Gene Summary

Gene:BAX; BCL2 associated X, apoptosis regulator
Aliases: BCL2L4
Summary:The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form hetero- or homodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein forms a heterodimer with BCL2, and functions as an apoptotic activator. This protein is reported to interact with, and increase the opening of, the mitochondrial voltage-dependent anion channel (VDAC), which leads to the loss in membrane potential and the release of cytochrome c. The expression of this gene is regulated by the tumor suppressor P53 and has been shown to be involved in P53-mediated apoptosis. Multiple alternatively spliced transcript variants, which encode different isoforms, have been reported for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:apoptosis regulator BAX
Source:NCBIAccessed: 11 March, 2017


What does this gene/protein do?
Show (95)
Pathways:What pathways are this gene/protein implicaed in?
Show (10)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 11 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 11 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (9)

Latest Publications: BAX (cancer-related)

Zhao Y, Yang F, Li W, et al.
miR-29a suppresses MCF-7 cell growth by downregulating tumor necrosis factor receptor 1.
Tumour Biol. 2017; 39(2):1010428317692264 [PubMed] Related Publications
Tumor necrosis factor receptor 1 is the main receptor mediating many tumor necrosis factor-alpha-induced cellular events. Some studies have shown that tumor necrosis factor receptor 1 promotes tumorigenesis by activating nuclear factor-kappa B signaling pathway, while other studies have confirmed that tumor necrosis factor receptor 1 plays an inhibitory role in tumors growth by inducing apoptosis in breast cancer. Therefore, the function of tumor necrosis factor receptor 1 in breast cancer requires clarification. In this study, we first found that tumor necrosis factor receptor 1 was significantly increased in human breast cancer tissues and cell lines, and knockdown of tumor necrosis factor receptor 1 by small interfering RNA inhibited cell proliferation by arresting the cell cycle and inducing apoptosis. In addition, miR-29a was predicted as a regulator of tumor necrosis factor receptor 1 by TargetScan and was shown to be inversely correlated with tumor necrosis factor receptor 1 expression in human breast cancer tissues and cell lines. Luciferase reporter assay further confirmed that miR-29a negatively regulated tumor necrosis factor receptor 1 expression by binding to the 3' untranslated region. In our functional study, miR-29a overexpression remarkably suppressed cell proliferation and colony formation, arrested the cell cycle, and induced apoptosis in MCF-7 cell. Furthermore, in combination with tumor necrosis factor receptor 1 transfection, miR-29a significantly reversed the oncogenic role caused by tumor necrosis factor receptor 1 in MCF-7 cell. In addition, we demonstrated that miR-29a suppressed MCF-7 cell growth by inactivating the nuclear factor-kappa B signaling pathway and by decreasing cyclinD1 and Bcl-2/Bax protein levels. Taken together, our results suggest that miR-29a is an important regulator of tumor necrosis factor receptor 1 expression in breast cancer and functions as a tumor suppressor by targeting tumor necrosis factor receptor 1 to influence the growth of MCF-7 cell.

Dai L, Wang G, Pan W
Andrographolide Inhibits Proliferation and Metastasis of SGC7901 Gastric Cancer Cells.
Biomed Res Int. 2017; 2017:6242103 [PubMed] Free Access to Full Article Related Publications
To explore the mechanisms by which andrographolide inhibits gastric cancer cell proliferation and metastasis, we employed the gastric cell line SGC7901 to investigate the anticancer effects of andrographolide. The cell survival ratio, cell migration and invasion, cell cycle, apoptosis, and matrix metalloproteinase activity were assessed. Moreover, western blotting and real-time PCR were used to examine the protein expression levels and the mRNA expression levels, respectively. The survival ratio of cells decreased with an increasing concentration of andrographolide in a dose-dependent manner. Consistent results were also obtained using an apoptosis assay, as detected by flow cytometry. The cell cycle was blocked at the G2/M2 phase by andrographolide treatment, and the proportion of cells arrested at G1/M was enhanced as the dose increased. Similarly, wound healing and Transwell assays showed reduced migration and invasion of the gastric cancer cells at various concentrations of andrographolide. Andrographolide can inhibit cell proliferation, invasion, and migration, block the cell cycle, and promote apoptosis in SGC7901 cells. The mechanisms may include upregulated expression of Timp-1/2, cyclin B1, p-Cdc2, Bax, and Bik and downregulated expression of MMP-2/9 and antiapoptosis protein Bcl-2.

Shen L, Zhang G, Lou Z, et al.
Cryptotanshinone enhances the effect of Arsenic trioxide in treating liver cancer cell by inducing apoptosis through downregulating phosphorylated- STAT3 in vitro and in vivo.
BMC Complement Altern Med. 2017; 17(1):106 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Arsenic trioxide (ATO) is approved for treating terminal-stage liver cancer in China. Cryptotanshinone (CT), a STAT3 inhibitor, has exhibited certain anti-tumor potency; however, the use of CT enhanced ATO for treating liver cancer has not been reported. Here we try to elucidate how CT could enhance the efficacy of ATO for treating liver cancer and its correlation to STAT3 in vitro and in vivo.
METHODS: Cell viability of ATO combined with CT was assessed by (1)MTT assay. Cell apoptosis induced by ATO combined with CT was detected by Annexin V/PI staining and apoptosis-related proteins were detected by western blotting. STAT3-related proteins were analysis by western blotting analysis and Immunofluorescence assays. Efficacy evaluation of ATO combined with CT on xenograft was carried in nude mice and related proteins were analysis by Immunohistochemistry assays.
RESULTS: First we evaluated cell vitality, and our data indicated that the ATO combined with CT showed obvious growth inhibition of Bel-7404 cells compared to ATO or CT alone. Next we found that ATO combined with CT induced cell apoptosis in Bel-7404 cells and upregulated the activation of apoptosis-related proteins cleaved-caspase-3, cleaved-caspase-9, and cleaved-poly(ADP-ribose) polymerase in a time-dependent manner. Next, we found that ATO combined with CT not only inhibited the constitutive levels of phosphorylated-JAK2 and phosphorylated-STAT3(Tyr705) but did so in a time-dependent manner. We also found that ATO combined with CT reversed the upregulated expression of phosphorylated-STAT3(Tyr705) stimulated by interleukin-6 and downregulated STAT3 direct target genes and the anti-apoptotic proteins Bcl-2, XIAP, and survivin but obviously upregulated the promoting apoptosis proteins Bak,.In vivo studies showed that ATO combined with CT decreased tumor growth. Tumors from ATO combined with CT-treated mice showed decreased levels of phosphorylated-STAT3(Tyr705) and the anti-apoptotic protein Bcl-2 but an increased level of pro-apoptotic protein Bax.
CONCLUSIONS: Our study provides strong evidence that CT could enhance the efficacy of ATO in treating liver cancer both in vitro and in vivo. Downregulation of phosphorylated-STAT3 expression may play an important role in inducing apoptosis of Bel-7404 cells.

Murai S, Matuszkiewicz J, Okuzono Y, et al.
Aurora B Inhibitor TAK-901 Synergizes with BCL-xL Inhibition by Inducing Active BAX in Cancer Cells.
Anticancer Res. 2017; 37(2):437-444 [PubMed] Related Publications
BACKGROUND: Aurora B kinase plays an essential role in chromosome segregation and cytokinesis, and is dysregulated in many cancer types, making it an attractive therapeutic target. TAK-901 is a potent aurora B inhibitor that showed efficacy in both in vitro and in vivo oncology models.
MATERIALS AND METHODS: We conducted a synthetic lethal siRNA screening to identify the genes that, when silenced, can potentiate the cell growth-inhibitory effect of TAK-901.
RESULTS: B-cell lymphoma-extra large (BCL-xL) depletion by siRNA or chemical inhibition synergized with TAK-901 in cancer cell lines. As a mechanism of synthetic lethality, active BCL2 associated X, apoptosis regulator (BAX) was induced by TAK-901. BCL-xL protected cells from BAX-dependent apoptosis induction. Therefore, TAK-901 sensitizes cancer cells to BCL-xL inhibition.
CONCLUSION: Polyploid cells induced by TAK-901 are vulnerable to BCL-xL inhibition. Our findings may have an impact on combination strategies with aurora B inhibitors in clinical studies.

Bastos V, Ferreira-de-Oliveira JM, Carrola J, et al.
Coating independent cytotoxicity of citrate- and PEG-coated silver nanoparticles on a human hepatoma cell line.
J Environ Sci (China). 2017; 51:191-201 [PubMed] Related Publications
The antibacterial potential of silver nanoparticles (AgNPs) resulted in their increasing incorporation into consumer, industrial and biomedical products. Therefore, human and environmental exposure to AgNPs (either as an engineered product or a contaminant) supports the emergent research on the features conferring them different toxicity profiles. In this study, 30nm AgNPs coated with citrate or poly(ethylene glycol) (PEG) were used to assess the influence of coating on the effects produced on a human hepatoma cell line (HepG2), namely in terms of viability, apoptosis, apoptotic related genes, cell cycle and cyclins gene expression. Both types of coated AgNPs decreased cell proliferation and viability with a similar toxicity profile. At the concentrations used (11 and 5μg/mL corresponding to IC50 and ~IC10 levels, respectively) the amount of cells undergoing apoptosis was not significant and the apoptotic related genes BCL2 (anti-apoptotic gene) and BAX (pro-apoptotic gene) were both downregulated. Moreover, both AgNPs affected HepG2 cell cycle progression at the higher concentration (11μg/mL) by increasing the percentage of cells in S (synthesis phase) and G2 (Gap 2 phase) phases. Considering the cell-cycle related genes, the expression of cyclin B1 and cyclin E1 genes were decreased. Thus, this work has shown that citrate- and PEG-coated AgNPs impact on HepG2 apoptotic gene expression, cell cycle dynamics and cyclin regulation in a similar way. More research is needed to determine the properties that confer AgNPs at lower toxicity, since their use has proved helpful in several industrial and biomedical contexts.

Zhang H, Zhong J, Bian Z, et al.
Long non-coding RNA CCAT1 promotes human retinoblastoma SO-RB50 and Y79 cells through negative regulation of miR-218-5p.
Biomed Pharmacother. 2017; 87:683-691 [PubMed] Related Publications
OBJECTIVE: To investigate the regulatory role and potential mechanism of long non-coding RNAs (lncRNA) in human retinoblastoma (RB).
METHODS: The lncRNA profile in RB tissues were analyzed by microarray and quantitative reverse transcription PCR (qRT-PCR). One of the identified lncRNAs (LncRNA CCAT1) was selected for further experiments. SO-RB50 and Y79 cells were transfected with negative control, siRNA targeting lncRNA CCAT1 (si-CCAT1) and si-CCAT1+miR218-5p inhibitor, respectively. lncRNA CCAT1 expression was measured by qRT-PCR. Cell proliferation, migration and invasion were detected by CCK8, wound scratching, and transwell assay, respectively. Apoptosis and cell cycle distribution were assessed by flow cytometry. Apoptosis- (cle-caspase-3, cle-caspase-9, Bax and Bcl-2) and cell cycle-related protein expression (cyclin B1, CDC2 and p-CDC2 (Thr161)) were analyzed by Western blot.
RESULTS: lncRNA CCAT1 expression in SO-RB50 and Y79 cells was significantly inhibited after si-CCAT1 transfection (P<0.01). Both RB cells exhibited significantly reduced proliferation, migration and invasion abilities, but markedly increased apoptosis at 48h after si-CCAT1 transfection (P<0.05 or 0.01). RB cells in si-CCAT1+miR218-5p inhibitor group had significantly higher proliferation, migration and invasion, but notably lower apoptosis compared with si-CCAT1 group at 24 and 48h after transfection (all P<0.05 or 0.01). si-CCAT1 significantly increased the expression of cle-caspase-3, cle-caspase-9, Bax, but decreased Bcl-2 expression (P<0.01). The proportion of G2/M SO-RB50 and Y79 cells in siCCAT1 group was significantly increased compared with negative control group (P<0.01). LncRNA CCAT1 interference significantly reduced the expression of cyclin B1, CDC2 and p-CDC2 (Thr161) (P<0.01).
CONCLUSION: LncRNA CCAT1 promotes the proliferation migration and invasion, and reduces cell apoptosis of SO-RB50 and Y79 cells, probably through negative modulation of miR-218-5p. Our study suggested lncRNA CCAT1 as a potential biomarker and therapeutic target for RB.

Subash-Babu P, Alshammari GM, Ignacimuthu S, Alshatwi AA
Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53.
Biomed Pharmacother. 2017; 87:388-396 [PubMed] Related Publications
Systematic analyses of plants that are used in traditional medicine may lead to the discovery of novel cytotoxic secondary metabolites. Diterpene possesses multiple bioactivities; here, epoxy clerodane diterpene (ECD) was isolated from Tinospora cordifolia (Willd.) stem and shown potential antiproliferative effect in MCF-7 human breast cancer cells. The antiproliferative effect of ECD on MCF-7 cells was systematically analyzed by cell and nuclear morphology, alterations in oxidative stress, and the expression of tumor suppressor and mitochondria-mediated apoptosis-related genes. We found that the IC50 value of ECD was 3.2μM at 24h and 2.4μM at 48h. We observed that the cytotoxicity of ECD was specific to MCF-7 cells, whereas ECD was nontoxic to normal Vero and V79 cells. ECD significantly triggered intracellular ROS generation even from the lower doses of 0.6 and 1.2μM; and it is relative to higher dose of 2.4μM. Further, we used 0.6μM, 1.2μM and 2.4μM as experimental doses to analyze the relative dose-dependent effects. Nuclear staining revealed that cells treated with the 2.4μM dose exhibited characteristic apoptotic morphological changes and that 46% of the cells were apoptotic and 4% were necrotic after 48h. ECD significantly increased the expression of mitochondria-dependent apoptotic pathway-related genes after 48h; we observed significantly (p≤0.05) increased expression of CYP1A, GPX, GSK3β and TNF-α and downregulated expression of NF-κB. ECD also increased the expression of tumor suppressor genes such as Cdkn2A, Rb1 and p53. In addition, we observed that ECD treatment significantly (p≤0.001) upregulated the expression of apoptotic genes such as Bax, cas-3, cas-8, cas-9 and p21 and downregulated the expression of BCL-2, mdm2 and PCNA. In conclusion, ECD regulates the expression of Cdkn2A, p53 and mdm2 and induces apoptosis via the mitochondrial pathway in MCF-7 human breast cancer cells.

Oliveira C, Lourenço GJ, Rinck-Junior JA, et al.
Polymorphisms in apoptosis-related genes in cutaneous melanoma prognosis: sex disparity.
Med Oncol. 2017; 34(2):19 [PubMed] Related Publications
Cutaneous melanoma (CM) cells are resistant to apoptosis, and steroid hormones are involved in this process through regulation of TP53, MDM2, BAX, and BCL2 expression. We analyzed herein sex differences in outcomes of CM patients associated with TP53 c.215G>C, MDM2 c.309T>G, BAX c.-248G>A, and BCL2 c.-717C>A polymorphisms. DNA from 121 men and 116 women patients was analyzed by polymerase chain reaction and enzymatic digestion assays. At 60 months of follow-up, shorter progression-free survival (PFS) was seen in males with MDM2 GG + BCL2 AA (20.0 vs. 62.6%, P = 0.0008) genotype. Men carriers of the genotype had poor PFS (HR 3.78, 95% CI 1.30-11.0) than others. For women, shorter PFS was associated with TP53 GC or CC (61.4 vs. 80.8%, P = 0.01) and TP53 GC or CC + MDM2 TG or GG (59.1 vs. 85.4%, P = 0.01) genotypes at the same time. Women carriers of the genotypes had poor PFS (HR 2.46, 95% CI 1.19-5.09; HR 9.49, 95% CI 1.14-78.50) than others, respectively. Our data present, for the first time, preliminary evidence that inherited abnormalities on TP53, MDM2 and BCL2 genes, enrolled in apoptosis pathways, have a pivotal role in differences of outcomes in women and men with CM.

Wang Y, Chen Y, Zhang X, et al.
Tricholoma matsutake Aqueous Extract Induces Hepatocellular Carcinoma Cell Apoptosis via Caspase-Dependent Mitochondrial Pathway.
Biomed Res Int. 2016; 2016:9014364 [PubMed] Free Access to Full Article Related Publications
Tricholoma matsutake, one of widely accepted functional mushrooms, possesses various pharmacological activities, and its antitumor effect has become an important research point. Our study aims to evaluate the cytotoxicity activities of T. matsutake aqueous extract (TM) in HepG2 and SMMC-7721 cells. In in vitro experiments, TM strikingly reduced cell viability, promoted cell apoptosis, inhibited cell migration ability, induced excessive generation of ROS, and caused caspases cascade and mitochondrial membrane potential dissipation in hepatocellular carcinoma cells. In in vivo experiments, 14-day TM treatment strongly suppressed tumor growth in HepG2 and SMMC-7721-xenografted nude mice without influence on their body weights and liver function. Furthermore, TM increased the levels of cleaved poly-ADP-ribose polymerase (PARP), Bad, and Bax and reduced the expressions of B-cell lymphoma 2 (Bcl-2) in treated cells and tumor tissues. All aforementioned results suggest that caspase-dependent mitochondrial apoptotic pathways are involved in TM-mediated antihepatocellular carcinoma.

Dong Z, Zhao L, Lu S, et al.
Overexpression of TSPAN8 Promotes Tumor Cell Viability and Proliferation in Nonsmall Cell Lung Cancer.
Cancer Biother Radiopharm. 2016; 31(10):353-359 [PubMed] Related Publications
BACKGROUND: Overexpression of TSPAN8 has been involved in several epithelial cancers and TSPAN8 can form a complex with a variety of proteins to participate in several import cellular functions. However, the effects of TSPAN8 in nonsmall cell lung cancer (NSCLC) remain unclear.
MATERIALS AND METHODS: In this study, the authors determined the expression of TSPAN in several NSCLC cell lines (95C, A549, H1299, and 95D) and human bronchial epithelial (HBE) cells. Furthermore, the authors investigated the biological function of TSPAN8 in NSCLC cell lines using gain-of-function and loss-of-function assays, as well as the underlying mechanisms.
RESULTS: TSPAN8 was found to be overexpressed in NSCLC cells compared with normal HBE cells, of which the expression in H1299 is the highest and, in 95C, it is relatively lowest. Functional assays indicated that knockdown of TSPAN8 in H1299 remarkably reduced cell viability and proliferation, while overexpression of TSPAN8 in 95C dramatically enhanced cell viability and proliferation. In addition, TSPAN8 knockdown led to G1 phase arrest and apoptosis by downregulating CDK2, CDK4, and Cyclin D1 and upregulating Bax and PARP.
CONCLUSIONS: These results provide evidence that TSPAN8 may contribute to the pathogenesis of lung cancer by promoting cell viability and proliferation. TSPAN8 silencing may provide a potential therapeutic intervention for the treatment of NSCLC.

Liu F, Wang B, Wang J, et al.
Oxymatrine Inhibits Proliferation and Migration While Inducing Apoptosis in Human Glioblastoma Cells.
Biomed Res Int. 2016; 2016:1784161 [PubMed] Free Access to Full Article Related Publications
Oxymatrine (OMT), an alkaloid derived from the traditional Chinese medicine herb Sophora flavescens Aiton, has been shown to exhibit anticancer properties on various types of cancer cells. In this study, we investigate the anticancer properties of OMT on human glioblastoma (GBM) cells and evaluate their underlying mechanisms. MTT assays were performed and demonstrated that OMT significantly inhibits the proliferation of GBM cells. Flow cytometry suggested that OMT at a concentration of 10(-5) M may induce apoptosis in U251 and A172 cells. Western blot analyses demonstrated a significant increase in the expression of Bax and caspase-3 and a significant decrease in expression of Bcl-2 in both U251 and A172 cells. Additionally, OMT was found by transwell and high-content screening assays to decrease the migratory ability of the evaluated GBM cells. These findings suggest that the antitumor effects of OMT may be the result of inhibition of cell proliferation and migration and the induction of apoptosis by regulating the expression of apoptosis-associated proteins. OMT may represent a novel anticancer therapy for the treatment of GBM.

Lu M, Miao Y, Qi L, et al.
RNAi-Mediated Downregulation of FKBP14 Suppresses the Growth of Human Ovarian Cancer Cells.
Oncol Res. 2016; 23(6):267-274 [PubMed] Related Publications
FKBP14 belongs to the family of FK506-binding proteins (FKBPs). Altered expression of FKBPs has been reported in several malignancies. This study aimed to reveal the expression profile of FKBP14 in ovarian cancer and evaluate whether FKBP14 is a molecular target for cancer therapy. We found that the FKBP14 mRNA level was significantly higher in ovarian cancer tissues than in normal tissues. FKBP14 expression was then knocked down in two ovarian cancer cell lines, SKOV3 and HO8910 cells, by a lentiviral short hairpin RNA (shRNA) delivery system. Reduced expression of FKBP14 markedly impaired the proliferative ability of ovarian cancer cells. Additionally, ovarian cancer cells infected with FKBP14 shRNA lentivirus tended to arrest in the G0/G1 phase and undergo apoptosis. Moreover, knockdown of FKBP14 induced cell apoptosis via increasing the ratio of Bax to Bcl-2. These results indicated that FKBP14 might be a diagnostic marker for ovarian cancer and could be a potential molecular target for the therapy of ovarian cancer.

Zhou G, Zhang F, Guo Y, et al.
miR-200c enhances sensitivity of drug-resistant non-small cell lung cancer to gefitinib by suppression of PI3K/Akt signaling pathway and inhibites cell migration via targeting ZEB1.
Biomed Pharmacother. 2017; 85:113-119 [PubMed] Related Publications
Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a major obstacle in the treatment of non-small cell lung cancer (NSCLC) patients. We explored the role of miR-200c in modulating the sensitivity of gefitinib-resistant NSCLC cells and examined the underlying mechanism. The gefitinib-resistant cell line PC-9-ZD and its parental PC-9 cells were used. Growth inhibition was detected by MTT assay. The cell apoptosis was detected by Annexin V/PI assay. Cell migration was assessed by wound-healing assay. RT-PCR was used to detected levels of miR-200c and ZEB1. The PI3k, Bcl-2, Bax, caspase-3 and ZEB1 protein expression were detected using Western blot analysis, and TUNEL, Immunohistochemistry for xenograft model. PC-9-ZD cells had low level of miR-200c expression compared to its parental PC-9 cells. PC-9-ZD cells with miR-200c transfection were more sensitive to gefitinib treatment. Apoptosis induced by gefitinib was observed in PC-9-ZD cells with miR-200c transfection significantly. The levels of phosphorylated-Akt and Bcl-2 expression decreased and levels of Bax and Caspase-3 expression increased in PC-9-ZD cells with miR-200c transfection. Cell migration was inhibited and ZEB1 mRNA level and protein expression were significantly decreased in PC-9-ZD cells with miR-200c transfection. Further in gefitinib resistant xenograft model, miR-200c enhanced sensitivity of gefitinib and induced apoptosis significantly through PI3K/Akt signaling pathway and targeting ZEB1. These results provided insights into the functions of miR-200c and offered an alternate approach in treating gefitinib-resistance NSCLC.

Ramdani LH, Talhi O, Taibi N, et al.
Effects of Spiro-bisheterocycles on Proliferation and Apoptosis in Human Breast Cancer Cell Lines.
Anticancer Res. 2016; 36(12):6399-6408 [PubMed] Related Publications
Breast cancer is the leading cause of cancer-related death in women worldwide and a critical public health concern. Here we investigated the anticancer potential and effects of low-molecular-weight bridgehead oxygen and nitrogen-containing spiro-bisheterocycles on proliferation and apoptosis of the human breast cancer cell lines MCF-7 and MDA-MB-231. The compounds feature a hydantoin moiety attached to either diazole, isoxazole, diazepine, oxazepine or benzodiazepine via the privileged tetrahedral spiro-linkage. Treatment with compounds spiro [hydantoin-isoxazole] and spiro [hydantoin-oxazepine] resulted in a dose-dependent decrease of cell proliferation and induction of apoptosis in both breast cancer cell lines, whereas spiro [hydantoin-diazepine] was only active against MDA-MB 231. Quantitative reverse transcription polymerase chain reaction analysis showed up-regulation of murine double minute 2 (MDM2), strictly p53-dependent, and detected an increase in expression of pro-apoptotic caspase 3 and BCL2-associated X (BAX) genes in both breast cancer cell lines expressing wild-type and mutant p53. In summary, the results suggest that our compounds promote apoptosis of breast cancer cell lines via p53-dependent and -independent pathways.

Zhang L, Jia G, Shi B, et al.
PRSS8 is Downregulated and Suppresses Tumour Growth and Metastases in Hepatocellular Carcinoma.
Cell Physiol Biochem. 2016; 40(3-4):757-769 [PubMed] Related Publications
BACKGROUND: Protease serine 8 (PRSS8), a trypsin-like serine peptidase, has been shown to function as a tumour suppressor in various malignancies. The present study aimed to investigate the expression pattern, prognostic value and the biological role of PRSS8 in human hepatocellular carcinoma (HCC).
METHODS: PRSS8 expression in 106 HCC surgical specimens was examined by Real-time polymerase chain reaction (PCR) and immunohistochemistry, and its clinical significance was analysed. The role of PRSS8 in cell proliferation, apoptosis and invasion were examined in vitro and in vivo.
RESULTS: PRSS8 mRNA and protein expression were decreased in most HCC tumours from that in matched adjacent non-tumour tissues. Low intratumoral PRSS8 expression was significantly correlated with poor overall survival (OS) in patients with HCC (P = 0.001). PRSS8 expression was an independent prognostic factor for OS (hazard ratio [HR] = 1.704, P = 0.009). Furthermore, restoring PRSS8 expression in high metastatic HCCLM3 cells significantly inhibited cell proliferation and invasion. In contrast, silencing PRSS8 expression in non-metastatic HepG2 cells significantly enhanced cell growth and invasion. Moreover, our in vivo data revealed that attenuated PRSS8 expression in HepG2 cells greatly promoted tumour growth, while overexpression of PRSS8 remarkably inhibited tumour growth in an HCCLM3 xenograft model. Enhanced cell growth and invasion ability mediated by the loss of PRSS8 expression was associated with downregulation of PTEN, Bax and E-cadherin and an upregulation in Bcl-2, MMP9 and N-cadherin.
CONCLUSIONS: Our data demonstrate that PRSS8 may serve as a tumour suppressor in HCC progression, and represent a valuable prognostic marker and potential therapeutic target for HCC.

Bortolotto LF, Barbosa FR, Silva G, et al.
Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest.
Biomed Pharmacother. 2017; 85:425-433 [PubMed] Related Publications
Chalcones are precursors of flavonoids that exhibit structural heterogeneity and potential antitumor activity. The objective of this study was to characterize the cytotoxicity of trans-chalcone and licochalcone A (LicoA(1)) against a breast cancer cell line (MCF-7) and normal murine fibroblasts (3T3). Also the mechanisms of the anti-cancer activity of these two compounds were studied. The alkaline comet assay revealed dose-dependent genotoxicity, which was more responsive against the tumor cell line, compared to the 3T3 mouse fibroblast cell line. Flow cytometry showed that the two chalcones caused the cell cycle arrest in the G1 phase and induced apoptosis in MCF-7 cells. Using PCR Array, we found that trans-chalcone and LicoA trigger apoptosis mediated by the intrinsic pathway as demonstrated by the inhibition of Bcl-2 and induction of Bax. In western blot assay, the two chalcones reduced the expression of cell death-related proteins such as Bcl-2 and cyclin D1 and promoted the cleavage of PARP. However, only trans-chalcone induced the expression of the CIDEA gene and protein in these two experiments. Furthermore, transient transfections of MCF-7 using a construction of a promoter-luciferase vector showed that trans-chalcone induced the expression of the CIDEA promoter activity in 24 and 48h. In conclusion, the results showed that trans-chalcone promoted high induction of the CIDEA promoter gene and protein, which is related to DNA fragmentation during apoptosis.

Duangprompo W, Aree K, Itharat A, Hansakul P
Effects of 5,6-Dihydroxy-2,4-Dimethoxy-9,10-Dihydrophenanthrene on G2/M Cell Cycle Arrest and Apoptosis in Human Lung Carcinoma Cells.
Am J Chin Med. 2016; 44(7):1473-1490 [PubMed] Related Publications
5,6-dihydroxy-2,4-dimethoxy-9,10-dihydrophenanthrene (HMP) is an active compound isolated from the rhizome extracts of Dioscorea membranacea Pierre, a Thai medicinal plant. This study aimed to investigate the growth-inhibitory and apoptosis-inducing effects of HMP in human lung cancer A549 cells. The antiproliferative and cytotoxic effects of HMP were analyzed by a Sulforhodamine B assay. Cell division, cell cycle distribution and membrane asymmetry changes were each performed with different fluorescent dyes and then analyzed by flow cytometry. Real-time PCR and immunoblotting were used to detect cell cycle- and apoptosis-related mRNA levels and proteins, respectively. The nuclear morphology of the cells stained with DAPI and DNA fragmentation were detected by fluorescence microscopy and gel electrophoresis, respectively. The results showed that HMP exerted strong antiproliferative and cytotoxic activities in A549 cells with the highest selectivity index. It halted the cell cycle in [Formula: see text]/M phase via down-regulation of the expression levels of regulatory proteins Cdc25C, Cdk1 and cyclinB1. In addition, HMP induced early apoptotic cells with externalized phosphatidylserine and subsequent apoptotic cells in sub-[Formula: see text] phase. HMP increased caspase-3 activity and levels of the cleaved (active) form of caspase-3 whose actions were supported by the cleavage of its target PARP, nuclear condensation and DNA apoptotic ladder. Moreover, HMP significantly increased the mRNA and protein levels of proapoptotic Bax as well as promoted subsequent caspase-9 activation and BID cleavage, indicating HMP-induced apoptosis via both intrinsic and extrinsic pathways. These data support, for the first time, the potential role of HMP as a cell-cycle arrest and apoptosis-inducing agent for lung cancer treatment.

Ahamed M, Akhtar MJ, Khan MA, et al.
Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).
Colloids Surf B Biointerfaces. 2016; 148:665-673 [PubMed] Related Publications
Cobalt iron oxide (CoFe2O4) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models.

Wen X, Lu R, Xie S, et al.
APE1 overexpression promotes the progression of ovarian cancer and serves as a potential therapeutic target.
Cancer Biomark. 2016; 17(3):313-322 [PubMed] Related Publications
BACKGROUND: Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme that is involved in DNA repair and the redox regulation of transcription factors. Blocking these functions leads to cell-growth inhibition, apoptosis and other effects. Previous studies have demonstrated that high expression levels of the APE1 protein are associated with the progression and chemoresistance of cancers. We hypothesized that APE1 silencing in ovarian cancer cells might have anticancer effects mediated by cell-growth inhibition and an increase in drug-sensitivity.
OBJECTIVE: In this study, we explored the consequences of APE1 silencing in ovarian cancer cells.
METHODS: Immunohistochemistry (IHC) was used to detect the APE1 protein levels in tissue samples from twelve ovarian cancer (OC) patients and eleven non-OC patients. APE1 knockdown was achieved via the stable transfection of SKOV3 and A2780 cells with a construct encoding a short hairpin DNA directed against the APE1 gene. Then, cell proliferation, colony formation, cell cycle and apoptosis assays were performed to reveal the consequences of APE1 silencing in ovarian cancer cells. Additionally, the SKOV3 and A2780 cells were subjected to the treatment with camptothecin (CPT) and ultraviolet rays (UV) to assess the possible link between the APE1 protein and drug-resistance.
RESULTS: Our results revealed that the APE1 protein was overexpressed in OC tissues. APE1 knockdown in A2780 and SKOV3 cells reduced cell proliferation, arrested cell cycle progression, repressed colony formation and weakly promoted cell apoptosis through the BAX and BCL-2 apoptotic pathways. Additionally, the down-regulation of APE1 significantly enhanced the sensitivity of ovarian cancer cells to the CPT/UV treatment.
CONCLUSION: Our study suggested that the APE1 protein is important for the proliferation and growth of ovarian cancer cells. APE1 silencing might enhance drug-sensitivity, and thus APE1 might serve as a novel anti-OC therapeutic target.

Zhou B, Wang J, Zheng G, Qiu Z
Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21.
Food Chem Toxicol. 2016; 97:375-384 [PubMed] Related Publications
Urolithins are bioactive ellagic acid-derived metabolites produced by human colonic microflora. Although previous studies have demonstrated the cytotoxicity of urolithins, the effect of urolithins on miRNAs is still unclear. In this study, the suppressing effects of methylated urolithin A (mUA) on cell viability in human prostate cancer DU145 cells was investigated. mUA induced caspase-dependent cell apoptosis, mitochondrial depolarization and down-regulation of Bcl-2/Bax ratio. The results showed that upon exposure to mUA, miR-21 expression was decreased and the expression of PTEN and Pdcd4 protein was elevated. mUA could further suppress Akt phosphorylation and increase protein expression of FOXO3a, and the effects of mUA on Akt phosphorylation and protein expression of FOXO3a were blocked by PTEN silence. Moreover, mUA suppressed the Wnt/β-catenin-mediated transcriptional activation of MMP-7 and c-Myc, and this function of mUA on MMP-7 and c-Myc was attenuated by over-expression of miR-21. In conclusion, our data suggest that mUA can suppress cell viability in DU145 cells through modulating miR-21 and its downstream series-wound targets, including PTEN, Akt and Wnt/β-catenin signaling.

Hu R, Hu F, Xie X, et al.
TMEM45B, up-regulated in human lung cancer, enhances tumorigenicity of lung cancer cells.
Tumour Biol. 2016; 37(9):12181-12191 [PubMed] Related Publications
Transmembrane protein 45B (TMEM45B) is a member of TMEMs. Altered expression of TMEMs is frequently observed in a variety of human cancers, but the expression and functional roles of TMEM45B in lung cancer is not reported. In the present study, levels of mRNA expression of TMEM45B in lung cancer tissues were assessed using re-analyzing expression data of The Cancer Genome Atlas (TCGA) lung cancer cohort and real-time PCR analysis on our own cohort. Lung cancer cells, A549 and NCI-H1975, infected with TMEM45B short hairpin RNA were examined in cell proliferation, cell cycle, cell apoptosis, wound-healing, and cell invasion assays as well as mouse xenograft models. Here, we demonstrated that TMEM45B was overexpressed in lung cancer and its expression correlated with overall survival of patients. In addition, silencing of TMEM45B expression reduced cell proliferation in vitro and in vivo, induced cell cycle arrest and cell apoptosis, and blocked cell migration and invasion. Moreover, knockdown of TMEM45B significantly suppressed G1/S transition, induced cell apoptosis, and inhibited cell invasion via regulating the expression of cell cycle-related proteins (CDK2, CDC25A, and PCNA), cell apoptosis-related proteins (Bcl2, Bax, and Cleaved Caspase 3), and metastasis-related proteins (MMP-9, Twist, and Snail), respectively. Thus, TMEM45B is a potential prognostic marker and cancer-selective therapeutic target in lung cancer.

Jang IS, Park JW, Jo EB, et al.
Growth inhibitory and apoptosis-inducing effects of allergen-free Rhus verniciflua Stokes extract on A549 human lung cancer cells.
Oncol Rep. 2016; 36(5):3037-3043 [PubMed] Related Publications
Evidence suggests that Rhus verniciflua Stokes (RVS) or its extract has the potential to be used for the treatment of inflammatory and neoplastic diseases. However, direct use of RVS or its extract as a herbal medicine has been limited due to the presence of urushiol, an allergenic toxin. In the present study, we prepared an extract of the allergen‑removed RVS (aRVS) based on a traditional method and investigated its inhibitory effect on the growth of various types of human cancer cells, including lung (A549), breast (MCF-7) and prostate (DU-145) cancer cell lines. Notably, among the cell lines tested, treatment with the aRVS extract strongly inhibited proliferation of the A549 cells at a 0.5 mg/ml concentration for 24 h that was not cytotoxic to normal human dermal fibroblasts. Furthermore, aRVS extract treatment largely reduced the survival and induced apoptosis of the A549 cells. At the mechanistic levels, treatment with the aRVS extract led to the downregulation of Bcl-2 and Mcl-1 proteins, the activation of caspase-9/-3 proteins, an increase in cytosolic cytochrome c levels, the upregulation of Bax protein, an increase in phosphorylated p53 protein but a decrease in phosphorylated S6 protein in the A549 cells. Importantly, treatment with z-VAD‑fmk, a pan-caspase inhibitor attenuated aRVS extract-induced apoptosis in the A549 cells. These results demonstrate firstly that aRVS extract has growth inhibitory and apoptosis-inducing effects on A549 human lung cancer cells through modulation of the expression levels and/or activities of caspases, Bcl-2, Mcl-1, Bax, p53 and S6.

Li W, Wu J, Li Z, et al.
Melatonin induces cell apoptosis in Mia PaCa-2 cells via the suppression of nuclear factor-κB and activation of ERK and JNK: A novel therapeutic implication for pancreatic cancer.
Oncol Rep. 2016; 36(5):2861-2867 [PubMed] Related Publications
Melatonin is synthesized by the pineal gland and is released into the blood. In the last several years, some studies have shown that melatonin has anticancer properties; however, the mechanisms behind the antitumour traits are unclear, especially in pancreatic cancer. Therefore, in the present study, we investigated the antitumour effects of melatonin on the human pancreatic carcinoma cell line MIA PaCa‑2 and explored its biological mechanisms. MIA PaCa‑2 cells were treated with melatonin, and we used a CCK‑8 assay to evaluate the cell viability. We also used flow cytometry to observe cell apoptosis and western blot analysis to assess the protein expression. Our study found that melatonin inhibited cell viability, suppressed colony formation and reduced cell migration and invasion and induced cell apoptosis in MIA PaCa‑2 cells. Our results showed that melatonin treatment inhibited NF‑κB p65 activation. Moreover, melatonin treatment activated the mitogen‑activated protein kinase pathways (c‑jun N‑terminal kinase and extracellular‑regulated kinase 1/2), which increased Bax protein expression and caspase‑3 cleavage and decreased Bcl‑2 protein expression. These new developments demonstrate that melatonin plays a potential role in anticancer treatment and may act as an effective therapeutic agent in the future.

Wang D, Li Y, Cui P, et al.
Zerumbone induces gastric cancer cells apoptosis: Involving cyclophilin A.
Biomed Pharmacother. 2016; 83:740-745 [PubMed] Related Publications
Gastric cancer is one of the leading causes for cancer death. There is an urgent need to develop new therapeutic approaches targeting metastatic gastric cancer. It has been reported that zerumbone has the anti-cancer effects in various malignant cells. However, the effect and the mechanism of zerumbone on melanoma cells is still largely unknown. In the study, we determined the actions of zerumbone on the human gastric cancer cell line SGC-7901.We also observed the mechanism by which zerumbone induced gastric cancer cell apoptosis. Our data indicated that zerumbone significantly inhibited the growth of human gastric cancer cells in a dose-dependent manner and apoptosis was the main cause of decreased cell viability in zerumbone -treated cells. The treatment with zerumbone downregulated Cyp A and Bcl-2 levels, upregulated Bax levels, and caused Cytochrome c (Cyt-C) to release, activating Caspase-3. In summary, our study suggests that zerumbone mightinduced human gastric cancer cells apoptosis through down-regulating Cyp A and mitochondria-mediated pathways.

Nooshinfar E, Bashash D, Safaroghli-Azar A, et al.
Melatonin promotes ATO-induced apoptosis in MCF-7 cells: Proposing novel therapeutic potential for breast cancer.
Biomed Pharmacother. 2016; 83:456-465 [PubMed] Related Publications
Arsenic trioxide (ATO), a traditional Chinese medicine, has long been of biomedical interest and is largely used for treatment of a broad spectrum of cancers. Melatonin, a naturally occurring indoleamine synthesized in the pineal gland, has been considered as a biomarker for endocrine-dependent tumors, particularly breast cancer. An increasing number of studies indicate that melatonin could be an attractive candidate for combined therapy due to its anti-oxidant and cytotoxic activities. The aim of this study was to investigate the potentiating effect of melatonin on ATO-induced apoptosis in estrogen receptor (ER)-positive breast cancer cell line, MCF-7. Our data highlighted for the first time that pre-treating MCF-7 cells with physiological concentration of melatonin substantially augmented the cytotoxic effects of ATO as compared with either agent alone. Real-time PCR analysis revealed that apoptosis induction by the drugs combination was associated with increased p53 transcriptional activity followed by the elevated molecular ratio of Bax/Bcl-2. Moreover, induced p21, subsequent G1 cell cycle arrest and transcriptional suppression of survivin-mediated c-Myc and hTERT expression may contribute in the enhanced growth suppressive effect of ATO-plus-melatonin. Due to the safety profile of melatonin, our study suggests that using melatonin in combination with ATO might provide insight into a novel adjuvant therapy and may confer advantages for breast cancer treatment.

Ahamed M, Akhtar MJ, Khan MA, et al.
Cytotoxic response of platinum-coated gold nanorods in human breast cancer cells at very low exposure levels.
Environ Toxicol. 2016; 31(11):1344-1356 [PubMed] Related Publications
Because of unique optical behavior gold nanorods (GNRs) have attracted attention for the application in biomedical field such as bio-sensing, bio-imaging and hyperthermia. However, toxicological response of GNRs is controversial due to their different surface coating. Therefore, a comprehensive knowledge about toxicological profile of GNRs is necessary before their biomedical applications. First time, we investigated the toxic response of GNRs coated with platinum (GNRs-Pt) in human breast carcinoma (MCF-7) cells. Platinum coating further improves the optical and catalytic properties of GNRs. Assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydroganase (LDH) assays have shown that GNRs-Pt induced cytotoxicity at very low exposure levels (0.1-0.8 μg mL(-1) ). Accumulation of cells in SubG1 phase and low mitochondrial membrane potential (JC-1 probe) in treated cells suggest that GNRs-Pt induced cell death via apoptotic pathway. Quantitative real-time PCR data demonstrated that mRNA expression of apoptotic genes (bax, caspase-3 and caspase-9) were up-regulated while anti-apoptotic gene bcl-2 was down-regulated in cells exposed to GNRs-Pt. We further observed the higher activity of caspase-3 and caspase-9 enzymes in GNRs-Pt treated cells supporting mRNA data. Moreover, N-acetyl cysteine (NAC) significantly attenuated the ROS generation and cytotoxicity induced by GNRs-Pt in MCF-7 cells suggesting that ROS might plays a crucial role in GNRs-Pt induced toxicity. This study warns of possible toxicity of GNRs even at very low exposure levels. Further investigations needed to explore potential mechanisms of this low dose toxicity phenomenon. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1344-1356, 2016.

Woo SM, Kwon TK
Jaceosidin induces apoptosis through Bax activation and down-regulation of Mcl-1 and c-FLIP expression in human renal carcinoma Caki cells.
Chem Biol Interact. 2016; 260:168-175 [PubMed] Related Publications
Jaceosidin is a flavonoid isolated from Artemisia vestita that has been reported to possess anti-tumor and anti-proliferative activities in many cancer cells. In this study, we investigated the anti-tumor activity of jaceosodin in renal carcinoma cells. Jaceosidin induced apoptosis in multiple human renal carcinoma cells (Caki, ACHN, A498, and 786-O), lung cancer cells (A549) and glioma cells (U251MG). In contrast, jaceosidin does not induce apoptosis in normal human umbilical vein cells (EA.hy926). Apoptotic cell death was associated with the activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase. Treatment with jaceosidin also caused loss of mitochondrial membrane potential (MMP) and Bax activation, which led to the release of cytochrome c into the cytosol. We also found that jaceosidin downregulated Mcl-1 and c-FLIP expression at the transcriptional level and that ectopic expression of Mcl-1 and c-FLIP blocked jaceosidin-induced apoptosis. Cumulatively, our results suggest that jaceosidin induces apoptosis in renal carcinoma cells through Bax activation and reduces Mcl-1 and c-FLIP expression.

Abaza MS, Afzal M, Al-Attiyah RJ, Guleri R
Methylferulate from Tamarix aucheriana inhibits growth and enhances chemosensitivity of human colorectal cancer cells: possible mechanism of action.
BMC Complement Altern Med. 2016; 16(1):384 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Natural products are valuable sources for anticancer agents. In the present study, methylferulate (MF) was identified for the first time from Tamarix aucheriana. Spectral data were used for identification of MF. The potential of MF to control cell growth, cell cycle, apoptosis, generation of reactive oxygen species (ROS), cancer cell invasion, nuclear factor kappa B (NFkB) DNA-binding activity and proteasomal activities, as well as the enhancement of chemosensitivity in human colorectal cancer cells, were evaluated. The possible molecular mechanism of MF's therapeutic efficacy was also assessed.
METHODS: Column chromatography and spectral data were used for isolation and identification of MF. MTT, immunofluorescence, flow cytometry, in vitro invasion, fluoremetry, EIA and Real time qPCR were used to measure antiproliferative, chemo-sensitizing effects and other biochemical parameters.
RESULTS: MF showed a dose-dependent anti-proliferative effect on colorectal cancer cells (IC50 = 1.73 - 1.9 mM) with a nonsignificant cytotoxicity toward normal human fibroblast. Colony formation inhibition (P ≤ 0.001, 0.0001) confirmed the growth inhibition by MF. MF arrested cell cycle progression in the S and G2/M phases; induced apoptosis and ROS generation; and inhibited NF-kB DNA-binding activity, proteasomal activities and cell invasion in colorectal cancer cells. MF up-regulated cyclin-dependent kinase inhibitors (p19 (INK4D), p21(WAF1/CIP1), p27(KIP1)), pro-apoptotic gene expression (Bax, Bad, Apaf1, Bid, Bim, Smac) and caspases (caspase 2, 3, 6, 7, 8, 9). Moreover, MF down-regulated cyclin-dependent kinases (Cdk1, Cdk2) and anti-apoptotic gene expression (c-IAP-1, c-IAP-2, Bcl2,FLIP). In addition, MF differentially potentiated the sensitivity of colorectal cancer cells to standard chemotherapeutic drugs.
CONCLUSION: MF showed a multifaceted anti-proliferative and chemosensitizing effects. These results suggest the chemotherapeutic and co-adjuvant potential of MF.

Liu MY, Wang WZ, Liao FF, et al.
Selective and effective targeting of chronic myeloid leukemia stem cells by topoisomerase II inhibitor etoposide in combination with imatinib mesylate in vitro.
Cell Biol Int. 2017; 41(1):16-23 [PubMed] Related Publications
Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (TKIs) have improved chronic myeloid leukemia (CML) patient survival markedly but fail to eradicate quiescent CML leukemia stem cells (LSCs). Thus, strategies targeting LSCs are required to induce long-term remission and achieve cure. Here, we investigated the ability of topoisomerase II (Top II) inhibitor etoposide (Eto) to target CML LSCs. Treatment with Eto combined with IM markedly induced apoptosis in primitive CML CD34(+) CD38(-) stem cells resistant to eradication by IM alone, but not in normal hematopoietic stem cells, CML and normal mature CD34(-) cells, and other leukemia and lymphoma cell lines. The interaction of IM and Eto significantly inhibited phosphorylation of PDK1, AKT, GSK3, S6, and ERK proteins; increased the expression of pro-apoptotic gene Bax; and decreased the expression of anti-apoptotic gene c-Myc in CML CD34(+) cells. Top II inhibitors treatment represents an attractive approach for targeting LSCs in CML patients undergoing TKIs monotherapy.

Chen GY, Shu YC, Chuang DY, Wang YC
Inflammatory and Apoptotic Regulatory Activity of Tanshinone IIA in Helicobacter pylori-Infected Cells.
Am J Chin Med. 2016; 44(6):1187-1206 [PubMed] Related Publications
Helicobacter pylori infections induce host cell inflammation and apoptosis, however, they are conflicting. Tanshinone IIA is an active compound of Salvia miltiorrhiza Bge. In this study, we investigated the regulatory effects of tanshinone IIA on H. pylori-induced inflammation and apoptosis in vitro. Tanshinone IIA treatments (13.6-54.4[Formula: see text][Formula: see text]M) significantly decreased nuclear factor kappa B (NF-kB) and mitogen-activated protein kinase (MAPK) [p-38 and C-terminal Jun-kinase 1/2 (JNK1/2)] protein expressions and inflammatory substance [cyclooxygenase-2 (COX-2), 5-lipooxygenase (5-LOX), intercellular adhesion molecule-1 (ICAM-1), reactive oxygen species (ROS), nitric oxide (NO), inducible nitric oxide synthase (iNOS), interleukin-1[Formula: see text] (IL-1[Formula: see text], IL-6, and IL-8] production in the H. pylori-infected cells. In contrast, tanshinone IIA treatments significantly increased apoptotic relevant protein [Bcl-2-associated X protein (Bax) and caspase 9] expressions and increased mitochondrial transmembrane potential ([Formula: see text] disruption, mitochondrial cytochrome [Formula: see text] (cyt [Formula: see text] release, and caspase cascades. Tanshinone IIA treatments effectively decreased H. pylori-induced inflammation and significantly promoted H. pylori-induced intrinsic apoptosis through NF-kB and MAPK (p-38 and JNK) pathways. Tanshinone IIA has great potential as a candidate to protect host cells from H. pylori-induced severe inflammation and gastric cancer.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. BAX, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 11 March, 2017     Cancer Genetics Web, Established 1999