FGF4

Gene Summary

Gene:FGF4; fibroblast growth factor 4
Aliases: HST, KFGF, FGF-4, HST-1, HSTF1, K-FGF, HBGF-4, HSTF-1
Location:11q13.3
Summary:The protein encoded by this gene is a member of the fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and cell survival activities and are involved in a variety of biological processes including embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and invasion. This gene was identified by its oncogenic transforming activity. This gene and FGF3, another oncogenic growth factor, are located closely on chromosome 11. Co-amplification of both genes was found in various kinds of human tumors. Studies on the mouse homolog suggested a function in bone morphogenesis and limb development through the sonic hedgehog (SHH) signaling pathway. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:fibroblast growth factor 4
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (21)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: FGF4 (cancer-related)

Esposito MR, Binatti A, Pantile M, et al.
Somatic mutations in specific and connected subpathways are associated with short neuroblastoma patients' survival and indicate proteins targetable at onset of disease.
Int J Cancer. 2018; 143(10):2525-2536 [PubMed] Related Publications
Neuroblastoma (NB) is an embryonic malignancy of the sympathetic nervous system with heterogeneous biological, morphological, genetic and clinical characteristics. Although genomic studies revealed the specific biological features of NB pathogenesis useful for new therapeutic approaches, the improvement of high-risk (HR)-NB patients overall survival remains unsatisfactory. To further clarify the biological basis of disease aggressiveness, we used whole-exome sequencing to examine the genomic landscape of HR-NB patients at stage M with short survival (SS) and long survival (LS). Only a few genes, including SMARCA4, SMO, ZNF44 and CHD2, were recurrently and specifically mutated in the SS group, confirming the low recurrence of common mutations in this tumor. A systems biology approach revealed that in the two patient groups, mutations occurred in different pathways. Mutated genes (ARHGEF11, CACNA1G, FGF4, PTPRA, PTK2, ANK3, SMO, NTNG2, VCL and NID2) regulate the MAPK pathway associated with the organization of the extracellular matrix, cell motility through PTK2 signaling and matrix metalloproteinase activity. Moreover, we detected mutations in LAMA2, PTK2, LAMA4, and MMP14 genes, impairing MET signaling, in SFI1 and CHD2 involved in centrosome maturation and chromosome remodeling, in AK7 and SPTLC2, which regulate the metabolism of nucleotides and lipoproteins, and in NALCN, SLC12A1, SLC9A9, which are involved in the transport of small molecules. Notably, connected networks of somatically mutated genes specific for SS patients were identified. The detection of mutated genes present at the onset of disease may help to address an early treatment of HR-NB patients using FDA-approved compounds targeting the deregulated pathways.

Mitchell TJ, Turajlic S, Rowan A, et al.
Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal.
Cell. 2018; 173(3):611-623.e17 [PubMed] Free Access to Full Article Related Publications
Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.

Ferrucci F, Ciaccio R, Monticelli S, et al.
MAX to MYCN intracellular ratio drives the aggressive phenotype and clinical outcome of high risk neuroblastoma.
Biochim Biophys Acta Gene Regul Mech. 2018; 1861(3):235-245 [PubMed] Related Publications
Childhood neuroblastoma, a disease of the sympathetic nervous system, is the most common solid tumour of infancy, remarkably refractory to therapeutic treatments. One of the most powerful independent prognostic indicators for this disease is the amplification of the MYCN oncogene, which occurs at high levels in approximately 25% of neuroblastomas. Interestingly, amplification and not just expression of MYCN has a strong prognostic value, although this fact appears quite surprising as MYCN is a transcription factor that requires dimerising with its partner MAX, to exert its function. This observation greatly suggests that the role of MYCN in neuroblastoma should be examined in the context of MAX expression. In this report, we show that, in contrast to what is found in normal cells, MAX expression is significantly different among primary NBs, and that its level appears to correlate with the clinical outcome of the disease. Importantly, controlled modulation of MAX expression in neuroblastoma cells with different extents of MYCN amplification, demonstrates that MAX can instruct gene transcription programs that either reinforce or weaken the oncogenic process enacted by MYCN. In general, our work illustrates that it is the MAX to MYCN ratio that can account for tumour progression and clinical outcome in neuroblastoma and proposes that such a ratio should be considered as an important criterion to the design and development of anti-MYCN therapies.

Sakai H, Tabata S, Kimura M, et al.
Active Ingredients of Hange-shashin-to, Baicalelin and 6-Gingerol, Inhibit 5-Fluorouracil-Induced Upregulation of CXCL1 in the Colon to Attenuate Diarrhea Development.
Biol Pharm Bull. 2017; 40(12):2134-2139 [PubMed] Related Publications
5-Fluorouracil (5-FU) is widely used as an anti cancer drug and is known to cause severe diarrhea. Recently we suggested that levels of chemokine (C-X-C motif) ligand 1 (CXCL1) and neutrophil recruitment in the colonic mucosa were drastically increased by the 5-FU administration in mice. Hange-shashin-to (HST) is prescribed in Japan for treat gastritis, stomatitis, and inflammatory diarrhea. We therefore examined the effects of HST and its active ingredients on 5-FU-induced CXCL1 upregulation in cultured colon tissue, and also examined the effects of HST on 5-FU-induced diarrhea development in the mouse. The distal colon isolated from the mouse was incubated with 5-FU and HST. Mice were given 5-FU (50 mg/kg, intraperitoneally (i.p.)) daily for four days. HST (300 mg/kg, per os (p.o.)) was administered 30 min before mice received 5-FU. mRNA levels of CXCL1 in the colon were examined using quantitative RT-PCR. 5-FU enhanced CXCL1 mRNA in the colon but the effect by 5-FU was markedly suppressed by application of HST and its active ingredients, baicalein and 6-gingerol. Nuclear factor kappa B (NF-κB) was activated by 5-FU treatment in cultured colon tissue, which was also suppressed by HST and the combination of baicalein and 6-gingerol. Furthermore, HST reduced 5-FU-induced diarrhea development. Under such experimental condition, CXCL1 gene, protein levels of neutrophil elastase and myeloperoxidase upregulation induced by 5-FU in the colon was attenuated by HST. These findings suggest that HST, especially baicalein and 6-gingerol, prevent the development of neutrophil recruitment and diarrhea by the inhibition of NF-κB activity.

Ma Y, Yu W, Shrivastava A, et al.
Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway.
Carcinogenesis. 2017; 38(10):1047-1056 [PubMed] Related Publications
Sonic hedgehog pathway is highly activated in pancreatic cancer stem cells (CSC) which play crucial roles in cancer initiation, progression and metastasis. However, the molecular mechanisms by which sanguinarine regulates pancreatic CSC characteristics is not well understood. The objectives of this study were to examine the molecular mechanisms by which sanguinarine regulates pancreatic CSC characteristics. Sanguinarine inhibited cell proliferation and colony formation and induced apoptosis through oxidative damage. Sanguinarine inhibited self-renewal capacity of pancreatic CSCs isolated from human and KrasG12D mice. Furthermore, sanguinarine suppressed epithelial-mesenchymal transition (EMT) by up-regulating E-cadherin and inhibiting N-cadherin. Significant decrease in expression level of Snail, Slug and Zeb1 corroborated the suppression of EMT in sanguinarine treated pancreatic CSCS. The ability of sanguinarine to inhibit pluripotency maintaining factors and CSC markers suggest that sanguinarine can be an effective agent for inhibiting pancreatic cancer growth and development by targeting CSCs. Furthermore, sanguinarine inhibited Shh-Gli pathway leading to modulation of Gli target genes in pancreatic CSCs. Chromatin immunoprecipitation assay demonstrated that Nanog directly binds to promoters of Cdk2, Cdk6, FGF4, c-Myc and Oct4, and sanguinarine inhibits the binding of Nanog with these genes, suggesting the direct involvement of Nanog in cell cycle, pluripotency and self-renewal. To further investigate the role of Shh-Gli-Nanog pathway, we regulated Shh signaling either by Shh protein or Nanog overexpression. Enforced activation of Shh or overexpression of Nanog counteracted the inhibitory effects of sanguinarine on pancreatic CSC proliferation, suggesting the actions of sanguinarine are mediated, at least in part, through Shh-Gli-Nanog pathway. Our studies suggest that sanguinarine can be used for the treatment and/or prevention of pancreatic cancer by targeting CSCs.

Hanker AB, Garrett JT, Estrada MV, et al.
HER2-Overexpressing Breast Cancers Amplify FGFR Signaling upon Acquisition of Resistance to Dual Therapeutic Blockade of HER2.
Clin Cancer Res. 2017; 23(15):4323-4334 [PubMed] Free Access to Full Article Related Publications

Chen TH, Yang SF, Liu YF, et al.
Association of Fibroblast Growth Factor Receptor 4 Genetic Polymorphisms With the Development of Uterine Cervical Cancer and Patient Prognosis.
Reprod Sci. 2018; 25(1):86-93 [PubMed] Related Publications
This is the first study to investigate the relationships among fibroblast growth factor receptor 4 (FGFR4) genetic polymorphisms, development of uterine cervical cancer, clinicopathological variables, and patient prognosis in Taiwanese women. Real-time polymerase chain reaction and genotyping were used to detect the genotype frequencies of 4 FGFR4 single-nucleotide polymorphisms (SNPs), rs351855 (C/T, Gly388Arg), rs2011077 (G/A), rs7708357 (G/A), and rs1966265 (Ile10Val), in 138 patients with invasive cancer, 89 with precancerous lesions of uterine cervix, and 335 normal controls. The results showed that there is no significant difference in the frequencies of FGFR4 SNPs rs351855, rs2011077, rs7708357, and 1966265 between women with cervical invasive cancer and normal controls even after controlling for age. However, significant differences existed in the distributions of the FGFR4 genetic polymorphism rs2011077, when mutant homozygotes (AA) were compared using other genotypes (GG/GA) as a reference, as well as rs1966265, when mutant homozygotes (AA) were compared using GG/GA as a reference, between women with cervical precancerous lesions and normal women even after controlling for age. In multivariate analysis, lymph node metastasis was associated with cancer recurrence, and lymph node metastasis and FGFR4 rs351855 were associated with patient survival. In conclusion, our study demonstrated that FGFR4 rs2011077 and rs1966265 are associated with the progression of cervical normal tissues to precancerous lesions in Taiwanese women. Moreover, rs351855 (Gly388Arg) is the only FGFR4 genetic polymorphism that is associated with patient survival.

Phelps DL, Borley JV, Flower KJ, et al.
Methylation of MYLK3 gene promoter region: a biomarker to stratify surgical care in ovarian cancer in a multicentre study.
Br J Cancer. 2017; 116(10):1287-1293 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Survival benefit from surgical debulking of ovarian cancer (OC) is well established, but some women, despite total macroscopic clearance of disease, still have poor prognosis. We aimed to identify biomarkers to predict benefit from conventional surgery.
METHODS: Clinical data from women debulked for high-stage OC were analysed (Hammersmith Hospital, London, UK; 2001-2014). Infinium's HumanMethylation27 array interrogated tumour DNA for differentially methylated CpG sites, correlated to survival, in patients with the least residual disease (RD; Hammersmith Array). Validation was performed using bisulphite pyrosequencing (Charité Hospital, Berlin, Germany cohort) and The Cancer Genome Atlas' (TCGA) methylation data set. Kaplan-Meier curves and Cox models tested survival.
RESULTS: Altogether 803 women with serous OC were studied. No RD was associated with significantly improved overall survival (OS; hazard ratio (HR) 1.25, 95% CI 1.06-1.47; P=0.0076) and progression-free survival (PFS; HR 1.23, 95% CI 1.05-1.43; P=0.012; Hammersmith database n=430). Differentially methylated loci within FGF4, FGF21, MYLK2, MYLK3, MYL7, and ITGAE associated with survival. Patients with the least RD had significantly better OS with higher methylation of MYLK3 (Hammersmith (HR 0.51, 95% CI 0.31-0.84; P=0.01), Charité (HR 0.46, 95% CI 0.21-1.01; P=0.05), and TCGA (HR 0.64, 95% CI 0.44-0.93; P=0.02)).
CONCLUSIONS: MYLK3 methylation is associated with improved OS in patients with the least RD, which could potentially be used to determine response to surgery.

Wang P, Shan L, Xue L, et al.
Genome wide copy number analyses of superficial esophageal squamous cell carcinoma with and without metastasis.
Oncotarget. 2017; 8(3):5069-5080 [PubMed] Free Access to Full Article Related Publications
Superficial esophageal squamous cell carcinoma (ESCC) is generally considered a subtype of less invasive ESCC. Yet a subset of these superficial ESCC would have metastasis after esophagostomy or endoscopic resection and lead to poor prognosis. The objective of this study is to determine biomarkers that can identify such subset of superficial ESCC that would have metastasis after surgery using genome wide copy number alteration (CNA) analyses. The CNAs of 38 cases of superficial ESCCs originated from radical surgery, including 19 without metastasis and 19 with metastasis within 5 years' post-surgery, were analyzed using Affymetrix OncoScan™ FFPE Assay. A 39-gene signature was identified which characterized the subset of superficial ESCC with high risk of metastasis after surgery. In addition, recurrent CNAs of superficial ESCC were also investigated in the study. Amplification of 11q13.3 (FGF4) and deletion of 9p21.3 (CDKN2A) were found to be recurrent in all 38 superficial ESCCs analyzed. Notably amplifications of 3p26.33 (SOX2OT), 8q24.21 (MYC), 14q21.1 (FOXA1) and deletion of 3p12.1 (GBE1) were only found to be recurrent in metastaic superficial ESCCs. In conclusion, using CNAs analyses, we identify a 39-gene signature which characterizes the high risk metastatic superficial ESCCs and discover several recurrent CNAs that might be the driver alterations in metastasis among superficial ESCCs.

Organista-Nava J, Gómez-Gómez Y, Ocadiz-Delgado R, et al.
The HPV16 E7 oncoprotein increases the expression of Oct3/4 and stemness-related genes and augments cell self-renewal.
Virology. 2016; 499:230-242 [PubMed] Related Publications
Oct3/4 is a transcription factor involved in maintenance of the pluripotency and self-renewal of stem cells. The E7 oncoprotein and 17β-estradiol (E

Qi L, Song W, Li L, et al.
FGF4 induces epithelial-mesenchymal transition by inducing store-operated calcium entry in lung adenocarcinoma.
Oncotarget. 2016; 7(45):74015-74030 [PubMed] Free Access to Full Article Related Publications
Several fibroblast growth factor (FGF) isoforms act to stimulate epithelial-mesenchymal transition (EMT) during cancer progression. FGF4 and FGF7 are two ligands of FGF receptor 2 (FGFR2). Using two lung adenocarcinoma (ADC) cell lines, A549 and H1299, we showed that FGF4, but not FGF7, altered cell morphology, promoted EMT-associated protein expression, and enhanced cell proliferation, migration/invasion and colony initiation. In addition, FGF4 increased store-operated calcium entry (SOCE) and expression of the calcium signal-associated protein Orai1. The SOCE inhibitor 2,5-di-tert-butylhydroquinone (BHQ) or Orai1 knockdown reversed all of the EMT-promoting effects of FGF4. BHQ also inhibited FGF4-induced EMT in a mouse xenograft model. Finally, 60 human lung ADC samples and 21 sets of matched specimens (primary and metastatic foci in lymph nodes from one patient) were used to confirm the clinicopathologic significance of FGF4 and its correlation with E-cadherin, Vimentin and Orai1 expression. Our study thus shows that FGF4 induces EMT by elevating SOCE in lung ADC.

Kaibori M, Sakai K, Ishizaki M, et al.
Increased FGF19 copy number is frequently detected in hepatocellular carcinoma with a complete response after sorafenib treatment.
Oncotarget. 2016; 7(31):49091-49098 [PubMed] Free Access to Full Article Related Publications
The multi-kinase inhibitor sorafenib is clinically approved for the treatment of patients with advanced hepatocellular carcinoma (HCC). We previously reported that fibroblast growth factor 3 and 4 (FGF3/FGF4) amplification is a predictor of a response to sorafenib. This study aims to analyze the relationship between FGF-FGF receptor (FGFR) genetic alterations and the response to sorafenib. Formalin-fixed, paraffin-embedded tissue specimens from HCC patients who had achieved a complete response (CR, N=6) or non-CR (N=39) to sorafenib were collected and were examined for FGF-FGFR gene alterations using next generation sequencing and copy number assay. FGFR mutations were detected in 5 of 45 (11.1%) cases. There was no significant association between FGFR mutation status and the response to sorafenib. We detected no increase in the FGF3/FGF4 copy number in CR cases. An FGF19 copy number gain was detected more frequently among CR cases (2/6, 33.3%) than among non-CR cases (2/39, 5.1%) (P = 0.024, Chi-squared test). In conclusion, a copy number gain for FGF19 may be a predictor of a response to sorafenib, in addition to FGF3/FGF4 amplification.

Katoh M
FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review).
Int J Mol Med. 2016; 38(1):3-15 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.

Ye C, Tao R, Cao Q, et al.
Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma.
Int J Oncol. 2016; 49(2):589-602 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is a common solid tumor worldwide with a poor prognosis. Accumulating evidence has implicated important regulatory roles of epigenetic modifications in the occurrence and progression of HCC. In the present study, we analyzed 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels in the tumor tissues and paired adjacent peritumor tissues (APTs) from four individual HCC patients using a (hydroxy)methylated DNA immunoprecipitation approach combined with deep sequencing [(h)MeDIP-Seq]. Bioinformatics analysis revealed that the 5-mC levels in the promoter regions of 2796 genes and the 5-hmC levels in 507 genes differed significantly between HCC tissues and APTs. These differential genes were grouped into various clusters and pathways and found to be particularly enriched in the 'metabolic pathways' that include 'Glycolysis/gluconeogenesis', 'Oxidative phosphorylation' and 'Citrate cycle (TCA cycle)', implicating a potential role of metabolic alterations in HCC. Furthermore, 144 genes had both 5-mC and 5-hmC changes in HCC patients, and 10 of them (PCNA, MDM2, STAG1, E2F4, FGF4, FGF19, RHOBTB2, UBE2QL1, DCN and HSP90AA1) were enriched and interconnected in five pathways including the 'Cell cycle', 'Pathway in cancer', 'Ubiquitin mediated proteolysis', 'Melanoma' and 'Prostate cancer' pathways. The genome-wide mapping of 5-mC and 5-hmC in HCC tissues and APTs indicated that both 5-mC and 5-hmC epigenetic modifications play important roles in the regulation of HCC, and there may be some interconnections between them. Taken together, in the present study we conducted the first genome-wide mapping of DNA methylation combined with hydroxymethylation in HBV-related HCC and provided a series of potential novel epigenetic biomarkers for HCC.

Tan Q, Li F, Wang G, et al.
Identification of FGF19 as a prognostic marker and potential driver gene of lung squamous cell carcinomas in Chinese smoking patients.
Oncotarget. 2016; 7(14):18394-402 [PubMed] Free Access to Full Article Related Publications
Comprehensive genomic characterizations of lung squamous cell carcinoma (LSCC) have been performed, but the differences between smokers (S-LSCC) and never smokers (NS-LSCC) are not clear, as NS-LSCC could be considered as a different disease from S-LSCC. In this study we delineated genomic alterations in a cohort of 21 NS-LSCC and 16 S-LSCC patients, and identified common gene mutations and amplifications as previously reported. Inclusion of more NS-LSCC patients enabled us to identify unreported S-LSCC- or NS-LSCC-specific alterations. Importantly, an amplification region containing FGF19, FGF3, FGF4 and CCND1 was found five-times more frequent in S-LSCC than in NS-LSCC. Amplification of FGF19 was validated in independent LSCC samples. Furthermore, FGF19 stimulated LSCC cell growth in vitro. These data implicate FGF19 as a potential driver gene in LSCC with clinic characteristics as smoking.

Shi H, Li Y, Feng G, et al.
The oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells.
Biochem Biophys Res Commun. 2016; 471(1):89-94 [PubMed] Related Publications
We have reported that the oncoprotein hepatitis B X-interacting protein (HBXIP) is able to promote migration of breast cancer cells. Fibroblast growth factor 4 (FGF4) is a multipotent growth factor and is highly expressed in various human cancers. However, the regulatory mechanism of FGF4 in breast cancer remains poorly understood. In the present study, we report that HBXIP is able to up-regulate FGF4 to enhance the migration of breast cancer cells. Immunohistochemistry staining showed that HBXIP and FGF4 were highly expressed in clinical metastatic lymph nodes of breast tumor. The expression levels of HBXIP were positively related to those of FGF4 in clinical breast cancer tissues. Then, we validated that HBXIP up-regulated the expression of FGF4 at the levels of promoter, mRNA and protein by luciferase reporter gene assays, reverse transcription-polymerase chain reaction and Western blot analysis. Moreover, we found that HBXIP was able to activate FGF4 promoter through transcriptional factor Sp1 by luciferase reporter gene assays. Chromatin immunoprecipitation assays confirmed that HBXIP coactivated Sp1 to stimulate FGF4 promoter. In function, we showed that HBXIP promoted breast cancer cell migration through FGF4 by wound healing and transwell cell migration assays. Thus, we conclude that the oncoprotein HBXIP up-regulates FGF4 through activating transcriptional factor Sp1 to promote the migration of breast cancer cells. Therapeutically, HBXIP may serve as a novel target in breast cancer.

Ross JS, Gay LM, Nozad S, et al.
Clinically advanced and metastatic pure mucinous carcinoma of the breast: a comprehensive genomic profiling study.
Breast Cancer Res Treat. 2016; 155(2):405-13 [PubMed] Related Publications
PURPOSE: Pure mucinous breast carcinoma (pmucBC) is a distinctive variant of breast cancer (BC) featuring an excellent overall prognosis. However, on rare occasions, pmucBC pursues an aggressive clinical course. We queried whether comprehensive genomic profiling (CGP) would uncover clinically relevant genomic alterations (CRGA) that could lead to targeted therapy treatment for patients with an advanced and metastatic form of pmucBC.
METHODS: From a series of 51,238 total cancer samples, which included 5605 cases of clinically advanced BC and 22 cases of stage IV pmucBC, DNA was extracted from 40 microns of FFPE sections. Comprehensive genomic profiling was performed using a hybrid-capture, adaptor ligation-based next generation sequencing assay to a mean coverage depth of 564X. The results were analyzed for all classes of genomic alterations (GA) including base substitutions, insertions and deletions, select rearrangements, and copy number changes. Clinically relevant genomic alterations were defined as those indicating possible treatment with anti-cancer drugs on the market or in registered clinical trials.
RESULTS: Samples were obtained from breast (11), lymph nodes (3), chest wall (2), liver (2), soft tissue (2), bone (1), and pleura (1). The median age of the 22 pmucBC patients was 57 years (range 32-79 years). Three pmucBCs were grade 1, 17 were grade 2, and 2 were grade 3. Twenty-one (95 %) pmucBC were ER+, 18 (82 %) were PR+, and 3 (14 %) were HER2+ by IHC and/or FISH. A total of 132 GA were identified (6.0 GA per tumor), including 53 CRGA, for a mean of 2.4 GA per tumor. Amplification of FGFR1 or ZNF703, located within the same amplicon, was found in 8 of 22 cases (36 %). This enrichment of FGFR1 amplification in 36 % of pmucBC versus 11 % of non-mucinous ER+ BC (601 cases) was significant (p < 0.005). Other frequently altered genes of interest in pmucBC were CCND1 and the FGF3/FGF4/FGF19 amplicon (27 %), often co-amplified together. ERBB2/HER2 alterations were identified in 5 pmucBC (23 %): ERBB2 amplification was found in 3 of 3 cases (100 %) that were HER2+ by IHC and/or FISH; 1 pmucBC was negative for HER2 overexpression by IHC, but positive for amplification by CGP; and 2 pmucBC harbored the ERBB2 substitutions D769Y and V777L (one sample also featured ERBB2 amplification). The enrichment of ERBB2 GA in metastatic pmucBC versus non-metastatic primary pmucBC was significant (p = 0.03). CRGA were also found in 20 additional genes including PIK3CA (5), BRCA1 (1), TSC2 (1), STK11 (1), AKT3 (1), and ESR1 (1).
CONCLUSIONS: Metastatic pmucBC is a distinct form of breast cancer that features a relatively high frequency of CRGA, including a significant enrichment of FGFR1 alterations and a high frequency of ERBB2 alterations when compared with non-metastatic pmucBC. These findings suggest that CGP can identify a variety of known and emerging therapy targets that have the potential to improve outcomes for patients with clinically advanced and metastatic forms of this disease.

Lefkowitch JH, Lagana SM, Kato T
Hepatocellular Carcinoma in Noncirrhotic Liver with Glycogenotic Foci: Basic Science Meets Genomic Medicine.
Semin Liver Dis. 2015; 35(4):450-6 [PubMed] Related Publications
During the past decade, the application of genomic analysis to liver tumors has provided extensive data concerning tumor phenotypes, signatures, outcomes, and prognosis. In this report the authors describe a middle-aged man without known risk factors for liver disease or hepatocellular carcinoma (HCC) who developed a 19-cm HCC in his right lobe. The underlying liver was normal histologically except for multifocal glycogenotic foci similar to those found in experimental chemical carcinogenesis. Precision genomic analysis of this tumor disclosed five alterations with amplifications of genes CCNE1, FGF3 and FGF4, MYCL1, and ARID1A. The roles of these gene mutations and their potential effects in carcinogenesis in this case are discussed.

Marquard AM, Birkbak NJ, Thomas CE, et al.
TumorTracer: a method to identify the tissue of origin from the somatic mutations of a tumor specimen.
BMC Med Genomics. 2015; 8:58 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: A substantial proportion of cancer cases present with a metastatic tumor and require further testing to determine the primary site; many of these are never fully diagnosed and remain cancer of unknown primary origin (CUP). It has been previously demonstrated that the somatic point mutations detected in a tumor can be used to identify its site of origin with limited accuracy. We hypothesized that higher accuracy could be achieved by a classification algorithm based on the following feature sets: 1) the number of nonsynonymous point mutations in a set of 232 specific cancer-associated genes, 2) frequencies of the 96 classes of single-nucleotide substitution determined by the flanking bases, and 3) copy number profiles, if available.
METHODS: We used publicly available somatic mutation data from the COSMIC database to train random forest classifiers to distinguish among those tissues of origin for which sufficient data was available. We selected feature sets using cross-validation and then derived two final classifiers (with or without copy number profiles) using 80 % of the available tumors. We evaluated the accuracy using the remaining 20 %. For further validation, we assessed accuracy of the without-copy-number classifier on three independent data sets: 1669 newly available public tumors of various types, a cohort of 91 breast metastases, and a set of 24 specimens from 9 lung cancer patients subjected to multiregion sequencing.
RESULTS: The cross-validation accuracy was highest when all three types of information were used. On the left-out COSMIC data not used for training, we achieved a classification accuracy of 85 % across 6 primary sites (with copy numbers), and 69 % across 10 primary sites (without copy numbers). Importantly, a derived confidence score could distinguish tumors that could be identified with 95 % accuracy (32 %/75 % of tumors with/without copy numbers) from those that were less certain. Accuracy in the independent data sets was 46 %, 53 % and 89 % respectively, similar to the accuracy expected from the training data.
CONCLUSIONS: Identification of primary site from point mutation and/or copy number data may be accurate enough to aid clinical diagnosis of cancers of unknown primary origin.

Pasini A, Delmonte A, Tesei A, et al.
Targeting Chromatin-Mediated Transcriptional Control of Gene Expression in Non-Small Cell Lung Cancer Therapy: Preclinical Rationale and Clinical Results.
Drugs. 2015; 75(15):1757-71 [PubMed] Related Publications
Targeting chromatin-mediated transcriptional control of gene expression is nowadays considered a promising new strategy, transcending conventional anticancer therapy. As a result, molecules acting as DNA demethylating agents or histone deacetylase inhibitors (HDACi) have entered the clinical arena in the last decade. Given the evidence suggesting that epigenetic regulation is significantly involved in lung cancer development and progression, the potential of epigenetically active compounds to modulate gene expression and reprogram cancer cells to a less aggressive phenotype is, at present, a promising strategy. Accordingly, a large number of compounds that interact with the epigenetic machinery of gene expression regulation are now being developed and tested as potential antitumor agents, either alone or in combination with standard therapy. The preclinical rationale and clinical data concerning the pharmacological modulation of chromatin organization in non-small cell lung cancer (NSCLC) is described in this review. Although preclinical data suggest that a pharmacological treatment targeting the epigenetic machinery has relevant activity over the neoplastic phenotype of NSCLC cells, clinical results are disappointing, leading only to short periods of disease stabilization in NSCLC patients. This evidence calls for a significant rethinking of strategies for an effective epigenetic therapy of NSCLC. The synergistic effect of concurrent epigenetic therapies, use at low doses, the priming of current treatments with previous epigenetic drugs, and the selection of clinical trial populations based on epigenetic biomarkers/signatures appear to be the cornerstones of a mature therapeutic strategy aiming to establish new regimens for reprogramming malignant cells and improving the clinical history of affected patients.

Seltzer J, Scotton TC, Kang K, et al.
Gene expression in prolactinomas: a systematic review.
Pituitary. 2016; 19(1):93-104 [PubMed] Related Publications
INTRODUCTION: Prolactinomas are the most common functional pituitary adenomas. Current classification systems rely on phenotypic elements and have few molecular markers for complementary classification. Treatment protocols for prolactinomas are also devoid of molecular targets, leaving those refractory to standard treatments without many options.
METHODS: A systematic literature review was performed utilizing the PRISMA guidelines. We aimed to summarize prior research exploring gene and protein expression in prolactinomas in order to highlight molecular variations associated with tumor development, growth, and prolactin secretion. A PubMed search of select MeSH terms was performed to identify all studies reporting gene and protein expression findings in prolactinomas from 1990 to 2014.
RESULTS: 1392 abstracts were screened and 51 manuscripts were included in the analysis, yielding 54 upregulated and 95 downregulated genes measured by various direct and indirect analytical methods. Of the many genes identified, three upregulated (HMGA2, HST, SNAP25), and three downregulated (UGT2B7, Let7, miR-493) genes were selected for further analysis based on our subjective identification of strong potential targets.
CONCLUSIONS: Many significant genes have been identified and validated in prolactinomas and most have not been fully analyzed for therapeutic and diagnostic potential. These genes could become candidate molecular targets for biomarker development and precision drug targeting as well as catalyze deeper research efforts utilizing next generation profiling/sequencing techniques, particularly genome scale expression and epigenomic analyses.

Amente S, Milazzo G, Sorrentino MC, et al.
Lysine-specific demethylase (LSD1/KDM1A) and MYCN cooperatively repress tumor suppressor genes in neuroblastoma.
Oncotarget. 2015; 6(16):14572-83 [PubMed] Free Access to Full Article Related Publications
The chromatin-modifying enzyme lysine-specific demethylase 1, KDM1A/LSD1 is involved in maintaining the undifferentiated, malignant phenotype of neuroblastoma cells and its overexpression correlated with aggressive disease, poor differentiation and infaust outcome. Here, we show that LSD1 physically binds MYCN both in vitro and in vivo and that such an interaction requires the MYCN BoxIII. We found that LSD1 co-localizes with MYCN on promoter regions of CDKN1A/p21 and Clusterin (CLU) suppressor genes and cooperates with MYCN to repress the expression of these genes. KDM1A needs to engage with MYCN in order to associate with the CDKN1A and CLU promoters. The expression of CLU and CDKN1A can be restored in MYCN-amplified cells by pharmacological inhibition of LSD1 activity or knockdown of its expression. Combined pharmacological inhibition of MYCN and LSD1 through the use of small molecule inhibitors synergistically reduces MYCN-amplified Neuroblastoma cell viability in vitro. These findings demonstrate that LSD1 is a critical co-factor of the MYCN repressive function, and suggest that combination of LSD1 and MYCN inhibitors may have strong therapeutic relevance to counteract MYCN-driven oncogenesis.

Parish A, Schwaederle M, Daniels G, et al.
Fibroblast growth factor family aberrations in cancers: clinical and molecular characteristics.
Cell Cycle. 2015; 14(13):2121-8 [PubMed] Free Access to Full Article Related Publications
Fibroblast growth factor ligands and receptors (FGF and FGFR) play critical roles in tumorigenesis, and several drugs have been developed to target them. We report the biologic correlates of FGF/FGFR abnormalities in diverse malignancies. The medical records of patients with cancers that underwent targeted next generation sequencing (182 or 236 cancer-related genes) were reviewed. The following FGF/FGFR genes were tested: FGF3, 4, 6, 7, 10, 12, 14, 19, 23 and FGFR1, 2, 3, and 4. Of 391 patients, 56 (14.3%) had aberrant FGF (N = 38, all amplifications) and/or FGFR (N = 22 including 5 mutations and one FGFR3-TACC3 fusion). FGF/FGFR aberrations were most frequent in breast cancers (26/81, 32.1%, p = 0.0003). In multivariate analysis, FGF/FGFR abnormalities were independently associated with CCND1/2, RICTOR, ZNF703, RPTOR, AKT2, and CDK8 alterations (all P < 0.02), as well as with an increased median number of alterations (P < 0.0001). FGF3, FGF4, FGF19 and CCND1 were co-amplified in 22 of 391 patients (5.6%, P < 0.0001), most likely because they co-localize on the same chromosomal region (11q13). There was no significant difference in time to metastasis or overall survival when comparing patients harboring FGF/FGFR alterations versus those not. Overall, FGF/FGFR was one of the most frequently aberrant pathways in our population comprising patients with diverse malignancies. These aberrations frequently co-exist with anomalies in a variety of other genes, suggesting that tailored combination therapy may be necessary in these patients.

Yamada T, Abei M, Danjoh I, et al.
Identification of a unique hepatocellular carcinoma line, Li-7, with CD13(+) cancer stem cells hierarchy and population change upon its differentiation during culture and effects of sorafenib.
BMC Cancer. 2015; 15:260 [PubMed] Free Access to Full Article Related Publications
BACKGROUNDS: Cancer stem cell (CSC) research has highlighted the necessity of developing drugs targeting CSCs. We investigated a hepatocellular carcinoma (HCC) cell line that not only has CSC hierarchy but also shows phenotypic changes (population changes) upon differentiation of CSC during culture and can be used for screening drugs targeting CSC.
METHODS: Based on a hypothesis that the CSC proportion should decrease upon its differentiation into progenitors (population change), we tested HCC cell lines (HuH-7, Li-7, PLC/PRF/5, HLF, HLE) before and after 2 months culture for several markers (CD13, EpCAM, CD133, CD44, CD90, CD24, CD166). Tumorigenicity was tested using nude mice. To evaluate the CSC hierarchy, we investigated reconstructivity, proliferation, ALDH activity, spheroid formation, chemosensitivity and microarray analysis of the cell populations sorted by FACS.
RESULTS: Only Li-7 cells showed a population change during culture: the proportion of CD13 positive cells decreased, while that of CD166 positive cells increased. The high tumorigenicity of the Li-7 was lost after the population change. CD13(+)/CD166(-) cells showed slow growth and reconstructed the bulk Li-7 populations composed of CD13(+)/CD166(-), CD13(-)/CD166(-) and CD13(-)/CD166(+) fractions, whereas CD13(-)/CD166(+) cells showed rapid growth but could not reproduce any other population. CD13(+)/CD166(-) cells showed high ALDH activity, spheroid forming ability and resistance to 5-fluorouracil. Microarray analysis demonstrated higher expression of stemness-related genes in CD166(-) than CD166(+) fraction. These results indicated a hierarchy in Li-7 cells, in which CD13(+)/CD166(-) and CD13(-)/CD166(+) cells serve as slow growing CSCs and rapid growing progenitors, respectively. Sorafenib selectively targeted the CD166(-) fraction, including CD13(+) CSCs, which exhibited higher mRNA expression for FGF3 and FGF4, candidate biomarkers for sorafenib. 5-fluorouracil followed by sorafenib inhibited the growth of bulk Li-7 cells more effectively than the reverse sequence or either alone.
CONCLUSIONS: We identified a unique HCC line, Li-7, which not only shows heterogeneity for a CD13(+) CSC hierarchy, but also undergoes a "population change" upon CSC differentiation. Sorafenib targeted the CSC in vitro, supporting the use of this model for screening drugs targeting the CSC. This type of "heterogeneous, unstable" cell line may prove more useful in the CSC era than conventional "homogeneous, stable" cell lines.

Evans L, Chen L, Milazzo G, et al.
SKP2 is a direct transcriptional target of MYCN and a potential therapeutic target in neuroblastoma.
Cancer Lett. 2015; 363(1):37-45 [PubMed] Related Publications
SKP2 is the substrate recognition subunit of the ubiquitin ligase complex which targets p27(KIP1) for degradation. Induced at the G1/S transit of the cell cycle, SKP2 is frequently overexpressed in human cancers and contributes to malignancy. We previously identified SKP2 as a possible MYCN target gene and hence hypothesise that SKP2 is a potential therapeutic target in MYCN amplified disease. A positive correlation was identified between MYCN activity and SKP2 mRNA expression in Tet21N MYCN-regulatable cells and a panel of MYCN amplified and non-amplified neuroblastoma cell lines. In chromatin immunoprecipitation and reporter gene assays, MYCN bound directly to E-boxes within the SKP2 promoter and induced transcriptional activity which was decreased by the removal of MYCN and E-box mutation. Although SKP2 knockdown inhibited cell growth in both MYCN amplified and non-amplified cells, cell cycle arrest and apoptosis were induced only in non-MYCN amplified neuroblastoma cells. In conclusion these data identify SKP2 as a direct transcriptional target of MYCN and supports SKP2 as a potential therapeutic target in neuroblastoma.

Schulze K, Imbeaud S, Letouzé E, et al.
Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets.
Nat Genet. 2015; 47(5):505-511 [PubMed] Free Access to Full Article Related Publications
Genomic analyses promise to improve tumor characterization to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors identified mutational signatures associated with specific risk factors, mainly combined alcohol and tobacco consumption and exposure to aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrently altered pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (hepatitis B virus, HBV) and AXIN1. Analyses according to tumor stage progression identified TERT promoter mutation as an early event, whereas FGF3, FGF4, FGF19 or CCND1 amplification and TP53 and CDKN2A alterations appeared at more advanced stages in aggressive tumors. In 28% of the tumors, we identified genetic alterations potentially targetable by US Food and Drug Administration (FDA)-approved drugs. In conclusion, we identified risk factor-specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC, which will be useful to design clinical trials for targeted therapy.

Yasuda K, Torigoe T, Mariya T, et al.
Fibroblasts induce expression of FGF4 in ovarian cancer stem-like cells/cancer-initiating cells and upregulate their tumor initiation capacity.
Lab Invest. 2014; 94(12):1355-69 [PubMed] Related Publications
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as a small population of cells within cancer that contribute to cancer initiation and progression. Cancer-associated fibroblasts (CAFs) are stromal fibroblasts surrounding tumor cells, and they have important roles in tumor growth and tumor progression. It has been suggested that stromal fibroblasts and CSCs/CICs might mutually cooperate to enhance their growth and tumorigenic capacity. In this study, we investigated the effects of fibroblasts on tumor-initiating capacity and stem-like properties of ovarian CSCs/CICs. CSCs/CICs were isolated from the ovarian carcinoma cell line HTBoA as aldehyde dehydrogenase 1 high (ALDH1(high)) population by the ALDEFLUOR assay. Histological examination of tumor tissues derived from ALDH1(high) cells revealed few fibrous stroma, whereas those derived from fibroblast-mixed ALDH1(high) cells showed abundant fibrous stroma formation. In vivo tumor-initiating capacity and in vitro sphere-forming capacity of ALDH1(high) cells were enhanced in the presence of fibroblasts. Gene expression analysis revealed that fibroblast-mixed ALDH1(high) cells had enhanced expression of fibroblast growth factor 4 (FGF4) as well as stemness-associated genes such as SOX2 and POU5F1. Sphere-forming capacity of ALDH1(high) cells was suppressed by small-interfering RNA (siRNA)-mediated knockdown of FGFR2, the receptor for FGF4 which was expressed preferentially in ALDH1(high) cells. Taken together, the results indicate that interaction of fibroblasts with ovarian CSCs/CICs enhanced tumor-initiating capacity and stem-like properties through autocrine and paracrine FGF4-FGFR2 signaling.

Favero F, Joshi T, Marquard AM, et al.
Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.
Ann Oncol. 2015; 26(1):64-70 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described.
MATERIALS AND METHODS: We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm.
RESULTS: Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%.
CONCLUSIONS: The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations.

Wheler JJ, Parker BA, Lee JJ, et al.
Unique molecular signatures as a hallmark of patients with metastatic breast cancer: implications for current treatment paradigms.
Oncotarget. 2014; 5(9):2349-54 [PubMed] Free Access to Full Article Related Publications
Our analysis of the tumors of 57 women with metastatic breast cancer with next generation sequencing (NGS) demonstrates that each patient's tumor is unique in its molecular fingerprint. We observed 216 somatic aberrations in 70 different genes, including 131 distinct aberrations. The most common gene alterations (in order of decreasing frequency) included: TP53, PIK3CA, CCND1, MYC, HER2 (ERBB2), MCL1, PTEN, FGFR1, GATA3, NF1, PIK3R1, BRCA2, EGFR, IRS2, CDH1, CDKN2A, FGF19, FGF3 and FGF4. Aberrations included mutations (46%), amplifications (45%), deletions (5%), splices (2%), truncations (1%), fusions (0.5%) and rearrangements (0.5%), with multiple distinct variants within the same gene. Many of these aberrations represent druggable targets, either through direct pathway inhibition or through an associated pathway (via 'crosstalk'). The 'molecular individuality' of these tumors suggests that a customized strategy, using an "N-of-One" model of precision medicine, may represent an optimal approach for the treatment of patients with advanced tumors.

Chu TY, Yang JT, Huang TH, Liu HW
Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells.
Radiat Res. 2014; 181(5):540-7 [PubMed] Related Publications
Crosstalk between cancer cells and the surrounding cancer associated fibroblasts (CAFs) plays an illusive role in cancer radiotherapy. This study investigated the effect of cancer cell-cancer associated fibroblasts crosstalk on the proliferation and survival of irradiated cervical cancer cells. A pretreatment with conditioned medium from a mixed culture of CAF and HeLa cells (mixCAF) had a stronger effect on enhancing the proliferation and survival of irradiated HeLa cells compared to pretreatment with CAF conditioned medium alone. In addition, pretreatment with a mixed culture of CAF and HeLa cells conditioned medium reduced the levels of two major radiation-induced genes, GADD45 and BTG2, and phosphorylation of p38. Profiling of the growth and survival factors in the conditioned medium revealed PDGF and VEGF, and IGF2, EGF, FGF-4, IGFBPs and GM-CSF to be specifically secreted from HeLa cells and CAFs, respectively. This study demonstrated radiation protective effects of CAF-cancer cell crosstalk, and identified multiple growth factors and radiation response genes that might be involved in these effects.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. FGF4, Cancer Genetics Web: http://www.cancer-genetics.org/FGF4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999