Gene Summary

Gene:IGFBP2; insulin-like growth factor binding protein 2, 36kDa
Aliases: IBP2, IGF-BP53
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:insulin-like growth factor-binding protein 2
Source:NCBIAccessed: 06 August, 2015


What does this gene/protein do?
Show (22)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (8)

Latest Publications: IGFBP2 (cancer-related)

Wang HJ, Gao Y, Chen L, et al.
RAB34 was a progression- and prognosis-associated biomarker in gliomas.
Tumour Biol. 2015; 36(3):1573-8 [PubMed] Related Publications
The objective of this study is to explore the expression pattern, prognostic value, and functional role of RAB34 in gliomas. RAB34 messenger RNA (mRNA) expression was evaluated from low grade to high grade in 220 glioma patients of the Chinese Glioma Genome Atlas (CGGA). We therefore analyzed RAB34 mRNA expression in two validated datasets. For detecting the protein expression level of RAB34, another 104 glioma tissues were stained by immunohistochemistry. Gene ontology (GO) analysis and gene set variation analysis (GSVA) were used for functional annotation of RAB34. The mRNA and protein expression levels of RAB34 were both related to glioma grade progression and were inversely correlated with overall survival (OS) in high-grade glioma patients. GO analysis and GSVA showed that RAB34 sets related to migration were significantly enriched in the cases with RAB34 high expression. Pearson correlation analysis identified that genes including MMP-11, HSPB1, IGFBP2, HSPA6, IGFBP5, and MMP19 were positively correlated with RAB34. The expression of RAB34 is related to glioma grade progression and confers a poor prognosis in high-grade glioma patients.

Kong LY, Wei J, Haider AS, et al.
Therapeutic targets in subependymoma.
J Neuroimmunol. 2014; 277(1-2):168-75 [PubMed] Related Publications
Subependymomas are usually treated with surgical resection; however, no standard, defined alternative medical therapy is recommended for patients who are not surgical candidates, owing to a paucity of molecular, immunological, and genetic characterization. To address this, an ex vivo functional analysis of the immune microenvironment in subependymoma was conducted, a subependymoma cytokine/chemokine microarray was constructed for the evaluation of operational immune and molecular pathways, and a subependymoma cell line was derived and used to test a variety of cytotoxic agents that target operational pathways identified in subependymoma. We found that immune effectors are detectable within the microenvironment of subependymoma; however, marked immune suppression is not observed. The subependymoma tissue microarrays demonstrated tumor expression of p53, MDM2, HIF-1α, topoisomerase II-β, p-STAT3, and nucleolin, but not EGFRvIII, EphA2, IL-13RA2, CMV, CTLA-4, FoxP3, PD-1, PD-L1, EGFR, PDGF-α, PDGF-β, PDGFR-α, PDGFR-β, PTEN, IGFBP2, PI3K, MDM4, IDH1, mTOR, or Jak2. A topoisomerase inhibitor (WP744, IC50=0.83 μM) and a p-STAT3/HIF-1α inhibitor (WP1066, IC50=3.15 μM) demonstrated a growth inhibition of the subependymoma cell proliferation. Cumulatively, these data suggest that those agents that interfere with oncogenes operational in subependymoma may have clinical impact.

Galanis E, Atherton PJ, Maurer MJ, et al.
Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer.
Cancer Res. 2015; 75(1):22-30 [PubMed] Free Access to Full Article Related Publications
Edmonston vaccine strains of measles virus (MV) have significant antitumor activity in mouse xenograft models of ovarian cancer. MV engineered to express the sodium iodide symporter gene (MV-NIS) facilitates localization of viral gene expression and offers a tool for tumor radiovirotherapy. Here, we report results from a clinical evaluation of MV-NIS in patients with taxol- and platinum-resistant ovarian cancer. MV-NIS was given intraperitoneally every 4 weeks for up to 6 cycles. Treatment was well tolerated and associated with promising median overall survival in these patients with heavily pretreated ovarian cancer; no dose-limiting toxicity was observed in 16 patients treated at high-dose levels (10(8)-10(9) TCID50), and their median overall survival of 26.5 months compared favorably with other contemporary series. MV receptor CD46 and nectin-4 expression was confirmed by immunohistochemistry in patient tumors. Sodium iodide symporter expression in patient tumors after treatment was confirmed in three patients by (123)I uptake on SPECT/CTs and was associated with long progression-free survival. Immune monitoring posttreatment showed an increase in effector T cells recognizing the tumor antigens IGFBP2 and FRα, indicating that MV-NIS treatment triggered cellular immunity against the patients' tumor and suggesting that an immune mechanism mediating the observed antitumor effect. Our findings support further clinical evaluation of MV-NIS as an effective immunovirotherapy.

Han S, Li Z, Master LM, et al.
Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin β1-ERK pathway.
Br J Cancer. 2014; 111(7):1400-9 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
BACKGROUND: Insulin-like growth factor binding protein-2 (IGFBP-2) is significantly increased in the serum of patients with malignant gliomas. High plasma IGFBP-2 levels are correlated with poor prognosis in glioma patients. However, the exact role of exogenous IGFBP-2 in gliomas is unclear.
METHODS AND RESULTS: Using the MTT cell viability assay, cell cycle analysis, and the transwell migration assay, it was demonstrated that IGFBP-2 treatment stimulated proliferation and invasion in U87 and U251 cell lines and primary SU3 glioma cells. Western blot analysis and immunofluorescence staining revealed that IGFBP-2 promoted ERK phosphorylation and nuclear translocation. Moreover, blocking ERK activation using the inhibitor PD98059 markedly reduced the effects of IGFBP-2 in glioma cells. As IGFBP-2 has an integrin-binding domain, the contribution of integrin β1 to these IGFBP-2-mediated processes was examined. Neutralisation or knockdown of the expression of integrin β1 inhibited IGFBP-2-induced ERK activation, cell proliferation, and cell invasion. Significantly, IGFBP-2 induced temozolomide resistance in glioma cells in an integrin β1/ERK-dependent manner.
CONCLUSIONS: Exogenous IGFBP-2 induces proliferation, invasion, and chemoresistance in glioma cells via integrin β1/ERK signaling, suggesting that targeting this pathway could represent a potential therapeutic strategy for the treatment of gliomas. The identification of this pathway in glioma progression provides insight into the mechanism by which serum IGFBP-2 levels can predict the prognosis of glioma patients.

Huang G, Dang ZF, Dang YM, et al.
Expression and underlying roles of IGFBP-3 in paclitaxel-treated gastric cancer SGC-7901 cells.
Asian Pac J Cancer Prev. 2014; 15(14):5741-5 [PubMed] Related Publications
PURPOSE: To study the expression of insulin-like growth factor binding proteins (IGFBPs) in paclitaxel-treated gastric cancer SGC-7901 cells, and to further investigate underlying mechanisms.
MATERIALS AND METHODS: Real time PCR and Western blot assays were applied to detect the mRNA and protein expression of IGFBP-2, -3 and -5 after paclitaxel (10 nM) treatment of SGC-7901 cells. In addition IGFBP-3 expression was silenced by RNA interference to determine effects. Cell viability was determined by MTT assay. Cell cycling and apoptosis were assessed by flow cytometry.
RESULTS: Compared to the control group, only IGFBP-3 expression was elevated significantly after paclitaxel (10 nM) treatment (p<0.05). Paclitaxel treatment caused cell cycle arrest and apoptosis via downregulating Bcl-2 expression. However, the effect could be abrogated by IGFBP-3 silencing.
CONCLUSIONS: IGFBP-3 exhibits anti-apoptotic effects on paclitaxel-treated SGC-7901 cells via elevating Bcl-2 expression.

Simons CC, van den Brandt PA, Stehouwer CD, et al.
Body size, physical activity, early-life energy restriction, and associations with methylated insulin-like growth factor-binding protein genes in colorectal cancer.
Cancer Epidemiol Biomarkers Prev. 2014; 23(9):1852-62 [PubMed] Related Publications
BACKGROUND: We investigated body size, physical activity, and early-life energy restriction in relation to colorectal tumors with and without methylated insulin-like growth factor-binding protein (IGFBP) genes, which are putative tumor-suppressor genes.
METHODS: We determined IGFBP2, IGFBP3, and IGFBP7 promoter CpG island hypermethylation in tumors of 733 colorectal cancer cases from the Netherlands Cohort Study (N = 120,852). Participants self-reported lifestyle and dietary factors at baseline in 1986. Using a case-cohort approach (N subcohort = 5,000), we estimated hazard ratios (HR) for colorectal cancer by extent of IGFBP methylation.
RESULTS: Comparison of the highest versus lowest sex-specific tertiles of adult body mass index (BMI) gave multivariable-adjusted HRs [95% confidence intervals (CI)] for colorectal cancers with 0 (18.7%), 1 (29.5%), 2 (32.4%), and 3 (19.5%) methylated genes of 1.39 (0.88-2.19), 1.11 (0.77-1.62), 1.67 (1.17-2.38), and 2.07 (1.29-3.33), respectively. Other anthropometric measures and physical activity were not associated with colorectal cancer risk by extent of IGFBP methylation, except height in sex-specific analyses for women. Exposure to energy restriction during the Dutch Hunger Winter versus nonexposure gave HRs (95% CIs) for colorectal cancers with 0, 1, 2, and 3 methylated genes of 1.01 (0.67-1.53), 1.03 (0.74-1.44), 0.72 (0.52-0.99), and 0.50 (0.32-0.78), respectively.
CONCLUSIONS: Adult BMI, height (in women only), and early-life energy restriction were associated with the risk of having a colorectal tumor characterized by IGFBP methylation.
IMPACT: Body size may particularly increase the risk of IGFBP gene-methylated colorectal tumors; this finding might facilitate more targeted approaches to prevent obesity-related colorectal cancers.

Martino-Echarri E, Fernández-Rodríguez R, Bech-Serra JJ, et al.
Relevance of IGFBP2 proteolysis in glioma and contribution of the extracellular protease ADAMTS1.
Oncotarget. 2014; 5(12):4295-304 [PubMed] Article available free on PMC after 23/09/2015 Related Publications
Expression of IGFBP2 (Insulin-like Growth Factor Binding Protein 2) has been positively correlated with glioma progression. Although the proteolysis of IGFBP2 has been widely recognized, with consequences as a major modulator of IGFII signaling, the relevance of this post-translational modification has not been well studied in tumors. Using an in vivo proteomic approach by Isotope-Coded Protein Label (ICPL), we identified IGFBP2 as a target of the extracellular protease ADAMTS1 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 1). Notably, the proteolytic pattern of IGFBP2 was also detected in human glioma culture cells and, more importantly, in all glioma samples evaluated. In addition, high expression of ADAMTS1 correlates with higher levels of cleaved IGFBP2 in glioblastoma multiforme cases. Using gene expression public databases, we confirmed that IGFBP2 is a poor prognosis marker for gliomas, and we also observed an important contribution of ADAMTS1.Finally, we showed the impact of ADAMTS1 on IGFII-mediated IGF1R phosphorylation and cellular migration. Our results support a functional interaction between IGFBP2 and ADAMTS1 and suggest the need to evaluate post-translational modifications of IGFBP2 in glioma, in order to approach new therapies.

Li X, Liu Y, Granberg KJ, et al.
Two mature products of MIR-491 coordinate to suppress key cancer hallmarks in glioblastoma.
Oncogene. 2015; 34(13):1619-28 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
MIR-491 is commonly co-deleted with its adjacent CDKN2A on chromosome 9p21.3 in glioblastoma multiforme (GBM). However, it is not known whether deletion of MIR-491 is only a passenger event or has an important role. Small-RNA sequencing of samples from GBM patients demonstrated that both mature products of MIR-491 (miR-491-5p and -3p) are downregulated in tumors compared with the normal brain. The integration of GBM data from The Cancer Genome Atlas (TCGA), miRNA target prediction and reporter assays showed that miR-491-5p directly targets EGFR, CDK6 and Bcl-xL, whereas miR-491-3p targets IGFBP2 and CDK6. Functionally, miR-491-3p inhibited glioma cell invasion; overexpression of both miR-491-5p and -3p inhibited proliferation of glioma cell lines and impaired the propagation of glioma stem cells (GSCs), thereby prolonging survival of xenograft mice. Moreover, knockdown of miR-491-5p in primary Ink4a-Arf-null mouse glial progenitor cells exacerbated cell proliferation and invasion. Therefore, MIR-491 is a tumor suppressor gene that, by utilizing both mature forms, coordinately controls the key cancer hallmarks: proliferation, invasion and stem cell propagation.

Ansari D, Aronsson L, Sasor A, et al.
The role of quantitative mass spectrometry in the discovery of pancreatic cancer biomarkers for translational science.
J Transl Med. 2014; 12:87 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
In the post-genomic era, it has become evident that genetic changes alone are not sufficient to understand most disease processes including pancreatic cancer. Genome sequencing has revealed a complex set of genetic alterations in pancreatic cancer such as point mutations, chromosomal losses, gene amplifications and telomere shortening that drive cancerous growth through specific signaling pathways. Proteome-based approaches are important complements to genomic data and provide crucial information of the target driver molecules and their post-translational modifications. By applying quantitative mass spectrometry, this is an alternative way to identify biomarkers for early diagnosis and personalized medicine. We review the current quantitative mass spectrometric technologies and analyses that have been developed and applied in the last decade in the context of pancreatic cancer. Examples of candidate biomarkers that have been identified from these pancreas studies include among others, asporin, CD9, CXC chemokine ligand 7, fibronectin 1, galectin-1, gelsolin, intercellular adhesion molecule 1, insulin-like growth factor binding protein 2, metalloproteinase inhibitor 1, stromal cell derived factor 4, and transforming growth factor beta-induced protein. Many of these proteins are involved in various steps in pancreatic tumor progression including cell proliferation, adhesion, migration, invasion, metastasis, immune response and angiogenesis. These new protein candidates may provide essential information for the development of protein diagnostics and targeted therapies. We further argue that new strategies must be advanced and established for the integration of proteomic, transcriptomic and genomic data, in order to enhance biomarker translation. Large scale studies with meta data processing will pave the way for novel and unexpected correlations within pancreatic cancer, that will benefit the patient, with targeted treatment.

Hu Q, Huang L, Kuang X, et al.
Is insulin-like growth factor binding protein 2 associated with metastasis in lung cancer?
Clin Exp Metastasis. 2014; 31(5):535-41 [PubMed] Related Publications
Insulin-like growth factor binding protein 2 (IGFBP2) is involved in the progression of many epithelial cancers. However, its role in non-small cell lung cancer (NSCLC), another type of epithelial cancer, remains unclear. We detected IGFBP2 expression using immunohistochemistry in surgically resected tumors from 110 NSCLC patients, 37 of which had metastases. The positive rate of IGFBP2 expression was compared between the metastatic and the non-metastatic group, and correlations of IGFBP2 expression with metastasis and overall survival were analyzed. We also investigated the expression of IGFBP2 in microvesicles (MVs) collected from primary lung cancer cell cultures, and in different locations of newly resected NSCLC tumors, using immunoblotting. The overall positive rate of IGFBP2 expression in lung cancer was 51.8 % and it was significantly higher in the metastatic group than in the non-metastatic group (70.3 and 42.5 % respectively, p < 0.01). And the higher the lymph node stage, the higher the positive rate. Cytoplasmic expression was predominant in the majority of the tumors. Based on multivariate regression analysis, IGFBP2 was correlated with metastasis and poor overall survival (Hazard ratio: 3.56 and 3.23 respectively). IGFBP2 was detectable in the MVs collected from IGFBP2 positive cell lines, and its expression was most abundant in the marginal region of the newly resected tumors. IGFBP2 is associated with metastasis and poor survival of lung cancer. Its presence in MVs and high abundance in the marginal region of tumors suggest that its association with metastasis may be related to tumor microenviroment remodeling in NSCLC.

Mountzios G, Aivazi D, Kostopoulos I, et al.
Differential expression of the insulin-like growth factor receptor among early breast cancer subtypes.
PLoS One. 2014; 9(3):e91407 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
INTRODUCTION: We sought to determine the level of protein expression of the critical components of the insulin-like growth factor receptor (IGFR) pathway and to evaluate their prognostic significance across the different early breast cancer subtypes.
PATIENTS AND METHODS: Archival tumor tissue from 1,021 women with early, node positive breast cancer, who were prospectively evaluated within two randomized clinical trials, was used to construct tissue microarrays that were stained for hormone receptors (HR), Ki67, HER2, epidermal growth factor receptor (EGFR) and cytokeratins 5/6, to classify tumors into five immunophenotypical subgroups. Immunohistochemical (IHC) expression of IGF1R-alpha and beta subunits, IGF2R and IGF-binding protein 2 (IGFBP2) was assessed using the immunoreactive score (IRS). Repeated internal cross-validation was performed to examine the statistical validity of the cut off points for all biomarkers.
RESULTS: After a median follow-up time of 105.4 months, overall 370 women (36.2%) had relapsed and 270 (26.4%) had died. Tumors expressing IGF1R-alpha above the median IRS were significantly more frequently HR positive (luminal A+B+HER2), as compared to HER2-enriched and triple negative ones (p<0.001 for both comparisons). IGF2R was overexpressed significantly more frequently in HR negative tumors (p = 0.001) and had an inverse correlation with all other biomarkers. Patients with luminal A and B tumors with high IGF1R-alpha and negative EGFR expression (N = 190) had significantly higher 4-year survival rates, as compared to the rest (log-rank p = 0.046), as did patients with luminal A and B tumors with high IGF1R-alpha and low IGF2R expression, as compared to the rest (N = 91), (log-rank p = 0.035). After adjustment for significant variables, patients in the latter group had a relative 45% reduction in the risk of death, as compared to the rest (p = 0.035).
CONCLUSION: Aberrant expression of components of the IGF1R pathway is associated with better clinical outcomes in women with luminal A and B, node positive, early breast cancer.

Scheil-Bertram S, Kappler R, von Baer A, et al.
Molecular profiling of chordoma.
Int J Oncol. 2014; 44(4):1041-55 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
The molecular basis of chordoma is still poorly understood, particularly with respect to differentially expressed genes involved in the primary origin of chordoma. In this study, therefore, we compared the transcriptional expression profile of one sacral chordoma recurrence, two chordoma cell lines (U-CH1 and U-CH2) and one chondrosarcoma cell line (U-CS2) with vertebral disc using a high-density oligonucleotide array. The expression of 65 genes whose mRNA levels differed significantly (p<0.001; ≥6-fold change) between chordoma and control (vertebral disc) was identified. Genes with increased expression in chordoma compared to control and chondrosarcoma were most frequently located on chromosomes 2 (11%), 5 (8%), 1 and 7 (each 6%), whereas interphase cytogenetics of 33 chordomas demonstrated gains of chromosomal material most prevalent on 7q (42%), 12q (21%), 17q (21%), 20q (27%) and 22q (21%). The microarray data were confirmed for selected genes by quantitative polymerase chain reaction analysis. As in other studies, we showed the expression of brachyury. We demonstrate the expression of new potential candidates for chordoma tumorigenesis, such as CD24, ECRG4, RARRES2, IGFBP2, RAP1, HAI2, RAB38, osteopontin, GalNAc-T3, VAMP8 and others. Thus, we identified and validated a set of interesting candidate genes whose differential expression likely plays a role in chordoma.

Ahani N, Karimi Arzenani M, Shirkoohi R, et al.
Expression of insulin-like growth factor binding protein-2 (IGFBP-2) gene in negative and positive human cytomegalovirus glioblastoma multiforme tissues.
Med Oncol. 2014; 31(2):812 [PubMed] Related Publications
Glioblastoma multiforme (GBM), a WHO grade IV malignant glioma, is the most common and lethal primary brain tumor in adults and has but few treatments. The median survival of glioblastoma patients is 12 months. The (possible) relationship between human cytomegalovirus (HCMV) infection and cancer has been investigated for decades. Detection of viral DNA, mRNA and/or antigens in tumor tissues suggests that HCMV infection has a role to play in the etiology of several human malignancies. HCMV gene products can promote the various signaling pathways critical to tumor growth, including platelet derived growth factor receptor, phosphatidyl inositol 3-kinases (PI3K/AKT), signal transducer and activator of transcription 3 and glycogen synthase kinase 3 beta that are involved in apoptosis, angiogenesis, invasion and immune evasion. Insulin-like growth factor binding protein 2 (IGFBP2) is a biomarker of the PI3K/AKT pathway so we decided to evaluate the expression of this gene in 3 groups: HCMV-negative GBM tissues, HCMV-positive GBM tissues and non-tumor tissues. The presence of HCMV was assessed according to our previous article. HCMV was present in %75 of glioblastoma tissues. Then RNA was extracted, cDNA was synthesized, and real-time PCR was performed. Then, the rate of increased expression was calculated using the Livac or 2(-ΔΔCt). ΔCt of samples in the three groups were compared using analysis of variance (ANOVA). The expression of IGFBP2 gene relative to GAPDH gene in HCMV-negative glioblastoma tissues and HCMV-positive glioblastoma tissues, respectively, was increased 5.486 and 15.032 times compared to non-neoplastic brain tissues. ANOVA tests showed that the difference of mean ΔCt for IGFBP2 gene between healthy subjects and patients with HCMV-positive and HCMV-negative glioblastoma tumors statistically significant.

Heo JC, Jung TH, Jung DY, et al.
Indatraline inhibits Rho- and calcium-mediated glioblastoma cell motility and angiogenesis.
Biochem Biophys Res Commun. 2014; 443(2):749-55 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is the most common and lethal primary brain tumor of the central nervous system (CNS). As an attempt to identify drugs for GBM therapeutics, phenotypic assays were used to screen 1000 chemicals from a clinical compound library. GBM subtypes exhibited different capabilities to induce angiogenesis when cultured on Matrigel; proneural cells migrated and formed a tube-like structure without endothelial cells. Among the compounds screened, indatraline, a nonselective monoamine transporter inhibitor, suppressed these morphological changes; it dose dependently inhibited cell spreading, migration, and in vitro/in vivo tube formation. In addition to intracellular calcium concentration, indatraline increased the level of Rho GTPase and its activity. Moreover, indatraline downregulated angiogenesis-related genes such as IGFBP2, PTN, VEGFA, PDGFRA, and VEGFR as well as nestin, a stem cell marker. These findings collectively suggest that the activation of Rho GTPase and the suppression of angiogenesis-related factors mediate the antiangiogenic activity of indatraline in proneural GBM culture.

Kang Z, Yu Y, Zhu YJ, et al.
Downregulation of IGFBP2 is associated with resistance to IGF1R therapy in rhabdomyosarcoma.
Oncogene. 2014; 33(50):5697-705 [PubMed] Related Publications
Agents targeting the insulin-like growth factor-1 receptor (IGF1R) are in clinical development, but, despite some initial success of single agents in sarcoma, response rates are low with brief durations. Thus, it is important to identify markers predictive of response, to understand mechanisms of resistance, and to explore combination therapies. In this study, we found that, although associated with PAX3-FKHR translocation, increased IGF1R level is an independent prognostic marker for worse overall survival, particularly in patients with PAX3-FKHR-positive rhabdomyosarcoma (RMS). IGF1R antibody-resistant RMS cells were generated using an in vivo model. Expression analysis indicated that IGFBP2 is both the most affected gene in the insulin-like growth factor (IGF) signaling pathway and the most significantly downregulated gene in the resistant lines, indicating that there is a strong selection to repress IGFBP2 expression in tumor cells resistant to IGF1R antibody. IGFBP2 is inhibitory to IGF1R phosphorylation and its signaling. Similar to antibodies to IGF1/2 or IGF2, the addition of exogenous IGFBP2 potentiates the activity of IGF1R antibody against the RMS cells, and it reverses the resistance to IGF1R antibody. In contrast to IGF1R, lower expression of IGFBP2 is associated with poorer overall survival, consistent with its inhibitory activity found in this study. Finally, blocking downstream Protein kinase B (AKT) activation with Phosphatidylinositide 3-kinases (PI3K)- or mammalian target of rapamycin (mTOR)-specific inhibitors significantly sensitized the resistant cells to the IGF1R antibody. These findings show that constitutive IGFBP2 downregulation may represent a novel mechanism for acquired resistance to IGF1R therapeutic antibody in vivo and suggest various drug combinations to enhance antibody activity and to overcome resistance.

Huang YF, Cheng WF, Wu YP, et al.
Circulating IGF system and treatment outcome in epithelial ovarian cancer.
Endocr Relat Cancer. 2014; 21(2):217-29 [PubMed] Related Publications
Aggressive epithelial ovarian cancers (EOCs) frequently progress and become fatal, even when cytoreduction surgery plus platinum-based chemotherapy are performed. Thus, the early detection of high-risk subgroups is important in order to provide opportunities for better treatment outcomes, using alternative therapeutic strategies. This study aimed to explore the expression of circulating IGF system components and their relationship with treatment outcome in EOC. We included 228 patients with a median follow-up time of 44 months at two tertiary centers. There were 68 cancer deaths and 108 cases of cancer progression in the cohort. Preoperative serum levels of total IGF1, IGF2, IGF-binding protein 2 (IGFBP2), and IGFBP3 were analyzed using an ELISA and were then converted into an IGF1:IGFBP3 molar ratio. The risks of mortality and progression were estimated using Cox regression models in univariate and multivariate analyses. Our results showed that high IGF1, IGF2, and IGFBP3 levels were significantly associated with an early cancer stage, non-serous histology, and optimal cytoreduction. High IGFBP2 levels were associated with an advanced stage and serous histology. Overall and progression-free survival durations were significantly better among patients with high IGF1 (P=0.003 and P=0.001), IGF2 (P=0.003 and P=0.02), or IGFBP3 levels (P=0.02 and P=0.008). In multivariate analysis, serum IGFBP2 levels were significantly associated with increased risk of mortality (hazard ratio=1.84, 95% CI: 1.07-3.18, P=0.03), indicating that IGFBP2 could be used as an early predictor of EOC-related mortality. The combination of elevated IGFBP2 and reduced IGF1 levels at diagnosis could further facilitate the identification of a patient subgroup with the worst prognosis.

Lu H, Wang L, Gao W, et al.
IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small cell lung cancer cells.
Mol Cancer Ther. 2013; 12(12):2864-73 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
Insulin-like growth factor (IGF)-binding protein-2 (IGFBP2) expression is increased in various types of cancers, including in a subset of patients with lung cancer. Because IGFBP2 is involved in signal transduction of some critical cancer-related pathways, we analyzed the association between IGFBP2 and response to pathway-targeted agents in seven human non-small cell lung cancer (NSCLC) cell lines. Western blot analysis and ELISA showed that four of the seven NSCLC cell lines analyzed expressed high levels of IGFBP2, whereas the remaining three had barely detectable IGFBP2. Susceptibilities of those seven cell lines to nine anticancer agents targeting to IGF1R, Src, FAK, MEK, and AKT were determined by a dose-dependent cell viability assay. The results showed that high IGFBP2 levels were associated with resistance to dasatinib and, to a lesser degree, to sacaratinib, but not to other agents. Ectopic IGFBP2 overexpression or knockdown revealed that changing IGFBP2 expression levels reversed dasatinib susceptibility phenotype, suggesting a causal relationship between IGFBP2 expression and dasatinib resistance. Molecular characterization revealed that focal adhesion kinase (FAK) activation was associated with increased IGFBP2 expression and partially contributed to IGFBP2-mediated dasatinib resistance. Treatment with a combination of dasatinib and FAK inhibitor led to enhanced antitumor activity in IGFBP2-overexpressing and dasatinib-resistant NSCLC cells in vitro and in vivo. Our results showed that the IGFBP2/FAK pathway is causally associated with dasatinib resistance and may be used as biomarkers for identification of dasatinib responders among patients with lung cancer. Simultaneous targeting on Src and FAK will likely improve the therapeutic efficacy of dasatinib for treatment of lung cancer.

Guo C, Lu H, Gao W, et al.
Insulin-like growth factor binding protein-2 level is increased in blood of lung cancer patients and associated with poor survival.
PLoS One. 2013; 8(9):e74973 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
BACKGROUND: We recently showed that IGFBP2 is overexpressed in primary lung cancer tissues. This study aims to determine whether IGFBP2 is elevated in blood samples of lung cancer patients and whether its level is associated with clinical outcomes.
METHODOLOGY/PRINCIPAL FINDINGS: Plasma IGFBP2 levels were determined blindly by enzyme-linked immunosorbent assay in 80 lung cancer patients and 80 case-matched healthy controls for comparison. We analyzed blood samples for IGFBP2 levels from an additional 84 patients with lung cancer and then tested for associations between blood IGFBP2 levels and clinical parameters in all 164 lung cancer patients. All statistical tests were two-sided and differences with p<0.05 were considered significant. The mean plasma concentration of IGFBP2 in lung cancer patients was significantly higher than that in healthy controls (388.12 ± 261.00 ng/ml vs 219.30 ± 172.84 ng/ml, p<0.001). IGFBP2 was increased in all types of lung cancer, including adenocarcinoma, squamous cell cancer, and small-cell cancer, regardless of patients' age, sex, or smoking status. IGFBP2 levels were mildly but significantly associated with tumor size and were significantly higher in stage IV than stage I or III disease. A multivariate analysis showed that lung cancer patients whose blood IGFBP2 was higher than 160.9 ng/ml had a poor survival outcome, with a hazard ratio of 8.76 (95% CI 1.12-68.34, p=0.038 after adjustment for tumor size, pathology, and stage). The median survival time for patients with blood IGFBP2 >160.9 ng/ml is 15.1 months; whereas median survival time was 128.2 months for the patients whose blood IGFBP2 was ≤ 160.9 ng/ml (p =0.0002).
CONCLUSIONS/SIGNIFICANCE: Blood IGFBP2 is significantly increased in lung cancer patients. A high circulating level of IGFBP2 is significantly associated with poor survival, suggesting that blood IGFBP2 levels could be a prognostic biomarker for lung cancer.

Biernacka KM, Uzoh CC, Zeng L, et al.
Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2.
Endocr Relat Cancer. 2013; 20(5):741-51 [PubMed] Related Publications
Clinically relevant prostate cancer (PCa) is more frequent in Westernised societies and increasingly men have co-morbidities associated with a Western lifestyle, primarily diabetes, characterised by hyperinsulinaemia and hyperglycaemia. IGFs and their binding proteins (IGFBPs) are important mediators of the effects of nutrition on growth and play a key role in the development of PCa. We used DU145, PC3 and LNCaP PCa cell lines to examine how hyperglycaemia altered their response to docetaxel. Trypan Blue dye-exclusion assay was used to determine the percentage of cell death. Protein abundance was determined using western immunoblotting. Levels of IGFBP2 were measured using an ELISA. IGFBP2 gene silencing was achieved using siRNA technology. DNA methylation was assessed using combined bisulphide restriction analysis. Acetylation status of histones H3 and H4 associated with IGFBP2 gene was assessed using chromatin immunoprecipitation assay. Hyperglycaemia reduced docetaxel-induced apoptosis by 40% for DU145 cells and by 88% for LNCaP cells. This reduced cell death was mediated by a glucose-induced up-regulation of IGFBP2, as silencing IGFBP2 negated the survival effect of high glucose. Glucose increased IGFBP2 via increasing the acetylation of histones associated with the IGFBP2 gene promoter. This finding could have important implications in relation to therapeutic strategies as epigenetic modulation could be reversible.

Sehgal P, Kumar N, Praveen Kumar VR, et al.
Regulation of protumorigenic pathways by insulin like growth factor binding protein2 and its association along with β-catenin in breast cancer lymph node metastasis.
Mol Cancer. 2013; 12:63 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
BACKGROUND: Insulin like growth factor binding proteins modulate the mitogenic and pro survival effects of IGF. Elevated expression of IGFBP2 is associated with progression of tumors that include prostate, ovarian, glioma among others. Though implicated in the progression of breast cancer, the molecular mechanisms involved in IGFBP2 actions are not well defined. This study investigates the molecular targets and biological pathways targeted by IGFBP2 in breast cancer.
METHODS: Transcriptome analysis of breast tumor cells (BT474) with stable knockdown of IGFBP2 and breast tumors having differential expression of IGFBP2 by immunohistochemistry was performed using microarray. Differential gene expression was established using R-Bioconductor package. For validation, gene expression was determined by qPCR. Inhibitors of IGF1R and integrin pathway were utilized to study the mechanism of regulation of β-catenin. Immunohistochemical and immunocytochemical staining was performed on breast tumors and experimental cells, respectively for β-catenin and IGFBP2 expression.
RESULTS: Knockdown of IGFBP2 resulted in differential expression of 2067 up regulated and 2002 down regulated genes in breast cancer cells. Down regulated genes principally belong to cell cycle, DNA replication, repair, p53 signaling, oxidative phosphorylation, Wnt signaling. Whole genome expression analysis of breast tumors with or without IGFBP2 expression indicated changes in genes belonging to Focal adhesion, Map kinase and Wnt signaling pathways. Interestingly, IGFBP2 knockdown clones showed reduced expression of β- catenin compared to control cells which was restored upon IGFBP2 re-expression. The regulation of β-catenin by IGFBP2 was found to be IGF1R and integrin pathway dependent. Furthermore, IGFBP2 and β-catenin are co-ordinately overexpressed in breast tumors and correlate with lymph node metastasis.
CONCLUSION: This study highlights regulation of β-catenin by IGFBP2 in breast cancer cells and most importantly, combined expression of IGFBP2 and β-catenin is associated with lymph node metastasis of breast tumors.

McCaffery I, Tudor Y, Deng H, et al.
Putative predictive biomarkers of survival in patients with metastatic pancreatic adenocarcinoma treated with gemcitabine and ganitumab, an IGF1R inhibitor.
Clin Cancer Res. 2013; 19(15):4282-9 [PubMed] Related Publications
PURPOSE: This planned exploratory analysis assessed the predictive nature of baseline circulating factors of the insulin-like growth factor (IGF) axis on the treatment effect of ganitumab (monoclonal antibody inhibitor of IGF-1 receptor) plus gemcitabine in a randomized phase II study in metastatic pancreatic adenocarcinoma.
EXPERIMENTAL DESIGN: Baseline levels of IGFs/IGF binding proteins (IGFBP) were analyzed in serum or plasma. Mutations and gene expression were analyzed in archival samples. Treatment effects between biomarker subgroups were compared for overall survival (OS). Associations of tumor markers with OS were evaluated.
RESULTS: For patients with evaluable samples, ganitumab was associated with improved OS versus placebo (HR, 0.49; 95% CI: 0.28-0.87). The treatment effect on improved OS was strong in the patient subset with higher levels of IGF-1, IGF-2, or IGFBP-3, or lower levels of IGFBP-2, but not so on the other corresponding subset. Median OS of ganitumab versus placebo in patients with higher levels of IGF-1, IGF-2, and IGFBP-3 was 16 versus 6.8 months (HR, 0.25; 95% CI: 0.09-0.67), 16 versus 5.9 months (HR, 0.24; 95% CI: 0.09-0.68), and 16 versus 6.8 months (HR, 0.28; 95% CI: 0.11-0.73), and in patients with lower IGFBP-2 levels was 12.7 versus 6.6 months (HR, 0.19; 95% CI: 0.07-0.55). Interaction between treatment and IGFs/IGFBPs in multivariate analyses suggested predictive potential for IGF-2 (P = 0.002) and IGFBP-2 (P = 0.02). KRAS mutation status and PTEN expression were not associated with OS.
CONCLUSIONS: Baseline circulating factors of the IGF axis may predict OS benefit from ganitumab plus gemcitabine in metastatic pancreatic adenocarcinoma.

Kim YW, Bae SM, Kim YW, et al.
Target-based molecular signature characteristics of cervical adenocarcinoma and squamous cell carcinoma.
Int J Oncol. 2013; 43(2):539-47 [PubMed] Related Publications
There is an urgent need for molecular marker studies of adenocarcinoma (AC) and squamous cell carcinoma (SCC) of the uterine cervix. This study utilized oligomicroarray and pathway analyses to characterize a transcriptomic signature with molecular networks associated with AC and SCC. A 10K oligomicroarray was used to identify potential transcripts that were differentially expressed in cervical cancers from 28 patients and common reference RNAs from 17 different normal cervixes. Molecular networks were correlated using genomics tools to globally explore cellular pathways. Gene expression levels of 46 transcripts separated cancer samples into AC and SCC groups. Genes including: KRT17, IGFBP2, CALCA and VIPR1 were differentially expressed in AC and SCC. In addition, we identified a transcriptomic signature that predicted tumor classification and progression based upon its cellular processes. The downregulated signatures for SCC were cell death of pheochromocytoma cells (P=0.0037), apoptosis of neurons (P=0.009) and damage to DNA (P=0.0038). By contrast, the upregulated molecular signatures in AC were immunological disorder (P=0.006), splenomegaly (P=0.0053) and hepatic system disorder (P=0.006). The G2/M DNA damage checkpoint regulation pathway (P=0.05) was found to be significantly linked to IGF1R as a new regulatory component of a putative cytoplasmic signaling cascade in SCC. By contrast, the antigen presenting canonical pathway (P=0.038) appeared to be linked to PPARγ in AC. Taken together, these experiments provide important new information regarding the role of molecular networks in mediating SCC and AC, possibly through two independent pathways, and contribute to provide new targets for the prevention and treatment of cervical cancer.

Hu YL, Zhong D, Pang F, et al.
HNF1b is involved in prostate cancer risk via modulating androgenic hormone effects and coordination with other genes.
Genet Mol Res. 2013; 12(2):1327-35 [PubMed] Related Publications
Prostate cancer is one of the most commonly diagnosed male malignancies. Genome wide association studies have revealed HNF1b to be a major risk gene for prostate cancer susceptibility. We examined the mechanisms of involvement of HNF1b in prostate cancer development. We integrated data from Gene Expression Omnibus prostate cancer genes from the Dragon Database of Genes Implicated in Prostate Cancer, and used meta-analysis data to generate a panel of HNF1b-associated prostate cancer risk genes. An RT-PCR was used to assess expression levels in DU145, PC3, LNCaP, and RWEP-1 cells. Twelve genes (BAG1, DDR1, ERBB4, ESR1, HSPD1, IGFBP2, IGFBP5, NR4A1, PAWR, PIK3CG, RAP2A, and TPD52) were found to be associated with both HNF1b and prostate cancer risk. Six of them (BAG1, ERBB4, ESR1, HSPD1, NR4A1, and PIK3CG) were mapped to the KEGG pathway, and submitted to further gene expression assessment. HNF1b, NR4A1, and HSPD1 were found to be highly expressed in the LNCaP androgenic hormone-dependent cell line. Compared to expression levels in wild-type prostate cancer cells, NR4A1, HSPD1, ERBB4, and ESR1 expression levels were also found to be significantly increased in the HNF1b-transfected cells. We conclude that the mechanism of action of HNF1b in prostate cancer involves modulation of the association between androgenic hormone and prostate cancer cells. Gene-gene interaction and coordination should be taken into account to determine relationships between specific loci and diseases.

Li Z, Zhang Y, Ramanujan K, et al.
Oncogenic NRAS, required for pathogenesis of embryonic rhabdomyosarcoma, relies upon the HMGA2-IGF2BP2 pathway.
Cancer Res. 2013; 73(10):3041-50 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
Embryonic rhabdomyosarcoma (ERMS) is the most common soft-tissue tumor in children. Here, we report the identification of the minor groove DNA-binding factor high mobility group AT-hook 2 (HMGA2) as a driver of ERMS development. HMGA2 was highly expressed in normal myoblasts and ERMS cells, where its expression was essential to maintain cell proliferation, survival in vitro, and tumor outgrowth in vivo. Mechanistic investigations revealed that upregulation of the insulin-like growth factor (IGF) mRNA-binding protein IGF2BP2 was critical for HMGA2 action. In particular, IGF2BP2 was essential for mRNA and protein stability of NRAS, a frequently mutated gene in ERMS. shRNA-mediated attenuation of NRAS or pharmacologic inhibition of the MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) effector pathway showed that NRAS and NRAS-mediated signaling was required for tumor maintenance. Taken together, these findings implicate the HMGA2-IGFBP2-NRAS signaling pathway as a critical oncogenic driver in ERMS.

Foulstone EJ, Zeng L, Perks CM, Holly JM
Insulin-like growth factor binding protein 2 (IGFBP-2) promotes growth and survival of breast epithelial cells: novel regulation of the estrogen receptor.
Endocrinology. 2013; 154(5):1780-93 [PubMed] Related Publications
In breast tumors IGF binding protein-2 (IGFBP-2) is elevated, and the presence of IGFBP-2 has been shown to correlate with malignancy. However, how IGFBP-2 contributes to the malignant state is still unclear. Silencing IGFBP-2 blocked cell proliferation and in MCF-7 cells increased cell death, indicating that IGFBP-2 was acting in both a mitogenic and a survival capacity. Exogenous IGFBP-2 acting via integrin receptors to reduce phosphatase and tensin homolog deleted from chromosome 10 (PTEN) levels protected these cells against death induced by various chemotherapeutic agents. This was dependent on a functional estrogen receptor (ER)-α because silencing ER-α blocked the ability of IGFBP-2 to confer cell survival. Loss of IGFBP-2 increased levels of PTEN and improved chemosensitivity of the cells, confirming its role as a survival factor. Silencing IGFBP-2 had no effect on the response to IGF-II, but responses to estrogen and tamoxifen were no longer observed due to loss of ER-α, which could be prevented by the inhibition of PTEN. Conversely, exogenous IGFBP-2 increased ER-α mRNA and protein in both normal and cancer cells via its interaction with integrin receptors. These actions of IGFBP-2 on ER-α involved the IGF-I receptor and activation of phosphatidylinositol 3-kinase in the cancer cells but were independent of this in normal breast cells. The production of IGFBP-2 by breast cancer cells enhances their proliferative potential, increases their survival, and protects them against chemotherapy-induced death. IGFBP-2 not only modulates IGFs and directly regulates PTEN but also has a role in maintaining ER-α expression.

Azar WJ, Zivkovic S, Werther GA, Russo VC
IGFBP-2 nuclear translocation is mediated by a functional NLS sequence and is essential for its pro-tumorigenic actions in cancer cells.
Oncogene. 2014; 33(5):578-88 [PubMed] Related Publications
IGFBP-2 is highly expressed in both the serum and tumor tissues of most cancers, and is considered one of the most significant genes in the signature of major cancers. IGFBP-2 mainly modulates IGF actions in the pericellular space; however, there is considerable evidence to suggest that IGFBP-2 may also act independently of the IGFs. These IGF-independent actions of IGFBP-2 are exerted either via interactions at the cell surface or intracellularly, via interaction with cytoplasmic or nuclear-binding partners. The precise mechanism underlying the intracellular/intranuclear localization of IGFBP-2 remains unclear. In this study, we investigated IGFBP-2 nuclear localization in several common cancer cells with the aim of dissecting the mechanism of its nuclear trafficking. IGFBP-2 is detected in the nuclei of common cancer cells, including breast, prostate and several neuroblastoma cell lines, using cell fractionation and confocal microscopy. Via nuclear import assays, we show that nuclear entry of IGFBP-2 is mediated by the classical nuclear import mechanisms, primarily through importin-α, as demonstrated by the use of blocking, competition and co-immunoprecipitation assays. Bioinformatics analysis of the IGFBP-2 protein sequence with PSORT II identified a classical nuclear localization signal (cNLS) sequence at 179PKKLRPP185, within the IGFBP-2 linker domain, mutagenesis of which abolishes IGFBP-2 nuclear import. Accordingly, the NLSmutIGFBP-2 fails to activate the VEGF promoter, which would otherwise occur in the presence of wild-type IGFBP-2. As a consequence, no activation of angiogenic processes were observed in NLSmutIGFBP-2 expressing SHEP cells when implanted onto our in vivo quail chorio-allantoic membrane model. Taken together, these data show for the first time that IGFBP-2 possesses a functional NLS sequence and that IGFBP-2 actively translocates into the nucleus by a classical nuclear import mechanism, involving formation of IGFBP-2 complexes with importin-α. Nuclear IGFBP-2 is required for the activation of VEGF expression and consequent angiogenesis.

Gakis G, Stenzl A
Gender-specific differences in muscle-invasive bladder cancer: the concept of sex steroid sensitivity.
World J Urol. 2013; 31(5):1059-64 [PubMed] Related Publications
PURPOSE: To describe the role of sex steroid-dependent growth of muscle-invasive bladder cancer (MIBC) and the role of single-nucleotide polymorphisms (SNP) located on chromosome 8q24 as a molecular explanation for gender-specific differences in the incidence and outcome of MIBC.
METHODS: A detailed, non-systematic analysis was performed for articles and reviews investigating the role of sex steroids in the development and progression of MIBC between 2000 and 2012.
RESULTS: Localized MIBCs overexpress the androgen receptor (AR), whereas in lymph node-positive stages, loss of AR expression has been found. High-risk SNPs of genes on chromosome 8q24, that is, the rs2294008 of prostate stem cell antigen (PSCA) gene, have been linked with increased susceptibility for MIBC. The PSCA gene possesses an androgen-responsive element (ARE) in its promoter region. Recent studies suggest that loss of AR responsiveness to the PSCA promoter may result in the induction of an androgen-independent mechanism, that is, the insulin-like growth factor-binding protein 2 signalling pathway-a key event in the development of hormone-independent prostate cancer-and this may increase the metastatic potential. In females, it can be hypothesized that due to the altered androgen levels, these mechanisms may be initiated earlier during tumor progression in females and result in inferior survival compared to males.
CONCLUSION: Muscle-invasive bladder cancer (MIBC) is a sex steroid-dependent tumor. AREs in the promoter region of high-risk genes may drive tumor progression and result in loss of androgen responsiveness, which eventually leads to the activation of androgen-independent processes forming the metastatic potential. The determination of the AR status in cystectomy specimens additionally offers new adjuvant approaches after cystectomy.

Arcaroli J, Quackenbush K, Dasari A, et al.
Biomarker-driven trial in metastatic pancreas cancer: feasibility in a multicenter study of saracatinib, an oral Src inhibitor, in previously treated pancreatic cancer.
Cancer Med. 2012; 1(2):207-17 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
Src tyrosine kinases are overexpressed in pancreatic cancers, and the oral Src inhibitor saracatinib has shown antitumor activity in preclinical models of pancreas cancer. We performed a CTEP-sponsored Phase II clinical trial of saracatinib in previously treated pancreas cancer patients, with a primary endpoint of 6-month survival. A Simon MinMax two-stage phase II design was used. Saracatinib (175 mg/day) was administered orally continuously in 28-day cycles. In the unselected portion of the study, 18 patients were evaluable. Only two (11%) patients survived for at least 6 months, and three 6-month survivors were required to move to second stage of study as originally designed. The study was amended as a biomarker-driven trial (leucine rich repeat containing protein 19 [LRRC19] > insulin-like growth factor-binding protein 2 [IGFBP2] "top scoring pairs" polymerase chain reaction [PCR] assay, and PIK3CA mutant) based on preclinical data in a human pancreas tumor explant model. In the biomarker study, archival tumor tissue or fresh tumor biopsies were tested. Biomarker-positive patients were eligible for the study. Only one patient was PIK3CA mutant in a 3' untranslated region (UTR) portion of the gene. This patient was enrolled in the study and failed to meet the 6-month survival endpoint. As the frequency of biomarker-positive patients was very low (<3%), the study was closed. Although we were unable to conclude whether enriching for a subset of second/third line pancreatic cancer patients treated with a Src inhibitor based on a biomarker would improve 6-month survival, we demonstrate that testing pancreatic tumor samples for a biomarker-driven, multicenter study in metastatic pancreas cancer is feasible.

Gakis G, Stenzl A, Renninger M
Evolution of the concept of androgen-sensitive bladder cancer.
Scand J Urol. 2013; 47(3):173-8 [PubMed] Related Publications
This reviews describes the concept of androgen-dependent growth of bladder cancer and the role of single-nucleotide polymorphisms (SNPs) located on chromosome 8q24 as a common carcinogenetic pathway for the development of concomitant prostate and bladder cancer. Recent genome-wide association studies have identified high-risk SNPs on chromosome 8q24 that have been linked with increased susceptibility for bladder and prostate cancer and alterations in the androgen receptor (AR) pathway. Muscle-invasive bladder cancers overexpress the AR, whereas in locally advanced or lymph-node positive stages loss of AR expression has been found. The prostate stem cell antigen (PSCA) gene possesses an androgen-responsive element (ARE) in its promoter region. Heterozymous and homozygous carriers of the SNP rs22940008 in the first exon of the PSCA gene are at increased risk for invasive bladder cancers. They exhibit significantly lower PSCA messenger RNA expression than patients with the wild-type genotype. Loss of the AR responsivity of the PSCA promoter may be a result of an altered affinity of the AR to the ARE mediated by the rs2294008 SNP or reduced expression of AR coactivators. Thereafter, induction of an androgen-independent mechanism, i.e. the insulin-like growth factor binding protein-2 signalling pathway--a key event in the development of hormone-independent prostate cancer--may increase tumour aggressiveness and metastatic potential of invasive bladder cancer cells. Loss of PSCA expression may represent an important step for androgen-independent growth, linked with the presence of the rs2294008 SNP. Determination of the AR status in cystectomy specimens offers new therapeutic approaches in locally advanced bladder cancer.

Das SK, Bhutia SK, Azab B, et al.
MDA-9/syntenin and IGFBP-2 promote angiogenesis in human melanoma.
Cancer Res. 2013; 73(2):844-54 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
Melanoma differentiation-associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacologic approaches were used to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma, and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, chorioallantoic membrane (CAM) assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several proangiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the extracellular matrix (ECM), activating Src and FAK resulting in activation by phosphorylation of Akt, which induces hypoxia inducible factor 1-α (HIF-1α). The HIF-1α activates transcription of insulin growth factor-binding protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell nonautonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (nonautonomous).

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IGFBP2, Cancer Genetics Web: http://www.cancer-genetics.org/IGFBP2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999