with siRNA in the cells, the results of which showed reverse-EMT changes at the protein level and in the cellular morphology. Along with immunohistochemical analyses, we confirmed the effect of the intracellular and secreted SERPINI1 protein of SW620 cells, which supported the importance of SERPINI1 in EMT. The development of therapeutic strategies targeting EMT is ongoing, including methods targeting the transforming growth factor-β signaling pathway as well as the Wnt pathway. SERPINI1 is an important regulator of EMT. Our findings help to elucidate the signaling pathways of EMT, hopefully clarifying therapeutic pathways as well.

Willis S, Villalobos VM, Gevaert O, et al.
Single Gene Prognostic Biomarkers in Ovarian Cancer: A Meta-Analysis.
PLoS One. 2016; 11(2):e0149183 [PubMed] Free Access to Full Article Related Publications
PURPOSE: To discover novel prognostic biomarkers in ovarian serous carcinomas.
METHODS: A meta-analysis of all single genes probes in the TCGA and HAS ovarian cohorts was performed to identify possible biomarkers using Cox regression as a continuous variable for overall survival. Genes were ranked by p-value using Stouffer's method and selected for statistical significance with a false discovery rate (FDR) <.05 using the Benjamini-Hochberg method.
RESULTS: Twelve genes with high mRNA expression were prognostic of poor outcome with an FDR <.05 (AXL, APC, RAB11FIP5, C19orf2, CYBRD1, PINK1, LRRN3, AQP1, DES, XRCC4, BCHE, and ASAP3). Twenty genes with low mRNA expression were prognostic of poor outcome with an FDR <.05 (LRIG1, SLC33A1, NUCB2, POLD3, ESR2, GOLPH3, XBP1, PAXIP1, CYB561, POLA2, CDH1, GMNN, SLC37A4, FAM174B, AGR2, SDR39U1, MAGT1, GJB1, SDF2L1, and C9orf82).
CONCLUSION: A meta-analysis of all single genes identified thirty-two candidate biomarkers for their possible role in ovarian serous carcinoma. These genes can provide insight into the drivers or regulators of ovarian cancer and should be evaluated in future studies. Genes with high expression indicating poor outcome are possible therapeutic targets with known antagonists or inhibitors. Additionally, the genes could be combined into a prognostic multi-gene signature and tested in future ovarian cohorts.

Hu R, Huffman KE, Chu M, et al.
Quantitative Secretomic Analysis Identifies Extracellular Protein Factors That Modulate the Metastatic Phenotype of Non-Small Cell Lung Cancer.
J Proteome Res. 2016; 15(2):477-86 [PubMed] Free Access to Full Article Related Publications
Lung cancer is the leading cause of cancer-related deaths for men and women in the United States, with non-small cell lung cancer (NSCLC) representing 85% of all diagnoses. Late stage detection, metastatic disease and lack of actionable biomarkers contribute to the high mortality rate. Proteins in the extracellular space are known to be critically involved in regulating every stage of the pathogenesis of lung cancer. To investigate the mechanism by which secreted proteins contribute to the pathogenesis of NSCLC, we performed quantitative secretomic analysis of two isogenic NSCLC cell lines (NCI-H1993 and NCI-H2073) and an immortalized human bronchial epithelial cell line (HBEC3-KT) as control. H1993 was derived from a chemo-naïve metastatic tumor, while H2073 was derived from the primary tumor after etoposide/cisplatin therapy. From the conditioned media of these three cell lines, we identified and quantified 2713 proteins, including a series of proteins involved in regulating inflammatory response, programmed cell death and cell motion. Gene Ontology (GO) analysis indicates that a number of proteins overexpressed in H1993 media are involved in biological processes related to cancer metastasis, including cell motion, cell-cell adhesion and cell migration. RNA interference (RNAi)-mediated knock down of a number of these proteins, including SULT2B1, CEACAM5, SPRR3, AGR2, S100P, and S100A14, leads to dramatically reduced migration of these cells. In addition, meta-analysis of survival data indicates NSCLC patients whose tumors express higher levels of several of these secreted proteins, including SULT2B1, CEACAM5, SPRR3, S100P, and S100A14, have a worse prognosis. Collectively, our results provide a potential molecular link between deregulated secretome and NSCLC cell migration/metastasis. In addition, the identification of these aberrantly secreted proteins might facilitate the development of biomarkers for early detection of this devastating disease.

Hrstka R, Bouchalova P, Michalova E, et al.
AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway.
Mol Oncol. 2016; 10(5):652-62 [PubMed] Free Access to Full Article Related Publications
The tumor suppressor p53 plays a key role in malignant transformation and tumor development. However, the frequency of p53 mutations within individual types of cancer is different, suggesting the existence of other mechanisms attenuating p53 tumor suppressor activity. Changes in upstream regulators of p53 such as MDM2 amplification and overexpression, expression of viral oncoproteins, estrogen receptor signaling, or changes in p53 transcriptional target genes were previously described in wild-type p53 tumors. We identified a novel pathway responsible for attenuation of p53 activity in human cancers. We demonstrate that AGR2, which is overexpressed in a variety of human cancers and provides a poor prognosis, up-regulates DUSP10 which subsequently inhibits p38 MAPK and prevents p53 activation by phosphorylation. Analysis of human breast cancers reveals that AGR2 specifically provides a poor prognosis in ER+ breast cancers with wild-type p53 but not ER- or mutant p53 breast cancers, and analysis of independent data sets show that DUSP10 levels also have prognostic significance in this specific sub-group of patients. These data not only reveal a novel pro-oncogenic signaling pathway mediating resistance to DNA damaging agents in human tumors, but also has implications for designing alternative strategies for modulation of wild-type p53 activity in cancer therapy.

Xu C, Liu Y, Xiao L, et al.
The involvement of anterior gradient 2 in the stromal cell-derived factor 1-induced epithelial-mesenchymal transition of glioblastoma.
Tumour Biol. 2016; 37(5):6091-7 [PubMed] Related Publications
In recent years, it has been widely identified that the stromal cell-derived factor 1 (SDF-1) and anterior gradient 2 (AGR2) were implicated in the development of epithelial-mesenchymal transition (EMT) in a variety of cancers. However, the involvement of SDF-1-AGR2 pathway in the EMT of glioblastoma has not been investigated. In the present study, the in vitro assays were used to investigate the role of AGR2 in cell cycle, migration, and invasion. We found that the expressions of AGR2 and chemokine (C-X-C motif) receptor 4 (CXCR4) were obviously upregulated in glioblastoma cells T98G, A172, U87, and U251 than those in normal human astrocytes (NHA) (all p < 0.01), among which both U87 and U251 cells presented the highest expression (p > 0.05). Western blot revealed that SDF-1 induced the expression of p-AKT, AGR2, and EMT markers (N-cadherin, matrix metalloproteinase-2 (MMP2), and Slug) in a dose-dependent manner in U87 and U251 cells. However, the depletion of AGR2 reversed SDF-1-induced upregulation of EMT markers rather than p-AKT. Furthermore, functional analysis identified that knockdown of AGR2 induced cell cycle arrest in G0/G1 phase and suppressed the migration and invasion of U87 and U251 cells. Taken together, SDF-1-CXCR4 pathway induced the expression of AGR2 to control the progression of EMT likely via AKT pathway in the development of glioblastoma. Our findings lay a promising foundation for the SDF-1-AGR2 axis-targeting therapy in patients with glioblastoma.

Jézéquel P, Sharif Z, Lasla H, et al.
Gene-expression signature functional annotation of breast cancer tumours in function of age.
BMC Med Genomics. 2015; 8:80 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Breast cancer biological characteristics change as age advances. Today, there is a lack of knowledge regarding age-specific molecular alterations that characterize breast tumours, notably in elderly patients. The vast majority of studies that aimed at exploring breast cancer in function of age are based on clinico-pathological data. Gene-expression signatures (GES), which in some ways capture biological information in a non-reductionist manner, represent powerful tools able to explore tumour heterogeneity.
METHODS: Twenty-five GES were used for functional annotation of breast tumours in function of age: five for molecular subtyping, seven for immune response, three for metabolism, seven for critical pathways in cancer and three for prognosis. Affymetrix® genomics datasets were exclusively used to avoid cross-platform normalization issues. Available corresponding clinico-pathological data were also retrieved and analysed.
RESULTS: Fifteen publicly available datasets were pooled for a total of 2378 breast cancer patients (whole cohort), out of whom 1413 were of Caucasian origin. Three age groups were defined: ≤ 40 years (AG1), > 40 to < 70 years (AG2) and ≥ 70 years (AG3). We confirmed that age influenced the incidence of molecular subtypes. We found a significant growing incidence of luminal B and a decreasing kinetics for basal-like in function of age. We showed that AG3 luminal B tumours were less aggressive than AG1 luminal B tumours based on different GES (iron metabolism, mitochondrial oxidative phosphorylation and reactive stroma), recurrence score prognostic GES and histological grade (SBR). Contrary to tumours of young patients, tumours of elderly patients concentrated favourable GES scores: high oestrogen receptor and mitochondrial oxidative phosphorylation, low proliferation, basal-like, glycolysis, chromosomal instability and iron metabolism, and low GES prognostic scores (van't Veer 70-GES, genomic grade index and recurrence score).
CONCLUSIONS: Functional annotation of breast tumours by means of 25 GES demonstrated a decreasing aggressiveness of breast tumours in function of age. This strategy, which can be strengthened by increasing the number of representative GES to gain more insight into biological systems involved in this disease, provides a framework to develop rational therapeutic strategies in function of age.

Alavi M, Mah V, Maresh EL, et al.
High expression of AGR2 in lung cancer is predictive of poor survival.
BMC Cancer. 2015; 15:655 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Anterior gradient 2 (AGR2) is a protein disulfide isomerase-like protein widely expressed in many normal tissues as well as cancers. In our study, non-neoplastic bronchial epithelial cells as well as non-small cell lung cancer (NSCLC) cells express AGR2 protein.
METHODS: AGR2 expression was analyzed on lung tissue microarrays. Tumor staining was correlated with clinical outcomes.
RESULTS: On a lung cancer tissue microarray using immunohistochemistry, expression levels in cancer showed generally decreasing intensities in order from adenocarcinomas with mucinous components, other adenocarcinomas, squamous carcinomas, to large cell carcinomas. The study cohort was comprised of 400 cases. As a group, there was a slight trend of lower expression with increasing tumor grade. AGR2 expression level was a significant predictor of overall survival in younger patients only. Patients under 65 with lower levels showed a significantly better survival for both men and women. Patients over 65, in contrast, showed no such trend.
CONCLUSIONS: Nearly all NSCLC tumors show AGR2 expression. Lung cancer expression of AGR2 has prognostic value for younger patients.

Zhang M, Ye G, Li J, Wang Y
Recent advance in molecular angiogenesis in glioblastoma: the challenge and hope for anti-angiogenic therapy.
Brain Tumor Pathol. 2015; 32(4):229-36 [PubMed] Related Publications
Glioblastoma (GBM) is the most highly malignant brain tumor in the human central nerve system. In this paper, we review new and significant molecular findings on angiogenesis and possible resistance mechanisms. Expression of a number of genes and regulators has been shown to be upregulated in GBM microvessel cells, such as interleukin-8, signal transducer and activator of transcription 3, Tax-interacting protein-1, hypoxia induced factor-1 and anterior gradient protein 2. The regulator factors that may strongly promote angiogenesis by promoting endothelial cell metastasis, changing the microenvironment, enhancing the ability of resistance to anti-angiogenic therapy, and that inhibit angiogenesis are reviewed. Based on the current knowledge, several potential targets and strategies are proposed for better therapeutic outcomes, such as its mRNA interference of DII4-Notch signaling pathway and depletion of b1 integrin expression. We also discuss possible mechanisms underlying the resistance to anti-angiogenesis and future directions and challenges in developing new targeted therapy for GBM.

Noguchi S, Eitoku M, Moriya S, et al.
Regulation of Gene Expression by Sodium Valproate in Epithelial-to-Mesenchymal Transition.
Lung. 2015; 193(5):691-700 [PubMed] Related Publications
PURPOSE: Epithelial-to-mesenchymal transition (EMT) is an important mechanism in cancer metastasis and pulmonary fibrosis. Previous studies demonstrated effect of histone H3 and H4 acetylation in cancer and pulmonary fibrosis, so we hypothesized that histone modification might play a crucial role in gene regulation during EMT. In this study, we investigated the mechanism behind EMT by analyzing comprehensive gene expression and the effect of sodium valproate (VPA), a class I histone deacetylase inhibitory drug, on histone modification.
METHODS: EMT was induced in human alveolar epithelial cells (A549) using 5 ng/mL of transforming growth factor (TGF)-β1. Various concentrations of VPA were then administered, and Western blotting was used to analyze histone acetylation or methylation. Comprehensive gene expression analysis was carried out by RNA sequencing, and chromatin immunoprecipitation was performed with an anti-acetyl histone H3 lysine 27 antibody.
RESULTS: TGF-β1 stimulation led to a decrease in histone acetylation, especially that of histone H3K27, and H3K27ac localization was decreased at particular gene loci. This decrease was recovered by VPA treatment, which also up-regulated the mRNA expression of genes down-regulated by TGF-β1, and correlated with the localization of H3K27ac. However, genes up-regulated by TGF-β1 stimulation were not suppressed by VPA, with the exception of COL1A1.
CONCLUSIONS: Histone acetylation was down-regulated by TGF-β1 stimulation in A549 cells. VPA partially inhibited EMT and the decrease of histone acetylation, which plays an important role in the progression of EMT.

Li Z, Wu Z, Chen H, et al.
Induction of anterior gradient 2 (AGR2) plays a key role in insulin-like growth factor-1 (IGF-1)-induced breast cancer cell proliferation and migration.
Med Oncol. 2015; 32(6):577 [PubMed] Free Access to Full Article Related Publications
Anterior gradient 2 (AGR2) is a promising anti-tumor target associated with estrogen receptor expression and metastatic progression of breast cancer. Insulin-like growth factor-1 (IGF-1) is another potent factor that stimulates breast cancer progression and mediates anti-estrogen drug resistance. However, the precise mechanism and connections between these two factors in breast cancer drug resistance have not been fully elucidated. Here, for the first time, we decipher that IGF-1 remarkably induces AGR2 in the MCF7 cell line, through an estrogen response element (ERE) between -802 and -808 bp and a leucine zipper transcription factor-binding site located between -972 and -982 bp on the AGR2 promoter. We also found that the ERK1/2 and AKT pathways mediate estrogen receptor-α at the upstream of ERE and that the JNK pathway activates the leucine zipper site through the c-Jun/c-Fos complex. Additionally, our data suggest that knockdown of AGR2 reduces IGF-1-induced cell proliferation, migration and cell cycle progression. Therefore, we report that AGR2 is a key modulator involved in IGF-1-induced breast cancer development. We propose that the identification of the mechanism linking the IGF-1/insulin signal and AGR2 promoter activation is important, because it provides insights into the development of anti-breast cancer drugs.

Brychtova V, Mohtar A, Vojtesek B, Hupp TR
Mechanisms of anterior gradient-2 regulation and function in cancer.
Semin Cancer Biol. 2015; 33:16-24 [PubMed] Related Publications
Proteins targeted to secretory pathway enter the endoplasmic reticulum where they undergo post-translational modification and subsequent quality control executed by exquisite catalysts of protein folding, protein disulphide isomerases (PDIs). These enzymes can often provide strict conformational protein folding solutions to highly cysteine-rich cargo as they facilitate disulphide rearrangement in the endoplasmic reticulum. Under conditions when PDI substrates are not isomerised properly, secreted proteins can accumulate in the endoplasmic reticulum leading to endoplasmic reticulum stress initiation with implications for human disease development. Anterior Gradient-2 (AGR2) is an endoplasmic reticulum-resident PDI superfamily member that has emerged as a dominant effector of basic biological properties in vertebrates including blastoderm formation and limb regeneration. AGR2 perturbation in mammals influences disease processes including cancer progression and drug resistance, asthma, and inflammatory bowel disease. This review will focus on the molecular characteristics, function, and regulation of AGR2, views on its emerging biological functions and misappropriation in disease, and prospects for therapeutic intervention into endoplasmic reticulum-resident protein folding pathways for improving the treatment of human disease.

Garczyk S, von Stillfried S, Antonopoulos W, et al.
AGR3 in breast cancer: prognostic impact and suitable serum-based biomarker for early cancer detection.
PLoS One. 2015; 10(4):e0122106 [PubMed] Free Access to Full Article Related Publications
Blood-based early detection of breast cancer has recently gained novel momentum, as liquid biopsy diagnostics is a fast emerging field. In this study, we aimed to identify secreted proteins which are up-regulated both in tumour tissue and serum samples of breast cancer patients compared to normal tissue and sera. Based on two independent tissue cohorts (n = 75 and n = 229) and one serum cohort (n = 80) of human breast cancer and healthy serum samples, we characterised AGR3 as a novel potential biomarker both for breast cancer prognosis and early breast cancer detection from blood. AGR3 expression in breast tumours is significantly associated with oestrogen receptor α (P<0.001) and lower tumour grade (P<0.01). Interestingly, AGR3 protein expression correlates with unfavourable outcome in low (G1) and intermediate (G2) grade breast tumours (multivariate hazard ratio: 2.186, 95% CI: 1.008-4.740, P<0.05) indicating an independent prognostic impact. In sera analysed by ELISA technique, AGR3 protein concentration was significantly (P<0.001) elevated in samples from breast cancer patients (n = 40, mainly low stage tumours) compared to healthy controls (n = 40). To develop a suitable biomarker panel for early breast cancer detection, we measured AGR2 protein in human serum samples in parallel. The combined AGR3/AGR2 biomarker panel achieved a sensitivity of 64.5% and a specificity of 89.5% as shown by receiver operating characteristic (ROC) curve statistics. Thus our data clearly show the potential usability of AGR3 and AGR2 as biomarkers for blood-based early detection of human breast cancer.

Ma SR, Wang WM, Huang CF, et al.
Anterior gradient protein 2 expression in high grade head and neck squamous cell carcinoma correlated with cancer stem cell and epithelial mesenchymal transition.
Oncotarget. 2015; 6(11):8807-21 [PubMed] Free Access to Full Article Related Publications
Anterior gradient protein 2 (AGR2) is a novel biomarker with potential oncogenic role. We sought to investigate the diagnostic and prognostic role of AGR2 on head and neck squamous cell carcinoma (HNSCC) with an emphasis on its correlation of cancer stemloid cells (CSC) and epithelial mesenchymal transition (EMT). We found that AGR2 protein levels were higher in HNSCC than in normal oral mucosa. High levels of AGR2 were associated with the T category, pathological grade and lymph node metastasis of HNSCC. Expression of AGR2 increased in recurring HNSCC after radiotherapy and in post cisplatin-based chemotherapeutic tissues. In HNSCC cell lines, knock-down of AGR2 induced apoptosis, reduced sphere formation, and down-regulated Survivin, Cyclin D1, Bcl2, Bcl2l1, Slug, Snail, Nanog and Oct4. In addition, over-expressed AGR2 in transgenic mice with spontaneous HNSCC was associated with lost function of Tgfbr1 and/ or lost function of Pten. In vitro knockdown TGFBR1 in HNSCC cell lines increased AGR2 expression. These results suggest that AGR2 is involved in EMT and self-renewal of CSC and may present a potential therapeutic target (oncotarget) for HNSCC.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. AGR2, Cancer Genetics Web: http://www.cancer-genetics.org/AGR2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999