Gene Summary

Gene:OLAH; oleoyl-ACP hydrolase
Aliases: TE2, SAST, AURA1, THEDC1
Databases:HGNC, Ensembl, GeneCard, Gene
Protein:S-acyl fatty acid synthase thioesterase, medium chain
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (7)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: OLAH (cancer-related)

Ferreira MA, Gamazon ER, Al-Ejeh F, et al.
Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer.
Nat Commun. 2019; 10(1):1741 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWAS) have identified more than 170 breast cancer susceptibility loci. Here we hypothesize that some risk-associated variants might act in non-breast tissues, specifically adipose tissue and immune cells from blood and spleen. Using expression quantitative trait loci (eQTL) reported in these tissues, we identify 26 previously unreported, likely target genes of overall breast cancer risk variants, and 17 for estrogen receptor (ER)-negative breast cancer, several with a known immune function. We determine the directional effect of gene expression on disease risk measured based on single and multiple eQTL. In addition, using a gene-based test of association that considers eQTL from multiple tissues, we identify seven (and four) regions with variants associated with overall (and ER-negative) breast cancer risk, which were not reported in previous GWAS. Further investigation of the function of the implicated genes in breast and immune cells may provide insights into the etiology of breast cancer.

Jiang X, Finucane HK, Schumacher FR, et al.
Shared heritability and functional enrichment across six solid cancers.
Nat Commun. 2019; 10(1):431 [PubMed] Free Access to Full Article Related Publications
Quantifying the genetic correlation between cancers can provide important insights into the mechanisms driving cancer etiology. Using genome-wide association study summary statistics across six cancer types based on a total of 296,215 cases and 301,319 controls of European ancestry, here we estimate the pair-wise genetic correlations between breast, colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other diseases. We observed statistically significant genetic correlations between lung and head/neck cancer (r

Harda K, Szabo Z, Szabo E, et al.
Somatostatin Receptors as Molecular Targets in Human Uveal Melanoma.
Molecules. 2018; 23(7) [PubMed] Free Access to Full Article Related Publications
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults, with an incidence of 4⁻5 cases per million. The prognosis of UM is very poor. In the present study, our aim was to investigate the expression of mRNA and protein for somatostatin receptor types-1, -2, -3, -4, -5 (SSTR-1⁻5) in human UM tissue samples and in OCM-1 and OCM-3 human UM cell lines by qRT-PCR, western blot and ligand competition assay. The mRNA for SSTR-2 showed markedly higher expression in UM tissues than SSTR-5. The presence of SSTRs was demonstrated in 70% of UM specimens using ligand competition assay and both human UM models displayed specific high affinity SSTRs. Among the five SSTRs, the mRNA investigated for SSTR-2 and SSTR-5 receptors was strongly expressed in both human UM cell lines, SSTR-5 showing the highest expression. The presence of the SSTR-2 and SSTR-5 receptor proteins was confirmed in both cell lines by western blot. In summary, the expression of somatostatin receptors in human UM specimens and in OCM-1 and OCM-3 human UM cell lines suggests that they could serve as a potential molecular target for therapy of UM using modern powerful cytotoxic SST analogs targeting SSTR-2 and SSTR-5 receptors.

Buglyó G, Beyer D, Biró S, Oláh É
The Wilms' tumour 1 gene as a factor in non-syndromic hypospadias: evidence and controversy.
Pathology. 2018; 50(4):377-381 [PubMed] Related Publications
Hypospadias is one of the most frequent congenital anomalies of the male external genitalia. Its pathogenesis is due to largely unknown or poorly understood genetic factors and is further complicated by environmental-intrauterine-risk factors. One of the genes currently in focus by molecular biologists and clinicians studying syndromic forms of hypospadias is the Wilms' tumour 1 (WT1) gene. There is controversy over whether WT1 defects are also responsible for isolated hypospadias. In this review, we briefly cover the role of WT1 as a transcription factor and discuss proposed pathogenic pathways leading to hypospadias, outlining possible directions for research. We assess available evidence on the gene's mutations and polymorphisms recently suggested in the background of the disease, and examine the putative role of WT1-associated proteins. We also review relevant aspects of genome-wide association studies carried out so far, and raise some points to consider in future efforts.

Oláh G, Módis K, Törö G, et al.
Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation.
Biochem Pharmacol. 2018; 149:186-204 [PubMed] Free Access to Full Article Related Publications
The role of the three gasotransmitter systems - nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H

Kuchenbaecker KB, Hopper JL, Barnes DR, et al.
Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers.
JAMA. 2017; 317(23):2402-2416 [PubMed] Related Publications
Importance: The clinical management of BRCA1 and BRCA2 mutation carriers requires accurate, prospective cancer risk estimates.
Objectives: To estimate age-specific risks of breast, ovarian, and contralateral breast cancer for mutation carriers and to evaluate risk modification by family cancer history and mutation location.
Design, Setting, and Participants: Prospective cohort study of 6036 BRCA1 and 3820 BRCA2 female carriers (5046 unaffected and 4810 with breast or ovarian cancer or both at baseline) recruited in 1997-2011 through the International BRCA1/2 Carrier Cohort Study, the Breast Cancer Family Registry and the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, with ascertainment through family clinics (94%) and population-based studies (6%). The majority were from large national studies in the United Kingdom (EMBRACE), the Netherlands (HEBON), and France (GENEPSO). Follow-up ended December 2013; median follow-up was 5 years.
Exposures: BRCA1/2 mutations, family cancer history, and mutation location.
Main Outcomes and Measures: Annual incidences, standardized incidence ratios, and cumulative risks of breast, ovarian, and contralateral breast cancer.
Results: Among 3886 women (median age, 38 years; interquartile range [IQR], 30-46 years) eligible for the breast cancer analysis, 5066 women (median age, 38 years; IQR, 31-47 years) eligible for the ovarian cancer analysis, and 2213 women (median age, 47 years; IQR, 40-55 years) eligible for the contralateral breast cancer analysis, 426 were diagnosed with breast cancer, 109 with ovarian cancer, and 245 with contralateral breast cancer during follow-up. The cumulative breast cancer risk to age 80 years was 72% (95% CI, 65%-79%) for BRCA1 and 69% (95% CI, 61%-77%) for BRCA2 carriers. Breast cancer incidences increased rapidly in early adulthood until ages 30 to 40 years for BRCA1 and until ages 40 to 50 years for BRCA2 carriers, then remained at a similar, constant incidence (20-30 per 1000 person-years) until age 80 years. The cumulative ovarian cancer risk to age 80 years was 44% (95% CI, 36%-53%) for BRCA1 and 17% (95% CI, 11%-25%) for BRCA2 carriers. For contralateral breast cancer, the cumulative risk 20 years after breast cancer diagnosis was 40% (95% CI, 35%-45%) for BRCA1 and 26% (95% CI, 20%-33%) for BRCA2 carriers (hazard ratio [HR] for comparing BRCA2 vs BRCA1, 0.62; 95% CI, 0.47-0.82; P=.001 for difference). Breast cancer risk increased with increasing number of first- and second-degree relatives diagnosed as having breast cancer for both BRCA1 (HR for ≥2 vs 0 affected relatives, 1.99; 95% CI, 1.41-2.82; P<.001 for trend) and BRCA2 carriers (HR, 1.91; 95% CI, 1.08-3.37; P=.02 for trend). Breast cancer risk was higher if mutations were located outside vs within the regions bounded by positions c.2282-c.4071 in BRCA1 (HR, 1.46; 95% CI, 1.11-1.93; P=.007) and c.2831-c.6401 in BRCA2 (HR, 1.93; 95% CI, 1.36-2.74; P<.001).
Conclusions and Relevance: These findings provide estimates of cancer risk based on BRCA1 and BRCA2 mutation carrier status using prospective data collection and demonstrate the potential importance of family history and mutation location in risk assessment.

Lecarpentier J, Silvestri V, Kuchenbaecker KB, et al.
Prediction of Breast and Prostate Cancer Risks in Male BRCA1 and BRCA2 Mutation Carriers Using Polygenic Risk Scores.
J Clin Oncol. 2017; 35(20):2240-2250 [PubMed] Free Access to Full Article Related Publications
Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction. Materials and Methods We genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights. Results In male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 × 10

Sipos E, Hegyi K, Treszl A, et al.
Concurrence of chromosome 3 and 4 aberrations in human uveal melanoma.
Oncol Rep. 2017; 37(4):1927-1934 [PubMed] Free Access to Full Article Related Publications
Uveal melanoma (UM) is the most common primary intraocular malignancy with a very poor prognosis. The most frequent chromosome aberration in UM is the monosomy of chromosome 3. Previously, we demonstrated that ~50% of UMs express type-I receptor for luteinizing hormone‑releasing hormone (LH-RH-R). The gene encoding LH-RH-R is located in chromosome 4 (location: 4q21.2); however, the occurrence of numerical aberrations of chromosome 4 have never been studied in UM. In the present study, we investigated the abnormalities of chromosome 3 and 4, and the possible correlation between them, as well as with LH-RH-R expression. Forty-six specimens of UM were obtained after enucleation. Numerical aberrations of chromosome 3 and 4 were studied by fluorescence in situ hybridization (FISH). Chromosome 4 was detected in normal biparental disomy only in 14 (30%) samples; however, 32 cases (70%) showed more than 2 signals/nucleus. Monosomy of chromosome 3 could be found in 16 (35%) samples. In 6 specimens (13%), more than 2 copies of chromosome 3 were found, while normal biparental disomy was detected in 24 (52%) samples. Statistical analysis indicated a statistically significant (p<0.05) correlation between the copy number of chromosome 3 and 4. Moreover, moderate difference was revealed in the survival rate of the UM patients with various pathological profiles. No correlation was found between chromosome aberrations and LH-RH-R expression. Our results clearly demonstrate abnormalities in chromosome 3 and 4 and the incidence of the monosomy of chromosome 3 in human UM. In summary, our results provide new incite concerning the genetic background of this tumor. Our findings could contribute to a more precise determination of the prognosis of human UM and to the development of new therapeutic approaches to this malignancy.

Phelan CM, Kuchenbaecker KB, Tyrer JP, et al.
Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.
Nat Genet. 2017; 49(5):680-691 [PubMed] Free Access to Full Article Related Publications
To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC.

Oláh J, Bertrand P, Ovádi J
Role of the microtubule-associated TPPP/p25 in Parkinson's and related diseases and its therapeutic potential.
Expert Rev Proteomics. 2017; 14(4):301-309 [PubMed] Related Publications
INTRODUCTION: The discovery and development of therapeutic strategies for the treatments of Parkinson's disease (PD) and other synucleinopathies are limited by a lack of understanding of the pathomechanisms and their connection with different diseases such as cancers. Areas covered: The hallmarks of these diseases are frequently multifunctional disordered proteins displaying moonlighting and/or chameleon features, which are challenging drug targets. A representative of these proteins is the disordered Tubulin Polymerization Promoting Protein (TPPP/p25) expressed specifically in oligodendrocytes (OLGs) in normal brain. Its non-physiological level is tightly related to the etiology of PD and Multiple System Atrophy (TPPP/p25 enrichment in inclusions of neurons and OLGs, respectively), multiple sclerosis (TPPP/p25-positive OLG destruction), as well as glioma (loss of TPPP/p25 expression). The established anti-proliferative potency of TPPP/p25 may raise its influence in cancer development. The recognition that whereas too much TPPP/p25 could kill neurons in PD, but its loss keeps cells alive in cancer could contribute to our understanding of the interrelationship of 'TPPP/p25 diseases'. Expert commentary: The knowledge accumulated so far underlines the key roles of the multifunctional TPPP/p25 in both physiological and diverse pathological processes, consequently its validation as drug target sorely needs a new innovative strategy that is briefly reviewed here.

Rebbeck TR, Friebel TM, Mitra N, et al.
Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women.
Breast Cancer Res. 2016; 18(1):112 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood.
METHODS: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2.
RESULTS: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (p = 0.010) or progesterone receptor (PR) positive (p = 0.013) than in SH1, but less likely to be ER positive (p < 0.001) or PR positive (p = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1 or BRCA2 in either BC or OC.
CONCLUSIONS: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2.

Hamdi Y, Soucy P, Kuchenbaeker KB, et al.
Association of breast cancer risk in BRCA1 and BRCA2 mutation carriers with genetic variants showing differential allelic expression: identification of a modifier of breast cancer risk at locus 11q22.3.
Breast Cancer Res Treat. 2017; 161(1):117-134 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways.
METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2.
RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10
CONCLUSION: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.

Lawrenson K, Kar S, McCue K, et al.
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus.
Nat Commun. 2016; 7:12675 [PubMed] Free Access to Full Article Related Publications
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10(-20)), ER-negative BC (P=1.1 × 10(-13)), BRCA1-associated BC (P=7.7 × 10(-16)) and triple negative BC (P-diff=2 × 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10(-3)) and ABHD8 (P<2 × 10(-3)). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3'-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk.

Vigorito E, Kuchenbaecker KB, Beesley J, et al.
Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers.
PLoS One. 2016; 11(7):e0158801 [PubMed] Free Access to Full Article Related Publications
Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.

Zeng C, Guo X, Long J, et al.
Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.
Breast Cancer Res. 2016; 18(1):64 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk.
METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation.
RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05.
CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.

Dunning AM, Michailidou K, Kuchenbaecker KB, et al.
Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.
Nat Genet. 2016; 48(4):374-86 [PubMed] Free Access to Full Article Related Publications
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.

Meeks HD, Song H, Michailidou K, et al.
BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers.
J Natl Cancer Inst. 2016; 108(2) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers.
METHODS: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided.
RESULTS: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10(-) (6)) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10(-3)). These associations were stronger for serous ovarian cancer and for estrogen receptor-negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10(-5) and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10(-5), respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed.
CONCLUSIONS: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations.

Papp J, Kovacs ME, Matrai Z, et al.
Contribution of APC and MUTYH mutations to familial adenomatous polyposis susceptibility in Hungary.
Fam Cancer. 2016; 15(1):85-97 [PubMed] Free Access to Full Article Related Publications
Familial adenomatous polyposis (FAP) is a colorectal cancer predisposition syndrome with considerable genetic and phenotypic heterogeneity, defined by the development of multiple adenomas throughout the colorectum. FAP is caused either by monoallelic mutations in the adenomatous polyposis coli gene APC, or by biallelic germline mutations of MUTYH, this latter usually presenting with milder phenotype. The aim of the present study was to characterize the genotype and phenotype of Hungarian FAP patients. Mutation screening of 87 unrelated probands from FAP families (21 of them presented as the attenuated variant of the disease, showing <100 polyps) was performed using DNA sequencing and multiplex ligation-dependent probe amplification. Twenty-four different pathogenic mutations in APC were identified in 65 patients (75 %), including nine cases (37.5 %) with large genomic alterations. Twelve of the point mutations were novel. In addition, APC-negative samples were also tested for MUTYH mutations and we were able to identify biallelic pathogenic mutations in 23 % of these cases (5/22). Correlations between the localization of APC mutations and the clinical manifestations of the disease were observed, cases with a mutation in the codon 1200-1400 region showing earlier age of disease onset (p < 0.003). There were only a few, but definitive dissimilarities between APC- and MUTYH-associated FAP in our cohort: the age at onset of polyposis was significantly delayed for biallelic MUTYH mutation carriers as compared to patients with an APC mutation. Our data represent the first comprehensive study delineating the mutation spectra of both APC and MUTYH in Hungarian FAP families, and underscore the overlap between the clinical characteristics of APC- and MUTYH-associated phenotypes, necessitating a more appropriate clinical characterization of FAP families.

No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer.
Gynecol Oncol. 2016; 141(2):386-401 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3' UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370.
METHODS: Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers).
RESULTS: We found no association with risk of ovarian cancer (OR=0.99, 95% CI 0.94-1.04, p=0.74) or breast cancer (OR=0.98, 95% CI 0.94-1.01, p=0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR=1.09, 95% CI 0.97-1.23, p=0.14, breast cancer HR=1.04, 95% CI 0.97-1.12, p=0.27; BRCA2, ovarian cancer HR=0.89, 95% CI 0.71-1.13, p=0.34, breast cancer HR=1.06, 95% CI 0.94-1.19, p=0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR=0.94, 95% CI 0.83-1.07, p=0.38), breast cancer (HR=0.96, 95% CI 0.87-1.06, p=0.38), and all other previously-reported associations.
CONCLUSIONS: rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.

Blein S, Bardel C, Danjean V, et al.
An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers.
Breast Cancer Res. 2015; 17:61 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.
METHODS: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.
RESULTS: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.
CONCLUSIONS: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Fullár A, Dudás J, Oláh L, et al.
Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression.
BMC Cancer. 2015; 15:256 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors. Preliminary densitometry analysis of laminin-1, α-smooth muscle actin (SMA) and fibronectin immunostaining demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the present work we investigated the role of normal and tumor-associated fibroblasts.
METHODS: In vitro models were used to throw light on the multifactorial process of tumor-stroma interaction, by means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored.
RESULTS: While normal fibroblasts produced components of interstitial matrix and TGF-β1 that promoted cell proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing their laminin production; 4.) Tumor cells predominantly expressed integrin α6β4 laminin receptors and migrated towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells.
CONCLUSIONS: Our results indicate that in addition to degradation of the basement membrane, invasion of cervical cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix.

Rebbeck TR, Mitra N, Wan F, et al.
Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer.
JAMA. 2015; 313(13):1347-61 [PubMed] Free Access to Full Article Related Publications
IMPORTANCE: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists.
OBJECTIVE: To identify mutation-specific cancer risks for carriers of BRCA1/2.
DESIGN, SETTING, AND PARTICIPANTS: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations. The international sample comprised 19,581 carriers of BRCA1 mutations and 11,900 carriers of BRCA2 mutations from 55 centers in 33 countries on 6 continents. We estimated hazard ratios for breast and ovarian cancer based on mutation type, function, and nucleotide position. We also estimated RHR, the ratio of breast vs ovarian cancer hazard ratios. A value of RHR greater than 1 indicated elevated breast cancer risk; a value of RHR less than 1 indicated elevated ovarian cancer risk.
EXPOSURES: Mutations of BRCA1 or BRCA2.
MAIN OUTCOMES AND MEASURES: Breast and ovarian cancer risks.
RESULTS: Among BRCA1 mutation carriers, 9052 women (46%) were diagnosed with breast cancer, 2317 (12%) with ovarian cancer, 1041 (5%) with breast and ovarian cancer, and 7171 (37%) without cancer. Among BRCA2 mutation carriers, 6180 women (52%) were diagnosed with breast cancer, 682 (6%) with ovarian cancer, 272 (2%) with breast and ovarian cancer, and 4766 (40%) without cancer. In BRCA1, we identified 3 breast cancer cluster regions (BCCRs) located at c.179 to c.505 (BCCR1; RHR = 1.46; 95% CI, 1.22-1.74; P = 2 × 10(-6)), c.4328 to c.4945 (BCCR2; RHR = 1.34; 95% CI, 1.01-1.78; P = .04), and c. 5261 to c.5563 (BCCR2', RHR = 1.38; 95% CI, 1.22-1.55; P = 6 × 10(-9)). We also identified an ovarian cancer cluster region (OCCR) from c.1380 to c.4062 (approximately exon 11) with RHR = 0.62 (95% CI, 0.56-0.70; P = 9 × 10(-17)). In BRCA2, we observed multiple BCCRs spanning c.1 to c.596 (BCCR1; RHR = 1.71; 95% CI, 1.06-2.78; P = .03), c.772 to c.1806 (BCCR1'; RHR = 1.63; 95% CI, 1.10-2.40; P = .01), and c.7394 to c.8904 (BCCR2; RHR = 2.31; 95% CI, 1.69-3.16; P = .00002). We also identified 3 OCCRs: the first (OCCR1) spanned c.3249 to c.5681 that was adjacent to c.5946delT (6174delT; RHR = 0.51; 95% CI, 0.44-0.60; P = 6 × 10(-17)). The second OCCR spanned c.6645 to c.7471 (OCCR2; RHR = 0.57; 95% CI, 0.41-0.80; P = .001). Mutations conferring nonsense-mediated decay were associated with differential breast or ovarian cancer risks and an earlier age of breast cancer diagnosis for both BRCA1 and BRCA2 mutation carriers.
CONCLUSIONS AND RELEVANCE: Breast and ovarian cancer risks varied by type and location of BRCA1/2 mutations. With appropriate validation, these data may have implications for risk assessment and cancer prevention decision making for carriers of BRCA1 and BRCA2 mutations.

Blanco I, Kuchenbaecker K, Cuadras D, et al.
Assessing associations between the AURKA-HMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers.
PLoS One. 2015; 10(4):e0120020 [PubMed] Free Access to Full Article Related Publications
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood approach. The association of HMMR rs299290 with breast cancer risk in BRCA1 mutation carriers was confirmed: per-allele hazard ratio (HR) = 1.10, 95% confidence interval (CI) 1.04-1.15, p = 1.9 x 10(-4) (false discovery rate (FDR)-adjusted p = 0.043). Variation in CSTF1, located next to AURKA, was also found to be associated with breast cancer risk in BRCA2 mutation carriers: rs2426618 per-allele HR = 1.10, 95% CI 1.03-1.16, p = 0.005 (FDR-adjusted p = 0.045). Assessment of pairwise interactions provided suggestions (FDR-adjusted pinteraction values > 0.05) for deviations from the multiplicative model for rs299290 and CSTF1 rs6064391, and rs299290 and TUBG1 rs11649877 in both BRCA1 and BRCA2 mutation carriers. Following these suggestions, the expression of HMMR and AURKA or TUBG1 in sporadic breast tumors was found to potentially interact, influencing patients' survival. Together, the results of this study support the hypothesis of a causative link between altered function of AURKA-HMMR-TPX2-TUBG1 and breast carcinogenesis in BRCA1/2 mutation carriers.

Chen PT, Hsieh CC, Wu CT, et al.
1α,25-Dihydroxyvitamin D3 Inhibits Esophageal Squamous Cell Carcinoma Progression by Reducing IL6 Signaling.
Mol Cancer Ther. 2015; 14(6):1365-75 [PubMed] Related Publications
The aim of this study was to highlight the role of 1α,25-dihydroxyvitamin D3 (calcitriol) in esophageal squamous cell carcinoma (SCC). The human esophageal SCC cell lines CE81T and TE2 were selected for cellular and animal experiments to investigate the changes in tumor behavior after calcitriol supplementation and the underlying mechanisms. Moreover, we evaluated the relationship between calcitriol supplementation, myeloid-derived suppressor cell (MDSC) recruitment, IL6 levels, and tumor progression by a 4-nitroquinoline 1-oxide (4-NQO)-induced esophageal tumor animal model. In this study, we demonstrated that calcitriol supplementation inhibited aggressive tumor behavior both in vitro and in vivo. The underlying changes included increased cell death, a lower degree of epithelial-mesenchymal transition, and inhibited IL6 signaling. In the 4-NQO-induced esophageal tumor animal model, increased IL6 and MDSC recruitment were linked with invasive esophageal tumors. Supplementation with calcitriol attenuated the level of IL6, the induction of MDSCs, and the incidence of 4-NQO-induced invasive tumors. Moreover, the IL6-induced changes in C57 mice, including augmented MDSC recruitment, increased levels of ROS and p-Stat3 in MDSCs, and higher suppressive function of MDSCs in T-cell proliferation, which were abrogated by calcitriol supplementation. On the basis of our results, we concluded that calcitriol abrogated the IL6-induced aggressive tumor behavior and MDSC recruitment to inhibit esophageal tumor promotion. Therefore, we suggest that supplementation with vitamin D3 may be a promising strategy for the prevention and treatment of esophageal SCC.

Hoshino I, Akutsu Y, Murakami K, et al.
Histone Demethylase LSD1 Inhibitors Prevent Cell Growth by Regulating Gene Expression in Esophageal Squamous Cell Carcinoma Cells.
Ann Surg Oncol. 2016; 23(1):312-20 [PubMed] Related Publications
BACKGROUND: The expression of genes can be influenced by the balance of histone acetylation and/or histone demethylation, with an imbalance of these processes possibly observed in many cancers. The histone demethylase LSD1 inhibitor activity is associated with selective transcriptional regulation and alterations in the gene expression. However, the exact mechanisms underlying the antitumor effects of LSD1 inhibitors are not fully understood.
METHODS: The antitumor effects of NCL1, an LSD1 inhibitor, in esophageal squamous cell cancer (ESCC) cell lines were evaluated. A comprehensive analysis of the changes in the gene expression in ESCC cell lines induced by NCL1 was carried out using a microarray analysis. A loss-of-function assay using a siRNA analysis was performed to examine the oncogenic function of the gene.
RESULTS: NCL1 strongly inhibited the cell growth of T.Tn and TE2 ESCC cells and induced apoptosis. According to the microarray analysis, 81 genes in the T.Tn cells and 149 genes in the TE2 cells were up- or down-regulated 2-fold or more by NCL1 exposure. Among these genes, 27 were contained in both cell lines and exhibited similar expression patterns. PHLDB2, one of the genes down-regulated by NCL1, was overexpressed in the ESCC tumor tissues. Moreover, a high expression level of PHLDB2 was found to be significantly correlated with poor prognosis.
CONCLUSIONS: The present observations of the comprehensive analysis of the gene expression levels provide insight into the mechanisms underlying the antitumor effects of LSD1 inhibitors in ESCC patients.

Kuchenbaecker KB, Ramus SJ, Tyrer J, et al.
Identification of six new susceptibility loci for invasive epithelial ovarian cancer.
Nat Genet. 2015; 47(2):164-71 [PubMed] Free Access to Full Article Related Publications
Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.

Isozaki Y, Hoshino I, Akutsu Y, et al.
Usefulness of microRNA‑375 as a prognostic and therapeutic tool in esophageal squamous cell carcinoma.
Int J Oncol. 2015; 46(3):1059-66 [PubMed] Related Publications
The aim of this study was to clarify the importance of microRNA‑375 (miR‑375) expression in patients with esophageal squamous cell carcinoma (ESCC) and to examine the in vivo antitumor effects of miR‑375 in a model of ESCC using a non‑viral delivery system. We estimated the miR‑375 and LDHB and AEG‑1/MTDH mRNA expression of the ESCC tumors from 85 patients. The correlation between the miR‑375 expression and clinicopathological features, including the prognosis, were evaluated. The presence of high miR‑375 expression was associated with lymphatic vessel invasion, while a low expression of miR‑375 significantly correlated with a poor prognosis for the 85 ESCC patients. We also found that there was a significant inverse correlation between the expression of miR‑375 and that of LDHB. Before the examination of miR‑375 in the in vivo assay, we confirmed that atelocollagen prolonged the accumulation of miRNA by using fluorescently‑labeled miRNA and an in vivo imaging system. We injected the miR‑375/atelocollagen complex or a control‑miRNA/atelocollagen complex into mice bearing TE2 and T.Tn xenografts via subcutaneous (s.c.) injections. The growth of both the TE2 and T.Tn tumors in the miR‑375 groups was significantly suppressed compared with that in the control‑miRNA groups. In addition, The LDHB mRNA expression of TE2 xenografts was significantly downregulated after miR‑375 treatment. In conclusion, it might be possible for the level of miR‑375 expression to be a utilized as a prognostic indicator for ESCC patients. The administration of miR‑375 using a non‑viral delivery might represent a powerful new treatment for ESCC.

Hsu HS, Lin MH, Jang YH, et al.
The 4E-BP1/eIF4E ratio is a determinant for rapamycin response in esophageal cancer cells.
J Thorac Cardiovasc Surg. 2015; 149(1):378-85 [PubMed] Related Publications
OBJECTIVES: Rapamycin inhibits products of molecular pathways in esophageal squamous cell carcinoma and limits tumor cell growth by targeting 4E-BP1- and eIF4E-dependent gene translation. In this study, we investigate the influence of 4E-BP1-to-eIF4E ratio on rapamycin response in esophageal squamous cell carcinoma cells, and the underlying mechanism is discussed.
METHODS: The response to rapamycin treatment was examined in 6 esophageal cancer cell lines. Adjustment of the 4E-BP1/eIF4E ratio was carried out by knockdown or overexpression of 4E-BP1 and eIF4E. The relationship between Egr-1 and 4E-BP1 expression in esophageal cancer cells was also studied.
RESULTS: The 4E-BP1/eIF4E ratio was adjusted to evaluate the response to rapamycin treatment in TE1 and TE2 esophageal cancer cells. TE2 cells are sensitized to rapamycin treatment after overexpression of 4E-BP1 or knockdown of eIF4E; TE1 cells become resistant to rapamycin after knockdown of 4E-BP1 or overexpression of eIF4E. These data suggest that the 4E-BP1/eIF4E ratio is a determinant for the response of TE1 and TE2 cells to rapamycin treatment. Egr-1 expression was higher in TE2 cells compared with other esophageal cancer cell lines, and its knockdown increased 4E-BP1 expression in TE2 cells, which became sensitive to rapamycin treatment.
CONCLUSIONS: The 4E-BP1/eIF4E ratio is a determinant of the response of rapamycin treatment in esophageal cancer cells. Egr-1 can reduce 4E-BP1 gene expression and render esophageal squamous cell carcinoma cells resistant to rapamycin with a relatively low 4E-BP1/eIF4E ratio. Thus, the 4E-BP1/eIF4E ratio may represent a therapeutic index for the prediction of clinical outcome of rapamycin treatment in patients with esophageal squamous cell carcinoma.

Peterlongo P, Chang-Claude J, Moysich KB, et al.
Candidate genetic modifiers for breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.
Cancer Epidemiol Biomarkers Prev. 2015; 24(1):308-16 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we evaluated the putative role of variants in many candidate modifier genes.
METHODS: Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n = 3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach.
RESULTS: The observed P values of association ranged between 0.005 and 1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments.
CONCLUSION: There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers.
IMPACT: Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies.

Isozaki Y, Hoshino I, Akutsu Y, et al.
Screening of alternative drugs to the tumor suppressor miR-375 in esophageal squamous cell carcinoma using the connectivity map.
Oncology. 2014; 87(6):351-63 [PubMed] Related Publications
OBJECTIVE: The aim of this study was to identify alternative compounds to the tumor suppressor miR-375 using the connectivity map (CMAP) and to validate the antitumor effects of the identified drugs in esophageal squamous cell carcinoma (ESCC).
METHODS: Gene profiling of miR-375-treated TE2 and T.Tn cells was applied in order to search the CMAP database. Among the compounds identified using the CMAP, we focused on 8 drugs [(-)-epigallocatechin-3-gallate, metformin, rosiglitazone among others], excluding 2 drugs among the top 10 compounds. We evaluated whether these compounds possess tumor-suppressive functions in ESCC.
RESULTS: A cytotoxicity assay showed that the sensitivity of TE2 and T.Tn cells treated with the 8 compounds was evaluated based on IC50 values of 42.9 µM to 3.8 mM. A cell cycle analysis revealed that the percentage of TE2 and T.Tn cells incubated with 6 compounds in the G0/G1 phase or the G2/M phase increased by approximately 40-80%. A TUNEL assay showed that the percentages of apoptotic cells treated with almost all compounds were significantly increased (p < 0.05) compared with the control cells.
CONCLUSION: The CMAP database is a useful tool for identifying compounds affecting the same molecular pathways, particularly products that are difficult to apply via practical approaches, such as microRNAs.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. OLAH, Cancer Genetics Web: http://www.cancer-genetics.org/OLAH.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999