PRRX1

Gene Summary

Gene:PRRX1; paired related homeobox 1
Aliases: PMX1, PRX1, AGOTC, PHOX1, PRX-1
Location:1q24
Summary:The DNA-associated protein encoded by this gene is a member of the paired family of homeobox proteins localized to the nucleus. The protein functions as a transcription co-activator, enhancing the DNA-binding activity of serum response factor, a protein required for the induction of genes by growth and differentiation factors. The protein regulates muscle creatine kinase, indicating a role in the establishment of diverse mesodermal muscle types. Alternative splicing yields two isoforms that differ in abundance and expression patterns. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:paired mesoderm homeobox protein 1
HPRD
Source:NCBIAccessed: 06 August, 2015

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 06 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Neutrophils
  • Base Sequence
  • Leukaemia
  • Oncogene Fusion Proteins
  • Tlr4 protein, mouse
  • Myeloid Cells
  • VEGFA
  • Taxoids
  • Protein Binding
  • HOXD13
  • Angiogenesis
  • Chromosome 11
  • Translocation
  • Homeodomain Proteins
  • Stem Cells
  • Neoplastic Cell Transformation
  • Tumor Markers
  • Cell Proliferation
  • Prostate Cancer
  • Up-Regulation
  • Paired Box Transcription Factors
  • Reactive Oxygen Species
  • Apoptosis
  • FISH
  • Nuclear Pore Complex Proteins
  • Neoplasm Metastasis
  • Transcription Factors
  • HOXA7
  • Disease Progression
  • Transfection
  • Epithelial Cells
  • Infant
  • HOXC13
  • RTPCR
  • Chromosome 1
  • Esophageal Cancer
  • Tumor Stem Cell Assay
  • Epithelial-Mesenchymal Transition
  • Protein Structure, Tertiary
Tag cloud generated 06 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PRRX1 (cancer-related)

Zhang Y, Zheng L, Huang J, et al.
MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1.
PLoS One. 2014; 9(4):e93917 [PubMed] Free Access to Full Article Related Publications
One of the challenges in the treatment of colorectal cancer patients is that these tumors show resistance to radiation. MicroRNAs (miRNAs) are involved in essential biological activities, including chemoresistance and radioresistance. Several research studies have indicated that miRNA played an important role in sensitizing cellular response to ionizing radiation (IR). In this study, we found that miR-124 was significantly down-regulated both in CRC-derived cell lines and clinical CRC samples compared with adjacent non-tumor colorectal tissues, MiR-124 could sensitize human colorectal cancer cells to IR in vitro and in vivo. We identified PRRX1, a new EMT inducer and stemness regulator as a novel direct target of miR-124 by using target prediction algorithms and luciferase assay. PRRX1 knockdown could sensitize CRC cells to IR similar to the effects caused by miR-124. Overexpression of PRRX1 in stably overexpressed-miR-124 cell lines could rescue the effects of radiosensitivity enhancement brought by miR-124. Taking these observations into consideration, we illustrated that miR-124 could increase the radiosensitivity of CRC cells by blocking the expression of PRRX1, which indicated miR-124 could act as a great therapeutic target for CRC patients.

Takahashi Y, Sawada G, Kurashige J, et al.
Paired related homoeobox 1, a new EMT inducer, is involved in metastasis and poor prognosis in colorectal cancer.
Br J Cancer. 2013; 109(2):307-11 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Paired related homoeobox 1 (PRRX1) has been identified as a new epithelial-mesenchymal transition (EMT) inducer in breast cancer. However, the function of PRRX1 in colorectal cancer (CRC) has not been elucidated.
METHODS: We utilised ectopic PRRX1-expressing cell lines to analyse the function of PRRX1 in CRC. The clinical significance of PRRX1 was also examined on three independent CRC case sets.
RESULTS: PRRX1 induced EMT and the stem-like phenotype in CRC cells. In contrast to studies of breast cancer, abundant expression of PRRX1 was significantly associated with metastasis and poor prognosis in CRC.
CONCLUSION: PRRX1 is an indicator of metastasis and poor prognosis in CRC cases. Further investigation is required to uncover the signalling network regulating PRRX1.

Riddell JR, Maier P, Sass SN, et al.
Peroxiredoxin 1 stimulates endothelial cell expression of VEGF via TLR4 dependent activation of HIF-1α.
PLoS One. 2012; 7(11):e50394 [PubMed] Free Access to Full Article Related Publications
Chronic inflammation leads to the formation of a pro-tumorigenic microenvironment that can promote tumor development, growth and differentiation through augmentation of tumor angiogenesis. Prostate cancer (CaP) risk and prognosis are adversely correlated with a number of inflammatory and angiogenic mediators, including Toll-like receptors (TLRs), NF-κB and vascular endothelial growth factor (VEGF). Peroxiredoxin 1 (Prx1) was recently identified as an endogenous ligand for TLR4 that is secreted from CaP cells and promotes inflammation. Inhibition of Prx1 by CaP cells resulted in reduced expression of VEGF, diminished tumor vasculature and retarded tumor growth. The mechanism by which Prx1 regulates VEGF expression in normoxic conditions was investigated in the current study. Our results show that incubation of mouse vascular endothelial cells with recombinant Prx1 caused increases in VEGF expression that was dependent upon TLR4 and required hypoxia inducible factor-1 (HIF-1) interaction with the VEGF promoter. The induction of VEGF was also dependent upon NF-κB; however, NF-κB interaction with the VEGF promoter was not required for Prx1 induction of VEGF suggesting that NF-κB was acting indirectly to induce VEGF expression. The results presented here show that Prx1 stimulation increased NF-κB interaction with the HIF-1α promoter, leading to enhanced promoter activity and increases in HIF-1α mRNA levels, as well as augmented HIF-1 activity that resulted in VEGF expression. Prx1 induced HIF-1 also promoted NF-κB activity, suggesting the presence of a positive feedback loop that has the potential to perpetuate Prx1 induction of angiogenesis. Strikingly, inhibition of Prx1 expression in CaP was accompanied with reduced expression of HIF-1α. The combined findings of the current study and our previous study suggest that Prx1 interaction with TLR4 promotes CaP growth potentially through chronic activation of tumor angiogenesis.

Godfrey R, Arora D, Bauer R, et al.
Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ.
Blood. 2012; 119(19):4499-511 [PubMed] Related Publications
Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by protein-tyrosine phosphatases (PTPs). We recently identified the PTP DEP-1/CD148/PTPRJ as a novel negative regulator of FLT3. This study addressed the role of DEP-1 for regulation of the acute myeloid leukemia (AML)-related mutant FLT3 internal tandem duplication (ITD) protein. Our experiments revealed that DEP-1 was expressed but dysfunctional in cells transformed by FLT3 ITD. This was caused by enzymatic inactivation of DEP-1 through oxidation of the DEP-1 catalytic cysteine. In intact cells, including primary AML cells, FLT3 ITD kinase inhibition reactivated DEP-1. DEP-1 reactivation was also achieved by counteracting the high levels of reactive oxygen species (ROS) production detected in FLT3 ITD-expressing cell lines by inhibition of reduced NAD phosphate (NADPH)-oxidases, or by overexpression of catalase or peroxiredoxin-1 (Prx-1). Interference with ROS production in 32D cells inhibited cell transformation by FLT3 ITD in a DEP-1-dependent manner, because RNAi-mediated depletion of DEP-1 partially abrogated the inhibitory effect of ROS quenching. Reactivation of DEP-1 by stable overexpression of Prx-1 extended survival of mice in the 32D cell/C3H/HeJ mouse model of FLT3 ITD-driven myeloproliferative disease. The study thus uncovered DEP-1 oxidation as a novel event contributing to cell transformation by FLT3 ITD.

Charytonowicz E, Terry M, Coakley K, et al.
PPARγ agonists enhance ET-743-induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma.
J Clin Invest. 2012; 122(3):886-98 [PubMed] Free Access to Full Article Related Publications
Myxoid round cell liposarcoma (MRCLS) is a common liposarcoma subtype characterized by a translocation that results in the fusion protein TLS:CHOP as well as by mixed adipocytic histopathology. Both the etiology of MRCLS and the mechanism of action of TLS:CHOP remain poorly understood. It was previously shown that ET-743, an antitumor compound with an unclear mechanism of action, is highly effective in patients with MRCLS. To identify the cellular origin of MRCLS, we engineered a mouse model in which TLS:CHOP was expressed under the control of a mesodermally restricted promoter (Prx1) in a p53-depleted background. This model resembled MRCLS histologically as well as functionally in terms of its specific adipocytic differentiation-based response to ET-743. Specifically, endogenous mesenchymal stem cells (MSCs) expressing TLS:CHOP developed into MRCLS in vivo. Gene expression and microRNA analysis of these MSCs showed that they were committed to adipocytic differentiation, but unable to terminally differentiate. We also explored the method of action of ET-743. ET-743 downregulated TLS:CHOP expression, which correlated with CEBPα expression and adipocytic differentiation. Furthermore, PPARγ agonists enhanced the differentiation process initiated by ET-743. Our work highlights how clinical observations can lead to the generation of a mouse model that recapitulates human disease and may be used to develop rational treatment combinations, such as ET-743 plus PPARγ agonists, for the treatment of MRCLS.

Cao JY, Mansouri S, Frappier L
Changes in the nasopharyngeal carcinoma nuclear proteome induced by the EBNA1 protein of Epstein-Barr virus reveal potential roles for EBNA1 in metastasis and oxidative stress responses.
J Virol. 2012; 86(1):382-94 [PubMed] Free Access to Full Article Related Publications
Epstein-Barr virus (EBV) infection is causatively associated with a variety of human cancers, including nasopharyngeal carcinoma (NPC). The only viral nuclear protein expressed in NPC is EBNA1, which can alter cellular properties in ways that may promote oncogenesis. Here, we used 2-dimensional difference gel electrophoresis (2-D DiGE) to profile changes in the nuclear proteome that occur after stable expression of EBNA1 in the EBV-negative NPC cell line CNE2. We found that EBNA1 consistently altered the levels of a small percentage of the nuclear proteins. The identification of 19 of these proteins by mass spectrometry revealed that EBNA1 upregulated three proteins affecting metastatic potential (stathmin 1, maspin, and Nm23-H1) and several proteins in the oxidative stress response pathway, including the antioxidants superoxide dismutase 1 (SOD1) and peroxiredoxin 1 (Prx1). Western blot analysis verified that EBNA1 expression upregulated and EBNA1 silencing downregulated these proteins. In addition, transcripts for stathmin 1 were induced by EBNA1, whereas EBNA1 only affected Prx1 and SOD1 at the protein level. Further investigation of the EBNA1 effects on the redox pathway showed that long-term EBNA1 expression in NPC resulted in increased reactive oxygen species (ROS) and increased levels of the NADPH oxidases NOX1 and NOX2, known to generate ROS. In addition, EBNA1 depletion in EBV-positive cells decreased NOX2 and ROS. The results show multiple roles for EBNA1 in the oxidative stress response pathway and suggest mechanisms by which EBNA1 may promote NPC metastases.

Kossler N, Stricker S, Rödelsperger C, et al.
Neurofibromin (Nf1) is required for skeletal muscle development.
Hum Mol Genet. 2011; 20(14):2697-709 [PubMed] Free Access to Full Article Related Publications
Neurofibromatosis type 1 (NF1) is a multi-system disease caused by mutations in the NF1 gene encoding a Ras-GAP protein, neurofibromin, which negatively regulates Ras signaling. Besides neuroectodermal malformations and tumors, the skeletal system is often affected (e.g. scoliosis and long bone dysplasia) demonstrating the importance of neurofibromin for development and maintenance of the musculoskeletal system. Here, we focus on the role of neurofibromin in skeletal muscle development. Nf1 gene inactivation in the early limb bud mesenchyme using Prx1-cre (Nf1(Prx1)) resulted in muscle dystrophy characterized by fibrosis, reduced number of muscle fibers and reduced muscle force. This was caused by an early defect in myogenesis affecting the terminal differentiation of myoblasts between E12.5 and E14.5. In parallel, the muscle connective tissue cells exhibited increased proliferation at E14.5 and an increase in the amount of connective tissue as early as E16.5. These changes were accompanied by excessive mitogen-activated protein kinase pathway activation. Satellite cells isolated from Nf1(Prx1) mice showed normal self-renewal, but their differentiation was impaired as indicated by diminished myotube formation. Our results demonstrate a requirement of neurofibromin for muscle formation and maintenance. This previously unrecognized function of neurofibromin may contribute to the musculoskeletal problems in NF1 patients.

Gao MC, Jia XD, Wu QF, et al.
Silencing Prx1 and/or Prx5 sensitizes human esophageal cancer cells to ionizing radiation and increases apoptosis via intracellular ROS accumulation.
Acta Pharmacol Sin. 2011; 32(4):528-36 [PubMed] Free Access to Full Article Related Publications
AIM: To investigate whether down-regulation of peroxiredoxin 1 (Prx1) and/or peroxiredoxin 5 (Prx5) sensitizes human esophageal cancer cells to ionizing radiation (IR).
METHODS: Human esophageal carcinoma cell lines Eca-109 and TE-1 were used. Prx mRNA expression profiles in Eca-109 and TE-1 cells were determined using RT-PCR. Two highly expressed isoforms of Prxs, Prx1 and Prx5, were silenced by RNA interference (RNAi). Following IR, intracellular reactive oxygen species (ROS) and apoptosis were measured using flow cytometry, the activities of catalase, superoxide dismutase and glutathione peroxidase were measured, and the radiosensitizing effect of RNAi was observed. Tumor xenograft model was also used to examine the radiosensitizing effect of RNAi in vivo.
RESULTS: Down-regulation of Prx1 and/or Prx5 by RNAi does not alter the activities of catalase, superoxide dismutase and glutathione peroxidase, but made human tumor cells more sensitive to IR-induced apoptosis both in vitro and in vivo. When the two isoforms were decreased simultaneously, intracellular ROS and apoptosis significantly increased after IR.
CONCLUSION: Silencing Prx1 and/or Prx5 by RNAi sensitizes human Eca-109 and TE-1 cells to IR, and the intracellular ROS accumulation may contribute to the radiosensitizing effect of the RNAi.

Libório TN, Acquafreda T, Matizonkas-Antonio LF, et al.
In situ hybridization detection of homeobox genes reveals distinct expression patterns in oral squamous cell carcinomas.
Histopathology. 2011; 58(2):225-33 [PubMed] Related Publications
AIMS: To analyse the expression of three homeobox genes (HOXA7, PITX1 and PRRX1) in oral squamous cell carcinomas (OSCC) and the relationship of such expression to certain distinct histopathological features of OSCC and in comparison to adjacent non-neoplastic epithelium (NT).
METHODS AND RESULTS: Digoxigenin-labelled riboprobes that are specific for each homeobox gene were generated and in situ hybridization was carried out on frozen sections. In NT samples, HOXA7 and PITX1 transcripts were found more frequently in all epithelial layers, while PRRX1 was expressed in the basal layer. With OSCC samples, expression of the three genes was associated with all histological features. However, the HOXA7 and PITX1 signals were more intense in sheets and nests and PRRX1 in small nests and isolated cells.
CONCLUSION: HOXA7, PIXT1 and PRRX1 homeobox genes have different patterns of expression in OSCC depending on its histological features.

Lee SB, Ho JN, Yoon SH, et al.
Peroxiredoxin 6 promotes lung cancer cell invasion by inducing urokinase-type plasminogen activator via p38 kinase, phosphoinositide 3-kinase, and Akt.
Mol Cells. 2009; 28(6):583-8 [PubMed] Related Publications
The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

Chhipa RR, Lee KS, Onate S, et al.
Prx1 enhances androgen receptor function in prostate cancer cells by increasing receptor affinity to dihydrotestosterone.
Mol Cancer Res. 2009; 7(9):1543-52 [PubMed] Free Access to Full Article Related Publications
Androgen receptor (AR) signaling plays a critical role in the development and progression of prostate cancer. It has been reported previously that peroxiredoxin-1 (Prx1), a member of a novel family of peroxidases, interacts physically with AR to enhance AR transactivation of target genes. In the present study, we evaluated the biological significance of Prx1 in modulating dihydrotestosterone (DHT)-stimulated growth and AR target gene expression of prostate cancer cells. We also investigated the mechanism by which Prx1 might potentiate AR signaling. The contribution of Prx1 was assessed mainly by using the approach of stable Prx1 knockdown. The major observations are as follows: (a) A low level of Prx1 desensitizes cells to growth stimulation and AR target gene induction by DHT, such that exposure to a higher level of DHT is required to reach the same magnitude of response when Prx1 is depressed; (b) Prx1 increases the affinity of AR to DHT and decreases the rate of DHT dissociation from the occupied receptor; (c) Prx1 enhances the NH2 terminus and COOH terminus interaction of AR; a stronger N-C interaction is consistent with a more robust AR activation signal by keeping DHT tight in the ligand-binding pocket; (d) the stimulatory effects of Prx1 on AR ligand binding affinity and AR N-C interaction are manifested regardless of a wild-type or mutant AR. The above findings led us to believe that Prx1 may be a therapeutic target in blocking the transition of prostate cancer from an androgen-dependent to an androgen-refractory phenotype.

Hirose K, Abramovich C, Argiropoulos B, Humphries RK
Leukemogenic properties of NUP98-PMX1 are linked to NUP98 and homeodomain sequence functions but not to binding properties of PMX1 to serum response factor.
Oncogene. 2008; 27(46):6056-67 [PubMed] Related Publications
PMX1 is a member of a non-clustered homeobox gene family, not normally expressed in hematopoietic cells, and first identified for its role in enhancing the binding of the serum response factor (SRF) to the serum responsive element (SRE). PMX1 has never been linked to leukemia on its own, raising the possibility of unique mechanisms underlying the oncogenicity of NUP98-PMX1. To elucidate the leukemogenic potential of NUP98-PMX1, we compared the effects of PMX1 and NUP98-PMX1 and, through strategic mutations, the involvement of the SRE in NUP98-PMX1-mediated leukemia. NUP98-PMX1, but not PMX1, had potent ability to impair differentiation, promote proliferation of myeloid progenitors, induce lethal myeloproliferative disease and to activate a number of genes previously linked to leukemic stem cells. Similar to NUP98-HOX fusions, the transforming potential of NUP98-PMX1 required the NUP98 portion and DNA-binding capability of the PMX1 homeodomain and collaborated with Meis1 to induce more rapid onset myeloproliferative-like myeloid leukemia. The transforming activity of NUP98-PMX1 was independent of its ability to interact with SRF. These findings provide novel evidence of the contributory role of the NUP98 sequence in conferring leukemogenic properties on a partner gene and point to common leukemogenic pathways for NUP98-PMX1 and NUP98-clustered HOX fusions.

Kim JH, Bogner PN, Baek SH, et al.
Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target.
Clin Cancer Res. 2008; 14(8):2326-33 [PubMed] Related Publications
PURPOSE: Peroxiredoxin 1 and 2 are highly homologous members of the Prx (or Prdx) protein family. Prx1 and Prx2 are elevated in several human cancers, and this seems to confer increased treatment resistance and aggressive phenotypes. This study was undertaken to examine the expression profiles of Prx1 and Prx2 in non-small cell lung cancer (NSCLC), and to test their prognostic value in predicting patient survival.
EXPERIMENTAL DESIGN: To gain insight into the regulatory mechanisms of Prx1 and Prx2 expression in NSCLC, their respective transcript profiles were examined in NSCLC cell lines from the NCI-60 panel Affymetrix database sets, and the promoter compositions of the two genes were investigated using computer-based multiple sequence alignment analyses. Immunohistochemical analyses of Prx1 and Prx2 were done on a total of 235 NSCLC specimens with stage I through IV disease. The expression profiles of Prx1 and Prx2 in tumor specimens, and their associations with survival, were investigated.
RESULTS AND CONCLUSION: The levels of prx1 transcript were higher than those of prx2 in NSCLC cell lines, and the upstream regulatory sequences of the two genes display striking differences. The relative risk of death increased as Prx1 expression levels increased (P = 0.036) in a multivariate Cox model, independent of other clinicopathologic variables associated with survival. No statistically significant correlation was observed between Prx2 and survival. These results suggest that Prx1 may possess unique functions and regulatory mechanisms in NSCLC which are not shared with Prx2, and that Prx1 may serve as a new prognostic biomarker and therapeutic target in NSCLC.

Park SY, Yu X, Ip C, et al.
Peroxiredoxin 1 interacts with androgen receptor and enhances its transactivation.
Cancer Res. 2007; 67(19):9294-303 [PubMed] Related Publications
Although hypoxia is accepted as an important microenvironmental factor influencing tumor progression and treatment response, it is usually regarded as a static global phenomenon. Consequently, less attention is given to the impact of dynamic changes in tumor oxygenation in regulating the behavior of cancer cells. Androgen receptor (AR) signaling plays a critical role in prostate cancer. We previously reported that hypoxia/reoxygenation, an in vitro condition used to mimic an unstable oxygenation climate in a tumor, stimulates AR activation. In the present study, we showed that peroxiredoxin 1 (Prx1), a member of the peroxiredoxin protein family, acts as a key mediator in this process. We found that the aggressive LN3, C4-2, and C4-2B prostate cancer cell lines derived from LNCaP possess constitutively elevated Prx1 compared with parental cells, and display greater AR activation in response to hypoxia/reoxygenation. Although the cell survival-enhancing property of Prx1 has traditionally been attributed to its antioxidant activity, the reactive oxygen species-scavenging activity of Prx1 was not essential for AR stimulation because Prx1 itself was oxidized and inactivated by hypoxia/reoxygenation. Increased AR transactivation was observed when wild-type Prx1 or mutant Prx1 (C52S) lacking antioxidant activity was introduced into LNCaP cells. Reciprocal immunoprecipitation, chromatin immunoprecipitation, and in vitro pull-down assays corroborated that Prx1 interacts with AR and enhances its transactivation. We also show that Prx1 is capable of sensitizing a ligand-stimulated AR. Based on the above information, we suggest that disrupting the interaction between Prx1 and AR may serve as a fruitful new target in the management of prostate cancer.

Zhang L, Alsabeh R, Mecucci C, et al.
Rare t(1;11)(q23;p15) in therapy-related myelodysplastic syndrome evolving into acute myelomonocytic leukemia: a case report and review of the literature.
Cancer Genet Cytogenet. 2007; 178(1):42-8 [PubMed] Related Publications
Balanced chromosome rearrangements are the hallmark of therapy-related leukemia that develops in patients treated with topoisomerase II inhibitors. Many of these rearrangements involve recurrent chromosomal sites and associated genes (11q23/MLL, 21q22.3/AML1, and 11p15/NUP98), which can interact with a variety of partner genes. One such rearrangement is the rare t(1;11)(q23;p15), which involves juxtaposition of the homeobox gene PMX1 (PRRX1) and NUP98. We report on an additional patient with t(1;11) who presented with myelodysplastic syndrome (MDS) subsequent to treatment for a pleomorphic liposarcoma. With time, the patient's disorder progressed to acute myelomonocytic leukemia with cytogenetic evidence of clonal evolution. To our knowledge, this is the first report of a patient presenting with a myelodysplastic syndrome with isolated t(1;11) (q23;p15), which evolved into therapy-related acute myeloid leukemia (t-AML). This patient is the third reported with this cytogenetic rearrangement and t-AML, and is compared with the other two reports of t(1;11)(q23;p15).

Hoshino I, Matsubara H, Akutsu Y, et al.
Tumor suppressor Prdx1 is a prognostic factor in esophageal squamous cell carcinoma patients.
Oncol Rep. 2007; 18(4):867-71 [PubMed] Related Publications
Peroxiredoxins (Prdxs) are a family of antioxidant enzymes that are also known as scavengers of peroxide in mammalian cells. Some reports have shown that the overexpression of Prdx1, which is one of the peroxiredoxins that is a ubiquitously expressed protein, was related to a poor prognosis in several types of human cancers. In this study, we investigated the expression levels of Prdx1 in esophageal squamous cell carcinoma by immunohistochemistry, and the correlation between the Prdx1 expression and the clinical status was elucidated. Immunohistochemical staining was performed in 114 samples which were collected from surgical esophageal cancer specimens. Cytoplasmic staining of Prdx1 was evaluated based on the following scoring criteria: Grade I, negative or weak staining; Grade II, moderate staining; and Grade III, strong staining. The percentage of patients with a Grade I expression of Prx1 was 20% (23 of 114), 44% had Grade II (50 of 114), and 36% had Grade III (41 of 114). The Prdx1 immunoreactivity showed an inverse significant correlation with T-category (P<0.0001), lymph node metastasis (P=0.048), and stage (P=0.001). In addition, the patients with tumors exhibiting a reduced Prdx1 expression had shorter overall survival (P=0.022) in comparison to the patients with tumors which had a higher Prdx1 expression. Currently, Prdx1 has been shown to act as a tumor suppressor. Our results provide strong evidence that the reduced Prdx1 expression is an important factor in esophageal squamous cancer progression and could serve as a useful prognostic marker.

Kim JH, Bogner PN, Ramnath N, et al.
Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer.
Clin Cancer Res. 2007; 13(13):3875-82 [PubMed] Related Publications
PURPOSE: Lung cancer is the leading cause of cancer death with chance of survival restricted to a subset of non-small cell lung cancer (NSCLC) patients able to undergo surgical resection. However, the recurrence rate of NSCLC after surgery remains high with few prognostic indicators of clinical outcome. Peroxiredoxin1 (Prx1) is shown to be elevated in various cancers and confers an aggressive survival phenotype. We recently cloned the prx1 promoter and found that NF-E2-related factor 2 (Nrf2) is a key transcription factor for prx1 up-regulation. Previous studies suggest that Nrf2 may be constitutively activated in NSCLC. Based on the above information, we investigated whether Prx1 and/or Nrf2 levels have prognostic significance in stage I NSCLC.
METHODS AND RESULTS: Immunohistochemical expression of Prx1 and Nrf2 was evaluated in paraffin-embedded tissues from 90 patients who underwent a curative surgical resection. Increased expression of cytosolic Prx1 (66.7%) and nuclear Nrf2 (61.8%) was observed in this series. Prx1 elevation, but not Nrf2, correlated with reduced recurrence-free survival and overall survival on univariate (P = 0.01 and P = 0.03) and multivariate (P = 0.003 and P = 0.005) analyses.
CONCLUSION: This is the first study to test the prognostic significance of Prx1 and Nrf2 in human cancers. Our results show that Prx1 expression status predicts for recurrence and shorter survival in stage I NSCLC after surgery. Considering the possible role of Prx1 and Nrf2 in radioresistance/chemoresistance, it warrants future investigation to evaluate whether elevated Prx1 and/or Nrf2 levels are predictive of treatment response in advanced lung cancer and other malignancies.

Kim YJ, Ahn JY, Liang P, et al.
Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology.
Cancer Res. 2007; 67(2):546-54 [PubMed] Related Publications
Peroxiredoxin 1 (Prx1) has been found to be elevated in several human cancers. The cell survival-enhancing function of Prx1 is traditionally attributed to its reactive oxygen species-removing capacity, although the growth-promoting role of Prx1 independent of this antioxidant activity is increasingly gaining attention. Although much progress has been made in understanding the behavior of Prx1, little information is available on the mechanism responsible for the abnormal elevation of Prx1 level in cancer. We hypothesized that the hypoxic and unstable oxygenation microenvironment of a tumor might be crucial for prx1 up-regulation. In this study, we cloned the human prx1 promoter and identified nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2) as a key transcription factor. Hypoxia/reoxygenation, an in vitro condition suited to mimic changes of oxygenation, increased Nrf2 nuclear localization and its binding to the electrophile-responsive elements located at the proximal (-536 to -528) and distal (-1429 to -1421) regions of the prx1 promoter. A significant reduction of both steady-state and hypoxia/reoxygenation-mediated prx1 gene expression was shown in Nrf2 knock-out cells. Our results indicated that decreased Kelch-like ECH-associated protein, Keap1, might be an important mechanism for the increased nuclear translocation and activation of Nrf2 in response to hypoxia/reoxygenation. A constitutive elevation of prx1 mRNA and protein was observed in Keap1 knock-out cells. The above information suggests that the Nrf2-Prx1 axis may be a fruitful target for intervention with respect to inhibiting the malignant progression and/or reducing the treatment resistance of cancer cells.

Bai XT, Gu BW, Yin T, et al.
Trans-repressive effect of NUP98-PMX1 on PMX1-regulated c-FOS gene through recruitment of histone deacetylase 1 by FG repeats.
Cancer Res. 2006; 66(9):4584-90 [PubMed] Related Publications
The formation of fusion genes between NUP98 and members of the HOX family represents a critical factor for the genesis of acute leukemia or acute transformation of chronic myeloid leukemia (CML). To gain insights into the molecular mechanisms underlying the leukemogenesis of NUP98-HOX fusion products, we cloned NUP98-PMX1 from a CML-blast crisis patient with t(1;11) as a secondary chromosomal translocation, and functionally studied the fusion products in detail through various molecular and protein biochemical assays. In addition to many interesting features, we have found that the NUP98-PMX1 fusion protein exerts a repressive effect on PMX1 or serum response factor-mediated c-FOS activation, probably through the recruitment of a common corepressor histone deacetylase 1 by FG domains of the NUP98-PMX1 fusion protein. Moreover, we have provided evidence that the FG domains of NUP98-PMX1 and two other NUP98-containing fusion proteins, i.e., NUP98-HOXA9 and NUP98-HOXC11, all exhibit dual binding ability to both CREB binding protein, a coactivator, and histone deacetylase 1, a corepressor. Accordingly, we have hypothesized that this dual binding activity is shared by most, if not all, NUP98-HOX-involved fusion proteins, enabling these fusion proteins to act as both trans-activators and trans-repressors, and contributing to the genesis of acute leukemia or acute transformation of CML.

Qi Y, Chiu JF, Wang L, et al.
Comparative proteomic analysis of esophageal squamous cell carcinoma.
Proteomics. 2005; 5(11):2960-71 [PubMed] Related Publications
Ranking as the fourth commonest cancer, esophageal squamous cell carcinoma (ESCC) represents one of the leading causes of cancer death in China. One of the main reasons for the low survival rate is that neoplasms in esophagus are not detected until they have invaded into surrounding tissues or spread throughout the body at advanced stages. A better understanding of the malignant mechanism and early diagnosis are important for fighting ESCC. In this study, we used proteomics to analyze ESCC tissues, aiming at defining the proteomic features implicated in the multistage progression of esophageal carcinogenesis. Proteins that exhibited significantly different expressions were identified by peptide mass fingerprinting and validated by Western blotting and reverse transcriptase-polymerase chain reaction. The protein changes were then correlated to the different grades of disease differentiation. Compared to those in adjacent normal epitheliums, the expression of 15 proteins including enolase, elongation factor Tu, isocitrate dehydrogenase, tubulin alpha-1 chain, tubulin beta-5 chain, actin (cytoplasmic 1), glyceraldehyde-3 phosphate dehydrogenase, tropomyosin isoform 4 (TPM4), prohibitin, peroxiredoxin 1 (PRX1), manganese-containing superoxide dismutase (MnSOD), neuronal protein, and transgelin was up-regulated; and the expression of five proteins including TPM1, squamous cell carcinoma antigen 1 (SCCA1), stratifin, peroxiredoxin 2 isoform a, and alpha B crystalline was down-regulated in cancer tissues with a statistical significance (p < 0.05). In addition, the differential expression of SCCA1, PRX1, MnSOD, TPM4, and prohibitin can be observed in precancerous lesions of ESCC. The expression of stratifin, prohibitin, and SCCA1 dropped with increasing dedifferentiation of ESCC. These data may suggest that these proteins contribute to the multistage process of carcinogenesis, tumor progression, and invasiveness of ESCC.

Kobzev YN, Martinez-Climent J, Lee S, et al.
Analysis of translocations that involve the NUP98 gene in patients with 11p15 chromosomal rearrangements.
Genes Chromosomes Cancer. 2004; 41(4):339-52 [PubMed] Related Publications
The NUP98 gene has been reported to be fused with at least 15 partner genes in leukemias with 11p15 translocations. We report the results of screening of cases with cytogenetically documented rearrangements of 11p15 and the subsequent identification of involvement of NUP98 and its partner genes. We identified 49 samples from 46 hematology patients with 11p15 (including a few with 11p14) abnormalities, and using fluorescence in situ hybridization (FISH), we found that NUP98 was disrupted in 7 cases. With the use of gene-specific FISH probes, in 6 cases, we identified the partner genes, which were PRRX1 (PMX1; in 2 cases), HOXD13, RAP1GDS1, HOXC13, and TOP1. In the 3 cases for which RNA was available, RT-PCR was performed, which confirmed the FISH results and identified the location of the breakpoints in patient cDNA. Our data confirm the previous findings that NUP98 is a recurrent target in various types of leukemia.

Panagopoulos I, Isaksson M, Billström R, et al.
Fusion of the NUP98 gene and the homeobox gene HOXC13 in acute myeloid leukemia with t(11;12)(p15;q13).
Genes Chromosomes Cancer. 2003; 36(1):107-12 [PubMed] Related Publications
The NUP98 gene at 11p15 is known to be fused to DDX10, HOXA9, HOXA11, HOXA13, HOXD11, HOXD13, LEDGF, NSD1, NSD3, PMX1, RAP1GDS1, and TOP1 in various hematologic malignancies. The common theme in all NUP98 chimeras is a transcript consisting of the 5' part of NUP98 and the 3' portion of the partner gene; however, apart from the frequent fusion to different homeobox genes, there is no apparent similarity among the other partners. We here report a de novo acute myeloid leukemia with a t(11;12)(p15;q13), resulting in a novel NUP98/HOXC13 fusion. Fluorescence in situ hybridization analyses, by the use of probes covering NUP98 and the HOXC gene cluster at 12q13, revealed a fusion signal at the der(11)t(11;12), indicating a NUP98/HOXC chimera, whereas no fusion was found on the der(12)t(11;12), suggesting that the translocation was accompanied by a deletion of the reciprocal fusion gene. Reverse transcription-PCR and sequence analyses showed that exon 16 (nucleotide 2290) of NUP98 was fused in-frame with exon 2 (nucleotide 852) of HOXC13. Neither the HOXC13/NUP98 transcript nor the normal HOXC13 was expressed. The present results, together with previous studies of NUP98/homeobox gene fusions, strongly indicate that NUP98/HOXC13 is of pathogenetic importance in t(11;12)-positive acute myeloid leukemia.

Shen C, Nathan C
Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells.
Mol Med. 2002; 8(2):95-102 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Peroxiredoxins (Prxs) are antioxidant enzymes expressed by most free-living organisms, often in multiple isoforms. Because mammalian Prxs have not been experimentally deleted or inhibited, it is not known how much they contribute to antioxidant defense, nor whether the multiple isoforms afford redundant or additive protection.
MATERIALS AND METHODS: Expression of the four members of the 2-Cys family of human Prxs was tested in human tumor cell lines. Monospecific antibodies were developed and used to monitor the extent and specificity of inhibition of expression of each isoform in prostate cancer cells stably transfected with antisense constructs.
RESULTS: Seventeen tumor lines transcribed genes for all four human Prxs. Prostate cancer cells coexpressed each isoform at the protein level. Stable transfection with antisense allowed partial, selective suppression of Prx 1, 2, 3, or 4. Prostate cancer cells were rendered more sensitive to hydrogen peroxide or an organic hydroperoxide when Prx 1, 2, or 3 but not 4 was partially suppressed, bringing them into the range of sensitivity of mouse cells. The effect of partially suppressing a single Prx was comparable to that of depleting glutathione. In contrast, sensitization to adriamycin, an antitumor agent with a redox-active quinone, followed the partial suppression of Prxs 1, 2, or 4 but not 3. Individual suppression of Prxs 1-4 had no effect on sensitivity of the cells to reactive nitrogen intermediates, tumor necrosis factor (TNF), paclitaxel (Taxol), or etoposide.
CONCLUSIONS: The 2-Cys Prxs act in a mutually nonredundant and sometimes stress-specific fashion to protect human cells from oxidant injury. The substantial resistance of human cells to hydroperoxides may result in part from the additive action of multiple Prxs.

Nakamura T, Yamazaki Y, Hatano Y, Miura I
NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15).
Blood. 1999; 94(2):741-7 [PubMed] Related Publications
The nucleoporin gene NUP98 was found fused to the HOXA9, HOXD13, or DDX10 genes in human acute myelogenous leukemia (AML) with chromosome translocations t(7;11)(p15;p15), t(2;11)(q35;p15), or inv(11)(p15;q22), respectively. We report here the fusion between the NUP98 gene and another homeobox gene PMX1 in a case of human AML with a t(1;11)(q23;p15) translocation. The chimeric NUP98-PMX1 transcript was detected; however, there was no reciprocal PMX1-NUP98 fusion transcript. Like the NUP98-HOXA9 fusion, NUP98 and PMX1 were fused in frame and the N-terminal GLFG-rich docking region of the NUP98 and the PMX1 homeodomain were conserved in the NUP98-PMX1 fusion, suggesting that PMX1 homeodomain expression is upregulated and that the fusion protein may act as an oncogenic transcription factor. The fusion to NUP98 results in the addition of the strong transcriptional activation domain located in the N-terminal region of NUP98 to PMX1. These findings suggest that constitutive expression and alteration of the transcriptional activity of the PMX1 homeodomain protein may be critical for myeloid leukemogenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PMX1 gene, Cancer Genetics Web: http://www.cancer-genetics.org/PMX1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 06 August, 2015     Cancer Genetics Web, Established 1999