Gene Summary

Gene:PTPRJ; protein tyrosine phosphatase, receptor type J
Aliases: DEP1, SCC1, CD148, HPTPeta, R-PTP-ETA
Summary:The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes, including cell growth, differentiation, mitotic cycle, and oncogenic transformation. This PTP possesses an extracellular region containing five fibronectin type III repeats, a single transmembrane region, and a single intracytoplasmic catalytic domain, and thus represents a receptor-type PTP. This protein is present in all hematopoietic lineages, and was shown to negatively regulate T cell receptor signaling possibly through interfering with the phosphorylation of Phospholipase C Gamma 1 and Linker for Activation of T Cells. This protein can also dephosphorylate the PDGF beta receptor, and may be involved in UV-induced signal transduction. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Jul 2008]
Databases:VEGA, OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:receptor-type tyrosine-protein phosphatase eta
Source:NCBIAccessed: 09 March, 2017


What does this gene/protein do?
Show (34)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1992-2017)
Graph generated 09 March 2017 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Polymerase Chain Reaction
  • Case-Control Studies
  • DNA Sequence Analysis
  • Protein Tyrosine Phosphatases
  • Adolescents
  • Thyroid Cancer
  • Proto-Oncogene Proteins p21(ras)
  • Chromosome Mapping
  • Immunohistochemistry
  • Cancer Gene Expression Regulation
  • Neoplastic Cell Transformation
  • Risk Factors
  • Loss of Heterozygosity
  • Breast Cancer
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3
  • Genotype
  • p38 Mitogen-Activated Protein Kinases
  • Genome-Wide Association Study
  • VHL
  • Transcription
  • Colonic Neoplasms
  • Up-Regulation
  • Alleles
  • Tissue Distribution
  • Down-Regulation
  • Childhood Cancer
  • Single Nucleotide Polymorphism
  • Transfection
  • Neoplasm Invasiveness
  • Polymorphism
  • Messenger RNA
  • Vimentin
  • Colorectal Cancer
  • Species Specificity
  • Genetic Predisposition
  • Sequence Homology, Nucleic Acid
  • Resting Phase, Cell Cycle
  • fms-Like Tyrosine Kinase 3
  • Non-Hodgkin Lymphoma
  • Chromosome 11
  • Phosphorylation
Tag cloud generated 09 March, 2017 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: PTPRJ (cancer-related)

Laczmanska I, Skiba P, Karpinski P, et al.
Customized Array Comparative Genomic Hybridization Analysis of 25 Phosphatase-encoding Genes in Colorectal Cancer Tissues.
Cancer Genomics Proteomics. 2017; 14(1):69-74 [PubMed] Free Access to Full Article Related Publications
BACKGROUND/AIM: Molecular mechanisms of alterations in protein tyrosine phosphatases (PTPs) genes in cancer have been previously described and include chromosomal aberrations, gene mutations, and epigenetic silencing. However, little is known about small intragenic gains and losses that may lead to either changes in expression or enzyme activity and even loss of protein function.
MATERIALS AND METHODS: The aim of this study was to investigate 25 phosphatase genes using customized array comparative genomic hybridization in 16 sporadic colorectal cancer tissues.
RESULTS: The analysis revealed two unique small alterations: of 2 kb in PTPN14 intron 1 and of 1 kb in PTPRJ intron 1. We also found gains and losses of whole PTPs gene sequences covered by large chromosome aberrations.
CONCLUSION: In our preliminary studies using high-resolution custom microarray we confirmed that PTPs are frequently subjected to whole-gene rearrangements in colorectal cancer, and we revealed that non-polymorphic intragenic changes are rare.

Sun L, Liang J, Wang Q, et al.
MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion.
Cell Prolif. 2016; 49(5):628-35 [PubMed] Related Publications
OBJECTIVES: Tongue squamous cell carcinoma (TSCC) is the most frequent type of oral malignancy. Increasing evidence has shown that miRNAs play key roles in many biological processes such as cell development, invasion, proliferation, differentiation, metabolism, apoptosis and migration.
MATERIALS AND METHODS: qRT-PCR analysis was performed to measure miR-137 expression. CCK-8 analysis, cell colony formation, wound-healing analysis and invasion were performed to detect resultant cell functions. The direct target of miR-137 was labelled and measured by luciferase assay and Western blotting.
RESULTS: We demonstrated that expression of miR-137 was downregulated in TSCC tissues compared to matched normal ones. miR-137 expression was downregulated in TSCC lines (SCC4, SCC1, UM1 and Cal27) compared to the immortalized NOK16B cell line and normal oral keratinocytes in culture (NHOK). In addition, we have shown that miR-137 expression was epigenetically regulated in TSCCs. Overexpression of miR-137 suppressed TSCC proliferation and colony formation. Ectopic expression of miR-137 promoted expression of the epithelial biomarker, E-cadherin, and inhibited the mesenchymal biomarker, N-cadherin, as well as vimentin and Snail expression, indicating that miR-137 suppressed TSCC epithelial-mesenchymal transition (EMT). We also showed that ectopic expression of miR-137 inhibited TSCC invasion and migration. In addition, we identified SP1 as a direct target gene of miR-137 in SCC1 cells. SP1 overexpression rescued inhibitory effects exerted by miR-137 on cell proliferation and EMT.
CONCLUSIONS: These results indicate that miR-137 acted as a tumour suppressor in TSCC by targeting SP1.

Liang JH, Gao R, Xia Y, et al.
Prognostic impact of Epstein-Barr virus (EBV)-DNA copy number at diagnosis in chronic lymphocytic leukemia.
Oncotarget. 2016; 7(2):2135-42 [PubMed] Free Access to Full Article Related Publications
Epstein-Barr virus (EBV)-DNA is detected in the blood of some persons with chronic lymphocytic leukemia (CLL) at diagnosis. Whether this is important in the development or progression of CLL is controversial. We interrogated associations between blood EBV-DNA copy number and biological and clinical variables in 243 new-diagnosed consecutive subjects with CLL. Quantification of EBV-DNA copies was done by real-time quantitative PCR (RQ-PCR). All subjects had serological evidence of prior EBV-infection. However, only 24 subjects (10%) had a EBV-DNA-positive test at diagnosis. EBV-DNA-positive subjects at diagnosis had lower hemoglobin concentrations and platelet levels, higher thymidine kinase-1 and serum ferritin levels, un-mutated IGHV genes and a greater risk of Richter transformation compared with EBV-DNA-negative subjects. Percent CD20-, CD148- and ZAP70-positive cells and mean fluorescence intensity (MFI) of each cluster designation were also increased in EBV-DNA-positive subjects at diagnosis. EBV-DNA test positivity was associated with a briefer time-to-treatment interval (HR 1.85; [95% confidence interval, 1.13, 3.03]; P=0.014) and worse survival (HR 2.77; [1.18, 6.49]; P=0.019). Reduction in EBV copies was significantly associated with therapy-response. A positive blood EBV-DNA test at diagnosis and sequential testing of EBV copies during therapy were significantly associated with biological and clinical variables, time-to-treatment, therapy-response and survival. If validated these data may be added to CLL prognostic scoring systems.

Miao Y, Wang R, Fan L, et al.
Detection of t(12;14)(p13;q32) in a patient with IGH-CCND1 negative mantle cell lymphoma resembling ultra-high risk chronic lymphocytic leukemia.
Int J Clin Exp Pathol. 2015; 8(6):7494-8 [PubMed] Free Access to Full Article Related Publications
T(12;14)(p13;q32) is a rare recurrent chromosomal translocation, which has only been identified in a small subgroup of mantle cell lymphoma (MCL) without typical t(11;14)(q13;q32). This rearrangement causes aberrant over-expression of cyclin D2 (CCND2), which disrupts the normal cell cycle. Here we report a subtle case of MCL with t(12;14)(p13;q32) that was initially misdiagnosed as ultra-high risk chronic lymphocytic leukemia (CLL). A 60-year-old male patient presented with obvious leukocytosis and progressive weakness. Morphology of peripheral blood and immunophenotyping by flow cytometry pointed to a diagnosis of chronic lymphocytic leukemia. Fluorescence in situ hybridization (FISH) using IGH-CCND1 probe was negative for CCND1 abnormality, but demonstrated IGH breakapart signals. The initial diagnosis of CLL was established and the patient was treated with six courses of immunochemotherpy with fludarabine, cyclophosphamide and rituximab (FCR). Complete remission (CR) was achieved at the end of treatment, but disease relapsed quickly. The patient was transferred to our hospital, flow cytometry using additional markers showed that the clonal cells were CD200+(dim), CD148+(strong), and chromosome analysis revealed a complex karyotype, 47, XY, t(12;14)(p13;q32), +12, del(9p21), which indicated over-expression of CCND2, and immunostaining showed strong positivity of SOX11 further confirming the characteristics of CCND1-negtive MCL. The final diagnosis was revised to rare subtype of MCL with CCND2 translocation and intensive regimens were employed. This confusable MCL case illustrates the importance of cytogenetic analysis and clinicopathologic diagnosis of this rare category of MCL.

Kaliyaperumal K, Sharma AK, McDonald DG, et al.
S-Nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma.
Redox Biol. 2015; 6:41-50 [PubMed] Free Access to Full Article Related Publications
S-nitrosoglutathione (GSNO) is an endogenous nitric oxide (NO) carrier that plays a critical role in redox based NO signaling. Recent studies have reported that GSNO regulates the activities of STAT3 and NF-κB via S-nitrosylation dependent mechanisms. Since STAT3 and NF-κB are key transcription factors involved in tumor progression, chemoresistance, and metastasis of head and neck cancer, we investigated the effect of GSNO in cell culture and mouse xenograft models of head and neck squamous cell carcinoma (HNSCC). For the cell culture studies, three HNSCC cell lines were tested (SCC1, SCC14a and SCC22a). All three cell lines had constitutively activated (phosphorylated) STAT3 (Tyr(705)). GSNO treatment of these cell lines reversibly decreased the STAT3 phosphorylation in a concentration dependent manner. GSNO treatment also decreased the basal and cytokine-stimulated activation of NF-κB in SCC14a cells and reduced the basal low degree of nitrotyrosine by inhibition of inducible NO synthase (iNOS) expression. The reduced STAT3/NF-κB activity by GSNO treatment was correlated with the decreased cell proliferation and increased apoptosis of HNSCC cells. In HNSCC mouse xenograft model, the tumor growth was reduced by systemic treatment with GSNO and was further reduced when the treatment was combined with radiation and cisplatin. Accordingly, GSNO treatment also resulted in decreased levels of phosphorylated STAT3. In summary, these studies demonstrate that GSNO treatment blocks the NF-κB and STAT3 pathways which are responsible for cell survival, proliferation and that GSNO mediated mechanisms complement cispaltin and radiation therapy, and thus could potentiate the therapeutic effect in HNSCC.

Bian Y, Han J, Kannabiran V, et al.
MEK inhibitor PD-0325901 overcomes resistance to CK2 inhibitor CX-4945 and exhibits anti-tumor activity in head and neck cancer.
Int J Biol Sci. 2015; 11(4):411-22 [PubMed] Free Access to Full Article Related Publications
The serine-threonine kinase CK2 exhibits genomic alterations and aberrant overexpression in human head and neck squamous cell carcinomas (HNSCC). Here, we investigated the effects of CK2 inhibitor CX-4945 in human HNSCC cell lines and xenograft models. The IC50's of CX-4945 for 9 UM-SCC cell lines measured by MTT assay ranged from 3.4-11.9 μM. CX-4945 induced cell cycle arrest and cell death measured by DNA flow cytometry, and inhibited prosurvival mediators phospho-AKT and p-S6 in UM-SCC1 and UM-SCC46 cells. CX-4945 decreased NF-κB and Bcl-XL reporter gene activities in both cell lines, but upregulated proapoptotic TP53 and p21 reporter activities, and induced phospho-ERK, AP-1, and IL-8 activity in UM-SCC1 cells. CX-4945 exhibited modest anti-tumor activity in UM-SCC1 xenografts. Tumor immunostaining revealed significant inhibition of PI3K-Akt-mTOR pathway and increased apoptosis marker TUNEL, but also induced p-ERK, c-JUN, JUNB, FOSL1 and proliferation (Ki67) markers, as a possible resistance mechanism. To overcome the drug resistance, we tested MEK inhibitor PD-0325901 (PD-901), which inhibited ERK-AP-1 activation alone and in combination with CX-4945. PD-901 alone displayed significant anti-tumor effects in vivo, and the combination of PD-901 and CX-4945 slightly enhanced anti-tumor activity when compared with PD-901 alone. Immunostaining of tumor specimens after treatment revealed inhibition of p-AKT S129 and p-AKT T308 by CX-4945, and inhibition of p-ERK T202/204 and AP-1 family member FOSL-1 by PD-901. Our study reveals a drug resistance mechanism mediated by the MEK-ERK-AP-1 pathway in HNSCC. MEK inhibitor PD-0325901 is active in HNSCC resistant to CX-4945, meriting further clinical investigation.

Petermann A, Stampnik Y, Cui Y, et al.
Deficiency of the protein-tyrosine phosphatase DEP-1/PTPRJ promotes matrix metalloproteinase-9 expression in meningioma cells.
J Neurooncol. 2015; 122(3):451-9 [PubMed] Related Publications
Brain-invasive growth of a subset of meningiomas is associated with less favorable prognosis. The molecular mechanisms causing invasiveness are only partially understood, however, the expression of matrix metalloproteinases (MMPs) has been identified as a contributing factor. We have previously found that loss of density enhanced phosphatase-1 (DEP-1, also designated PTPRJ), a transmembrane protein-tyrosine phosphatase, promotes meningioma cell motility and invasive growth in an orthotopic xenotransplantation model. We have now analyzed potential alterations of the expression of genes involved in motility control, caused by DEP-1 loss in meningioma cell lines. DEP-1 depleted cells exhibited increased expression of mRNA encoding MMP-9, and the growth factors EGF and FGF-2. The increase of MMP-9 expression in DEP-1 depleted cells was also readily detectable at the protein level by zymography. MMP-9 upregulation was sensitive to chemical inhibitors of growth factor signal transduction. Conversely, MMP-9 mRNA levels could be stimulated with growth factors (e.g. EGF) and inflammatory cytokines (e.g. TNFα). Increase of MMP-9 expression by DEP-1 depletion, or growth factor/cytokine stimulation qualitatively correlated with increased invasiveness in vitro scored as transmigration through matrigel-coated membranes. The studies suggest induction of MMP-9 expression promoted by DEP-1 deficiency, or potentially by growth factors and inflammatory cytokines, as a mechanism contributing to meningioma brain invasiveness.

Yan CM, Zhao YL, Cai HY, et al.
Blockage of PTPRJ promotes cell growth and resistance to 5-FU through activation of JAK1/STAT3 in the cervical carcinoma cell line C33A.
Oncol Rep. 2015; 33(4):1737-44 [PubMed] Related Publications
Gene therapy is a promising therapeutic approach for chemoresistant cervical cancers. Therapeutic interventions targeting the key factors contributing to the initiation and progression of cervical cancer may be a more effective treatment strategy. In the present study, we firstly determined the expression of protein tyrosine phosphatase receptor J (PTPRJ) in 8-paired human cervical tumor and non-tumor tissues. We observed a striking downregulation of PTPRJ in the human cervical tumor tissues. Next, we investigated the roles and the function mechanism of PTPRJ in the human cervical carcinoma cell line C33A by loss- and gain-of-function experiments. Our study indicated that C33A cells with loss of PTPRJ expression showed a significantly increased cell viability, rising growth and migration rate, as well as a G1-S transition. We obtained the opposite results when we overexpressed PTPRJ in C33A cells. Our further study indicated that PTPRJ levels were highly correlated with cell survival when the C33A cells were treated with 5-fluorouracil (5-FU), an important chemotherapeutic agent for cervical cancer. In addition, the signaling pathway screening assay showed an obvious alteration of the Janus kinase 1/signal transducer and activator of transcription 3 (JAK1/STAT3) pathway. PTPRJ negatively regulated the activation of the JAK1/STAT3 pathway by decreasing the phosphorylation levels of JAK1 and STAT3. In addition, PTPRJ also regulated the expression of the downstream factors of STAT3, such as cyclin D, Bax, VEGF and MMP2. Our results suggest that PTPRJ may be a promising gene therapy target and its therapeutic potential can be fulfilled when used alone, or in combination with other anticancer agents.

Pombo-de-Oliveira MS, Emerenciano M, Winn AP, et al.
Concordant B-cell precursor acute lymphoblastic leukemia in non-twinned siblings.
Blood Cells Mol Dis. 2015; 54(1):110-5 [PubMed] Related Publications
Associating the risk of childhood acute lymphoblastic leukemia (ALL) with genetic predisposition is still a challenge. Here, we discuss two non-twinned sibs (girl and boy) diagnosed with B-cell precursor (BCP-ALL) and ETV6-RUNX1. BCP-ALL clinical onset occurred 10months apart from each diagnosis. One child is alive in complete continuous remission, whereas, the other relapsed and evolved to death with resistance to ALL treatment. Despite the fact that BCP-ALL with ETV6-RUNX1 usually results in a very good prognosis, the sibs experienced divergent outcomes; a remarkable difference in one child that presented a more aggressive disease was higher leukocytosis associated with IKZF1 deletion. The familial history of cancer and genetic susceptibility was explored. The sibs were absolutely identical in all 17 loci of genes tested; GSTM1, GSTT1, NQO1, TP53, and TP63 were wild-type, whereas at least one copy of the variant allele for IKZF1, ARID5B, PTPRJ and CEBPE was present. The familial pattern of ETV6 was tested by the 12p microsatellite analysis and demonstrated that deletions occurred in one child but not the other, while heterozygous patterns were found in the parents. Altogether, our data suggest that genetic predisposition aligned with chance haa an additive effect in BCP-ALL outcome.

Katsuyama A, Konno T, Shimoyama S, Kikuchi H
The mycotoxin patulin decreases expression of density-enhanced phosphatase-1 by down-regulating PPARγ in human colon cancer cells.
Tohoku J Exp Med. 2014; 233(4):265-74 [PubMed] Related Publications
Patulin is a mycotoxin that is found mainly in apple products and causes symptoms such as bleeding from the digestive tract and diarrhea. Efforts to elucidate the mechanism of its toxicity have focused on protein tyrosine phosphatases (PTPs), which regulate the function of tight junctions (TJs) in colon epithelial cells. Patulin reacts with the conserved cysteine residues in the catalytic domains of PTP isoforms. Treatment of Caco-2 human colon cancer cells, used as a colon epithelial model, with 50 µM patulin decreased the level of density-enhanced phosphatase-1 (DEP-1) protein to 30% of the control level after 6 h. The level of DEP-1 mRNA was also decreased during 24 h after treatment with patulin. Moreover, knockdown of DEP-1 increased the level of phosphorylated claudin-4. Destruction of TJs by patulin treatment was observed by immunostaining with an antibody against zonula occludens (ZO)-1. To better understand the mechanistic basis of the decrease in DEP-1 mRNA levels, we searched for a cis-element upstream of the DEP-1 gene and found an element responsive to the peroxisome proliferator-activated receptor gamma (PPARγ) protein. Using a PPARγ-specific antibody, we showed a decrease in PPARγ abundance to 42% of the control level within 6 h after treatment with patulin. PPARγ has four cysteine residues that are involved in zinc finger formation. Our data suggest that DEP-1 affects TJ function and that PPARγ might control DEP-1 expression. Therefore, the toxicity of patulin to cellular functions might be attributable to its ability to down-regulate the expression of DEP-1 and PPARγ.

Aya-Bonilla C, Camilleri E, Haupt LM, et al.
In silico analyses reveal common cellular pathways affected by loss of heterozygosity (LOH) events in the lymphomagenesis of Non-Hodgkin's lymphoma (NHL).
BMC Genomics. 2014; 15:390 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The analysis of cellular networks and pathways involved in oncogenesis has increased our knowledge about the pathogenic mechanisms that underlie tumour biology and has unmasked new molecular targets that may lead to the design of better anti-cancer therapies. Recently, using a high resolution loss of heterozygosity (LOH) analysis, we identified a number of potential tumour suppressor genes (TSGs) within common LOH regions across cases suffering from two of the most common forms of Non-Hodgkin's lymphoma (NHL), Follicular Lymphoma (FL) and Diffuse Large B-cell Lymphoma (DLBCL). From these studies LOH of the protein tyrosine phosphatase receptor type J (PTPRJ) gene was identified as a common event in the lymphomagenesis of these B-cell lymphomas. The present study aimed to determine the cellular pathways affected by the inactivation of these TSGs including PTPRJ in FL and DLBCL tumourigenesis.
RESULTS: Pathway analytical approaches identified that candidate TSGs located within common LOH regions participate within cellular pathways, which may play a crucial role in FL and DLBCL lymphomagenesis (i.e., metabolic pathways). These analyses also identified genes within the interactome of PTPRJ (i.e. PTPN11 and B2M) that when inactivated in NHL may play an important role in tumourigenesis. We also detected genes that are differentially expressed in cases with and without LOH of PTPRJ, such as NFATC3 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3). Moreover, upregulation of the VEGF, MAPK and ERBB signalling pathways was also observed in NHL cases with LOH of PTPRJ, indicating that LOH-driving events causing inactivation of PTPRJ, apart from possibly inducing a constitutive activation of these pathways by reduction or abrogation of its dephosphorylation activity, may also induce upregulation of these pathways when inactivated. This finding implicates these pathways in the lymphomagenesis and progression of FL and DLBCL.
CONCLUSIONS: The evidence obtained in this research supports findings suggesting that FL and DLBCL share common pathogenic mechanisms. Also, it indicates that PTPRJ can play a crucial role in the pathogenesis of these B-cell tumours and suggests that activation of PTPRJ might be an interesting novel chemotherapeutic target for the treatment of these B-cell tumours.

Sundaram K, Sambandam Y, Tsuruga E, et al.
1α,25-dihydroxyvitamin D3 modulates CYP2R1 gene expression in human oral squamous cell carcinoma tumor cells.
Horm Cancer. 2014; 5(2):90-7 [PubMed] Related Publications
Oral squamous cell carcinomas (OSCC) are the most common malignant neoplasms associated with mucosal surfaces of the oral cavity and oropharynx. 1α,25-Dihydroxyvitamin D3 (1,25(OH)2D3) is implicated as an anticancer agent. Cytochrome P450 2R1 (CYP2R1) is a microsomal vitamin D 25-hydroxylase which plays an important role in converting dietary vitamin D to active metabolite, 25-(OH)D3. We identified high levels of CYP2R1 expression using tissue microarray of human OSCC tumor specimens compared to normal adjacent tissue. Therefore, we hypothesize that 1,25(OH)2D3 regulates CYP2R1 gene expression in OSCC tumor cells. Interestingly, real-time RT-PCR analysis of total RNA isolated from OSCC cells (SCC1, SCC11B, and SCC14a) treated with 1,25(OH)2D3 showed a significant increase in CYP2R1 and vitamin D receptor (VDR) mRNA expression. Also, Western blot analysis demonstrated that 1,25(OH)2D3 treatment time-dependently increased CYP2R1 expression in these cells. 1,25(OH)2D3 stimulation of OSCC cells transiently transfected with the hCYP2R1 promoter (-2 kb)-luciferase reporter plasmid demonstrated a 4.3-fold increase in promoter activity. In addition, 1,25(OH)2D3 significantly increased c-Fos, p-c-Jun expression, and c-Jun N-terminal kinase (JNK) activity in these cells. The JNK inhibitor suppresses 1,25(OH)2D3, inducing CYP2R1 mRNA expression and gene promoter activity in OSCC cells. Furthermore, JNK inhibitor significantly decreased 1,25(OH)2D3 inhibition of OSCC tumor cell proliferation. Taken together, our results suggest that AP-1 is a downstream effector of 1,25(OH)2D3 signaling to modulate CYP2R1 gene expression in OSCC tumor cells, and vitamin D analogs could be potential therapeutic agents to control OSCC tumor progression.

Wei W, Jiang M, Luo L, et al.
Colorectal cancer susceptibility variants alter risk of breast cancer in a Chinese Han population.
Genet Mol Res. 2013; 12(4):6268-74 [PubMed] Related Publications
Recent genome wide association studies (GWAS) and candidate gene studies have revealed many novel loci associated with colorectal cancer susceptibility. We evaluated the effect of these colorectal cancer-associated variants on the risk of breast cancer in a Chinese Han population. Seven single nucleotide polymorphisms (SNPs) (rs3856806 in PPARG, rs7014346 in POU5F1P1, rs989902 in PTPN13, rs1801278 in IRS1, rs7003146 in TCF7L2, rs1503185 in PTPRJ, and rs63750447 in MLH1) were genotyped in Han Chinese subjects, including 216 patients with breast cancer and 216 matched controls, using the Sequenom MassARRAY platform. The association of genotypes with susceptibility to breast cancer was analyzed using the odds ratio (OR), with 95% confidence interval (CI) and logistic regression. Three SNPs (rs7014346, rs989902, and rs7003146) were found to be significantly associated with the susceptibility of breast cancer. The GA and AA genotypes of rs7003146 in TCF7L2, and the CA and CC genotype of rs989902 in PTPN13 were associated with reduced breast cancer risk in the Chinese Han population based on the best-fit dominant model. The GG genotype of rs7014346 in POU5F1P1 was also significantly associated with decreased breast cancer risk under the best-fit additive model. Our results confirmed the association of rs7014346 in POU5F1P1, rs989902 in PTPN13, and rs7003146 in TCF7L2 with variations in the risk of breast cancer in a Chinese Han population.

Huang PY, Best OG, Almazi JG, et al.
Cell surface phenotype profiles distinguish stable and progressive chronic lymphocytic leukemia.
Leuk Lymphoma. 2014; 55(9):2085-92 [PubMed] Related Publications
Chronic lymphocytic leukemia (CLL) is clinically heterogeneous. While some patients have indolent disease for many years, 20-30% will progress and ultimately die of their disease. CLL may be classified by the Rai or Binet staging system, mutational status of the immunoglobulin variable heavy-chain gene (IGVH), ZAP-70 overexpression, cytogenetic abnormalities (13q-, + 12, 11q-, 17p-) and expression of several cell surface antigens (CD38, CD49d) that correlate with risk of disease progression. However, none of these markers identify all cases of CLL at risk. In a recent review, we summarized those CD antigens known to correlate with the prognosis of CLL. The present study has identified surface profiles of CD antigens that distinguish clinically progressive CLL from slow-progressive and stable CLL. Using an extended DotScan(™) CLL antibody microarray (Version 3; 182 CD antibodies), and with refined analysis of purified CD19 + B-cells, the following 27 CD antigens were differentially abundant for progressive CLL: CD11a, CD11b, CD11c, CD18, CD19, CD20 (two epitopes), CD21, CD22, CD23, CD24, CD25, CD38, CD40, CD43, CD45, CD45RA, CD52, CD69, CD81, CD84, CD98, CD102, CD148, CD180, CD196 and CD270. The extensive surface profiles obtained provide disease signatures with an accuracy of 79.2%, a sensitivity of 83.9% and a specificity of 72.5% that could provide the basis for a rapid test to triage patients with CLL according to probability of clinical progression and potential earlier requirement for treatment.

Luo D, Wilson JM, Harvel N, et al.
A systematic evaluation of miRNA:mRNA interactions involved in the migration and invasion of breast cancer cells.
J Transl Med. 2013; 11:57 [PubMed] Free Access to Full Article Related Publications
In this study we performed a systematic evaluation of functional miRNA-mRNA interactions associated with the invasiveness of breast cancer cells using a combination of integrated miRNA and mRNA expression profiling, bioinformatics prediction, and functional assays. Analysis of the miRNA expression identified 11 miRNAs that were differentially expressed, including 7 down-regulated (miR-200c, miR-205, miR-203, miR-141, miR-34a, miR-183, and miR-375) and 4 up-regulated miRNAs (miR-146a, miR-138, miR-125b1 and miR-100), in invasive cell lines when compared to normal and less invasive cell lines. Transfection of miR-200c, miR-205, and miR-375 mimics into MDA-MB-231 cells led to the inhibition of in vitro cell migration and invasion. The integrated analysis of miRNA and mRNA expression identified 35 known and novel target genes of miR-200c, miR-205, and mir-375, including CFL2, LAMC1, TIMP2, ZEB1, CDH11, PRKCA, PTPRJ, PTPRM, LDHB, and SEC23A. Surprisingly, the majority of these genes (27 genes) were target genes of miR-200c, suggesting that miR-200c plays a pivotal role in regulating the invasiveness of breast cancer cells. We characterized one of the target genes of miR-200c, CFL2, and demonstrated that CFL2 is overexpressed in aggressive breast cancer cell lines and can be significantly down-regulated by exogenous miR-200c. Tissue microarray analysis further revealed that CFL2 expression in primary breast cancer tissue correlated with tumor grade. The results obtained from this study may improve our understanding of the role of these candidate miRNAs and their target genes in relation to breast cancer invasiveness and ultimately lead to the identification of novel biomarkers associated with prognosis.

Aya-Bonilla C, Green MR, Camilleri E, et al.
High-resolution loss of heterozygosity screening implicates PTPRJ as a potential tumor suppressor gene that affects susceptibility to Non-Hodgkin's lymphoma.
Genes Chromosomes Cancer. 2013; 52(5):467-79 [PubMed] Related Publications
We employed a Hidden-Markov-Model (HMM) algorithm in loss of heterozygosity (LOH) analysis of high-density single nucleotide polymorphism (SNP) array data from Non-Hodgkin's lymphoma (NHL) entities, follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLBCL). This revealed a high frequency of LOH over the chromosomal region 11p11.2, containing the gene encoding the protein tyrosine phosphatase receptor type J (PTPRJ). Although PTPRJ regulates components of key survival pathways in B-cells (i.e., BCR, MAPK, and PI3K signaling), its role in B-cell development is poorly understood. LOH of PTPRJ has been described in several types of cancer but not in any hematological malignancy. Interestingly, FL cases with LOH exhibited down-regulation of PTPRJ, in contrast no significant variation of expression was shown in DLBCLs. In addition, sequence screening in Exons 5 and 13 of PTPRJ identified the G973A (rs2270993), T1054C (rs2270992), A1182C (rs1566734), and G2971C (rs4752904) coding SNPs (cSNPs). The A1182 allele was significantly more frequent in FLs and in NHLs with LOH. Significant over-representation of the C1054 (rs2270992) and the C2971 (rs4752904) alleles were also observed in LOH cases. A haplotype analysis also revealed a significant lower frequency of haplotype GTCG in NHL cases, but it was only detected in cases with retention. Conversely, haplotype GCAC was over-representated in cases with LOH. Altogether, these results indicate that the inactivation of PTPRJ may be a common lymphomagenic mechanism in these NHL subtypes and that haplotypes in PTPRJ gene may play a role in susceptibility to NHL, by affecting activation of PTPRJ in these B-cell lymphomas.

Ding D, Lou X, Hua D, et al.
Recurrent targeted genes of hepatitis B virus in the liver cancer genomes identified by a next-generation sequencing-based approach.
PLoS Genet. 2012; 8(12):e1003065 [PubMed] Free Access to Full Article Related Publications
Integration of the viral DNA into host chromosomes was found in most of the hepatitis B virus (HBV)-related hepatocellular carcinomas (HCCs). Here we devised a massive anchored parallel sequencing (MAPS) method using next-generation sequencing to isolate and sequence HBV integrants. Applying MAPS to 40 pairs of HBV-related HCC tissues (cancer and adjacent tissues), we identified 296 HBV integration events corresponding to 286 unique integration sites (UISs) with precise HBV-Human DNA junctions. HBV integration favored chromosome 17 and preferentially integrated into human transcript units. HBV targeted genes were enriched in GO terms: cAMP metabolic processes, T cell differentiation and activation, TGF beta receptor pathway, ncRNA catabolic process, and dsRNA fragmentation and cellular response to dsRNA. The HBV targeted genes include 7 genes (PTPRJ, CNTN6, IL12B, MYOM1, FNDC3B, LRFN2, FN1) containing IPR003961 (Fibronectin, type III domain), 7 genes (NRG3, MASP2, NELL1, LRP1B, ADAM21, NRXN1, FN1) containing IPR013032 (EGF-like region, conserved site), and three genes (PDE7A, PDE4B, PDE11A) containing IPR002073 (3', 5'-cyclic-nucleotide phosphodiesterase). Enriched pathways include hsa04512 (ECM-receptor interaction), hsa04510 (Focal adhesion), and hsa04012 (ErbB signaling pathway). Fewer integration events were found in cancers compared to cancer-adjacent tissues, suggesting a clonal expansion model in HCC development. Finally, we identified 8 genes that were recurrent target genes by HBV integration including fibronectin 1 (FN1) and telomerase reverse transcriptase (TERT1), two known recurrent target genes, and additional novel target genes such as SMAD family member 5 (SMAD5), phosphatase and actin regulator 4 (PHACTR4), and RNA binding protein fox-1 homolog (C. elegans) 1 (RBFOX1). Integrating analysis with recently published whole-genome sequencing analysis, we identified 14 additional recurrent HBV target genes, greatly expanding the HBV recurrent target list. This global survey of HBV integration events, together with recently published whole-genome sequencing analyses, furthered our understanding of the HBV-related HCC.

Casagrande S, Ruf M, Rechsteiner M, et al.
The protein tyrosine phosphatase receptor type J is regulated by the pVHL-HIF axis in clear cell renal cell carcinoma.
J Pathol. 2013; 229(4):525-34 [PubMed] Related Publications
Mass spectrometry analysis of renal cancer cell lines recently suggested that the protein-tyrosine phosphatase receptor type J (PTPRJ), an important regulator of tyrosine kinase receptors, is tightly linked to the von Hippel-Lindau protein (pVHL). Therefore, we aimed to characterize the biological relevance of PTPRJ for clear cell renal cell carcinoma (ccRCC). In pVHL-negative ccRCC cell lines, both RNA and protein expression levels of PTPRJ were lower than those in the corresponding pVHL reconstituted cells. Quantitative RT-PCR and western blot analysis of ccRCC with known VHL mutation status and normal matched tissues as well as RNA in situ hybridization on a tissue microarray (TMA) confirmed a decrease of PTPRJ expression in more than 80% of ccRCCs, but in only 12% of papillary RCCs. ccRCC patients with no or reduced PTPRJ mRNA expression had a less favourable outcome than those with a normal expression status (p = 0.05). Sequence analysis of 32 PTPRJ mRNA-negative ccRCC samples showed five known polymorphisms but no mutations, implying other mechanisms leading to PTPRJ's down-regulation. Selective silencing of HIF-α by siRNA and reporter gene assays demonstrated that pVHL inactivation reduces PTPRJ expression through a HIF-dependent mechanism, which is mainly driven by HIF-2α stabilization. Our results suggest PTPRJ as a member of a pVHL-controlled pathway whose suppression by HIF is critical for ccRCC development.

Smart CE, Askarian Amiri ME, Wronski A, et al.
Expression and function of the protein tyrosine phosphatase receptor J (PTPRJ) in normal mammary epithelial cells and breast tumors.
PLoS One. 2012; 7(7):e40742 [PubMed] Free Access to Full Article Related Publications
The protein tyrosine phosphatase receptor J, PTPRJ, is a tumor suppressor gene that has been implicated in a range of cancers, including breast cancer, yet little is known about its role in normal breast physiology or in mammary gland tumorigenesis. In this paper we show that PTPRJ mRNA is expressed in normal breast tissue and reduced in corresponding tumors. Meta-analysis revealed that the gene encoding PTPRJ is frequently lost in breast tumors and that low expression of the transcript associated with poorer overall survival at 20 years. Immunohistochemistry of PTPRJ protein in normal human breast tissue revealed a distinctive apical localisation in the luminal cells of alveoli and ducts. Qualitative analysis of a cohort of invasive ductal carcinomas revealed retention of normal apical PTPRJ localization where tubule formation was maintained but that tumors mostly exhibited diffuse cytoplasmic staining, indicating that dysregulation of localisation associated with loss of tissue architecture in tumorigenesis. The murine ortholog, Ptprj, exhibited a similar localisation in normal mammary gland, and was differentially regulated throughout lactational development, and in an in vitro model of mammary epithelial differentiation. Furthermore, ectopic expression of human PTPRJ in HC11 murine mammary epithelial cells inhibited dome formation. These data indicate that PTPRJ may regulate differentiation of normal mammary epithelia and that dysregulation of protein localisation may be associated with tumorigenesis.

Obara W, Ohsawa R, Kanehira M, et al.
Cancer peptide vaccine therapy developed from oncoantigens identified through genome-wide expression profile analysis for bladder cancer.
Jpn J Clin Oncol. 2012; 42(7):591-600 [PubMed] Related Publications
OBJECTIVE: The field of cancer vaccine therapy is currently expected to become the fourth option in the treatment of cancer after surgery, chemotherapy and radiation therapy. We developed a novel cancer peptide vaccine therapy for bladder cancer through a genome-wide expression profile analysis.
METHODS: Among a number of oncoproteins that are transactivated in cancer cells, we focused on M phase phosphoprotein 1 and DEP domain containing 1, both of which are cancer-testis antigens playing critical roles in the growth of bladder cancer cells, as candidate molecules for the development of drugs for bladder cancer. In an attempt to identify the peptide epitope from these oncoantigens, we conducted a clinical trial using these peptides for patients with advanced bladder cancer.
RESULTS: We identified HLA-A24-restricted peptide epitopes corresponding to parts of M phase phosphoprotein 1 and DEP domain containing 1 proteins, which could induce peptide-specific cytotoxic T lymphocytes. Using these peptides, we found that M phase phosphoprotein 1- and DEP domain containing 1-derived peptide vaccines could be well tolerated without any serious adverse events, and effectively induced peptide-specific cytotoxic T lymphocytes in vivo.
CONCLUSIONS: The novel approach adopted in the treatment with peptide vaccines is considered to be a promising therapy for bladder cancer.

Cuadrado A, Remeseiro S, Gómez-López G, et al.
The specific contributions of cohesin-SA1 to cohesion and gene expression: implications for cancer and development.
Cell Cycle. 2012; 11(12):2233-8 [PubMed] Related Publications
Besides its well-established role in sister chromatid cohesion, cohesin has recently emerged as major player in the organization of interphase chromatin. Such important function is related to its ability to entrap two DNA segments also in cis, thereby facilitating long-range DNA looping which is crucial for transcriptional regulation, organization of replication factories and V(D)J recombination. Vertebrate somatic cells have two different versions of cohesin, containing Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity has been largely ignored. We recently generated a knockout mouse model for the gene encoding SA1, and found that this protein is essential to complete embryonic development. Cohesin-SA1 mediates cohesion at telomeres, which is required for their replication. Telomere defects in SA1- deficient cells provoke chromosome segregation errors resulting in aneuploidy despite robust centromere cohesion. This aneuploidy could explain why heterozygous animals have an earlier onset of tumorigenesis. In addition, the genome-wide distribution of cohesin changes dramatically in the absence of SA1, and the complex shows reduced accumulation at promoters and CTCF sites. As a consequence, gene expression is altered, leading to downregulation of biological processes related to a developmental disorder linked to cohesin function, the Cornelia de Lange Syndrome (CdLS). These results point out a prominent role of cohesin-SA1 in transcriptional regulation, with clear implications in the etiology of CdLS.

Bhatnagar R, Dabholkar J, Saranath D
Genome-wide disease association study in chewing tobacco associated oral cancers.
Oral Oncol. 2012; 48(9):831-5 [PubMed] Related Publications
With a view to identify genomic risk variants in chewing-tobacco associated oral cancer patients, a genome-wide association study was conducted in patients of Indian ethnicity with long term tobacco chewing habit. We analyzed 55 oral cancer patients and 92 healthy controls for single nucleotide polymorphisms, using high throughput microarray Illumina Infinium II Assay platform and Human CNV370k-bead chip containing 370,000 single nucleotide polymorphisms. The PLINK software platform defined 298 SNPs with minor allele frequency of several genes significantly increased in oral cancer patients as compared to the controls (p<0.001). Illumina Genome Viewer Software Version 3.2.9, further delineated 93 SNPs with p-values ranging from 9.3×10(-4) to 1.38×10(-5) and Odd's ratio of 2.18-8.48, associated with 70 genes. Analysis using Kyoto Encyclopedia of Genes and Genome Pathway database, indicated SNP association with several genes including GRIK2, RASGRP3, CAMK4, SYK, RAPTOR, FHIT, DCC, active in signal transduction; MMP2, CNTNAP2, PTPRJ associated with tumor cell migration; and apoptotic gene IRAK3. The data indicates an inherent role for the genetic constitution of individuals in oral carcinogenesis, with the genomic variants contributing to increased risk or susceptibility to oral cancer.

Godfrey R, Arora D, Bauer R, et al.
Cell transformation by FLT3 ITD in acute myeloid leukemia involves oxidative inactivation of the tumor suppressor protein-tyrosine phosphatase DEP-1/ PTPRJ.
Blood. 2012; 119(19):4499-511 [PubMed] Related Publications
Signal transduction of FMS-like tyrosine kinase 3 (FLT3) is regulated by protein-tyrosine phosphatases (PTPs). We recently identified the PTP DEP-1/CD148/PTPRJ as a novel negative regulator of FLT3. This study addressed the role of DEP-1 for regulation of the acute myeloid leukemia (AML)-related mutant FLT3 internal tandem duplication (ITD) protein. Our experiments revealed that DEP-1 was expressed but dysfunctional in cells transformed by FLT3 ITD. This was caused by enzymatic inactivation of DEP-1 through oxidation of the DEP-1 catalytic cysteine. In intact cells, including primary AML cells, FLT3 ITD kinase inhibition reactivated DEP-1. DEP-1 reactivation was also achieved by counteracting the high levels of reactive oxygen species (ROS) production detected in FLT3 ITD-expressing cell lines by inhibition of reduced NAD phosphate (NADPH)-oxidases, or by overexpression of catalase or peroxiredoxin-1 (Prx-1). Interference with ROS production in 32D cells inhibited cell transformation by FLT3 ITD in a DEP-1-dependent manner, because RNAi-mediated depletion of DEP-1 partially abrogated the inhibitory effect of ROS quenching. Reactivation of DEP-1 by stable overexpression of Prx-1 extended survival of mice in the 32D cell/C3H/HeJ mouse model of FLT3 ITD-driven myeloproliferative disease. The study thus uncovered DEP-1 oxidation as a novel event contributing to cell transformation by FLT3 ITD.

Pang LY, Bergkvist GT, Cervantes-Arias A, et al.
Identification of tumour initiating cells in feline head and neck squamous cell carcinoma and evidence for gefitinib induced epithelial to mesenchymal transition.
Vet J. 2012; 193(1):46-52 [PubMed] Related Publications
Feline oral squamous cell carcinoma is considered a highly invasive cancer that carries a high level of morbidity. Despite aggressive surgery, patients often succumb to disease, the tumour having inherent insensitivity to radiation and chemotherapy. In this study we sought to identify cells within the feline SCC1 line that have stem cell properties, including inherent resistance mechanisms. When feline cells were subjected to harsh growth conditions, they formed sphere colonies consistent with a stem cell phenotype. Utilising CD133, we were able to identify a small fraction of cells within the population that had enhanced sphere-forming ability, reduced sensitivity to radiation and conventional chemotherapy and demonstrated resistance to the EGFR-targeting drug, gefitinib. In addition, long-term culture of feline SSC1 cells in gefitinib caused a change in cell morphology and gene expression reminiscent of an epithelial to mesenchymal transition. Taken together, these results suggest that feline SCC may be driven by small subset of cancer stem cells.

Ellinghaus E, Stanulla M, Richter G, et al.
Identification of germline susceptibility loci in ETV6-RUNX1-rearranged childhood acute lymphoblastic leukemia.
Leukemia. 2012; 26(5):902-9 [PubMed] Free Access to Full Article Related Publications
Acute lymphoblastic leukemia (ALL) is a malignant disease of the white blood cells. The etiology of ALL is believed to be multifactorial and likely to involve an interplay of environmental and genetic variables. We performed a genome-wide association study of 355 750 single-nucleotide polymorphisms (SNPs) in 474 controls and 419 childhood ALL cases characterized by a t(12;21)(p13;q22) - the most common chromosomal translocation observed in childhood ALL - which leads to an ETV6-RUNX1 gene fusion. The eight most strongly associated SNPs were followed-up in 951 ETV6-RUNX1-positive cases and 3061 controls from Germany/Austria and Italy, respectively. We identified a novel, genome-wide significant risk locus at 3q28 (TP63, rs17505102, P(CMH)=8.94 × 10(-9), OR=0.65). The separate analysis of the combined German/Austrian sample only, revealed additional genome-wide significant associations at 11q11 (OR8U8, rs1945213, P=9.14 × 10(-11), OR=0.69) and 8p21.3 (near INTS10, rs920590, P=6.12 × 10(-9), OR=1.36). These associations and another association at 11p11.2 (PTPRJ, rs3942852, P=4.95 × 10(-7), OR=0.72) remained significant in the German/Austrian replication panel after correction for multiple testing. Our findings demonstrate that germline genetic variation can specifically contribute to the risk of ETV6-RUNX1-positive childhood ALL. The identification of TP63 and PTPRJ as susceptibility genes emphasize the role of the TP53 gene family and the importance of proteins regulating cellular processes in connection with tumorigenesis.

Quan Q, Yang M, Gao H, et al.
Imaging tumor endothelial marker 8 using an 18F-labeled peptide.
Eur J Nucl Med Mol Imaging. 2011; 38(10):1806-15 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Tumor endothelial marker 8 (TEM8) has been reported to be upregulated in both tumor cells and tumor-associated endothelial cells in several cancer types. TEM8 antagonists and TEM8-targeted delivery of toxins have been developed as effective cancer therapeutics. The ability to image TEM8 expression would be of use in evaluating TEM8-targeted cancer therapy.
METHODS: A 13-meric peptide, KYNDRLPLYISNP (QQM), identified from the small loop in domain IV of protective antigen of anthrax toxin was evaluated for TEM8 binding and labeled with 18F for small-animal PET imaging in both UM-SCC1 head-and-neck cancer and MDA-MB-435 melanoma models.
RESULTS: A modified ELISA showed that QQM peptide bound specifically to the extracellular vWA domain of TEM8 with an IC50 value of 304 nM. Coupling 4-nitrophenyl 2-(18)F-fluoropropionate with QQM gave almost quantitative yield and a high specific activity (79.2±7.4 TBq/mmol, n=5) of 18F-FP-QQM at the end of synthesis. 18F-FP-QQM showed predominantly renal clearance and had significantly higher accumulation in TEM8 high-expressing UM-SCC1 tumors (2.96±0.84 %ID/g at 1 h after injection) than TEM8 low-expressing MDA-MB-435 tumors (1.38±0.56 %ID/g at 1 h after injection).
CONCLUSION: QQM peptide bound specifically to the extracellular domain of TEM8. 18F-FP-QQM peptide tracer would be a promising lead compound for measuring TEM8 expression. Further efforts to improve the affinity and specificity of the tracer and to increase its metabolic stability are warranted.

Stevens KN, Wang X, Fredericksen Z, et al.
Evaluation of associations between common variation in mitotic regulatory pathways and risk of overall and high grade breast cancer.
Breast Cancer Res Treat. 2011; 129(2):617-22 [PubMed] Free Access to Full Article Related Publications
Mitotic regulatory pathways insure proper timing of mitotic entry, sister chromatid cohesion and separation, and cytokinesis. Disruption of this process results in inappropriate chromosome segregation and aneuploidy, and appears to contribute to cancer. Specifically, disregulation and somatic mutation of mitotic regulators has been observed in human cancers, and overexpression of mitotic regulators is common in aggressive and late stage tumors. However, the role of germline variation in mitotic pathways and risk of cancer is not well understood. We tested 1,084 haplotype-tagging and functional variants from 164 genes in mitotic regulatory pathways in 791 Caucasian women with breast cancer and 843 healthy controls for association with risk of overall and high grade breast cancer. Sixty-one single nucleotide polymorphisms (SNPs) from 40 genes were associated (P < 0.05) with risk of breast cancer in a log-additive model. In addition, 60 SNPs were associated (P < 0.05) with risk of high grade breast cancer. However, none of these associations were significant after Bonferroni correction for multiple testing. In gene-level analyses, CDC25C, SCC1/RAD21, TLK2, and SMC6L1 were associated (P < 0.05) with overall breast cancer risk, CDC6, CDC27, SUMO3, RASSF1, KIF2, and CDC14A were associated with high grade breast cancer risk, and EIF3S10 and CDC25A were associated with both. Further investigation in breast and other cancers are needed to understand the influence of inherited variation in mitotic genes on tumor grade and cancer risk.

Kahyo T, Iwaizumi M, Shinmura K, et al.
A novel tumor-derived SGOL1 variant causes abnormal mitosis and unstable chromatid cohesion.
Oncogene. 2011; 30(44):4453-63 [PubMed] Related Publications
Mitosis is the most conspicuous cell cycle phase, because it is the phase in which the dynamic physical distributions of cellular components into the two daughter cells occur. The separation of sister chromatids is especially important during mitosis, because of the extreme accuracy required for distribution to the next generation of cells. Shugoshin-like 1 (SGOL1) is a key protein in protecting sister chromatids from precocious separation. We have reported finding that chromosome instability is more likely in SGOL1-downregulated colorectal cancers, but it is still unknown whether there is an association between cancer and SGOL1 transcript variation. Here, we identified a novel SGOL1 variant, SGOL1-P1, in human colon cancer. The SGOL1-P1 transcript contains an exon-skip of exon 3 that results in a stop codon occurring within exon 4. Overexpression of SGOL1-P1 in HCT116 cells resulted in an increased number of cells with aberrant chromosome alignment, precociously separated chromatids and delayed mitotic progression, occasionally followed by inaccurate distribution of the chromosomes. These phenotypes, observed when SGOL1-P1 was present, were also observed very frequently in SGOL1-knockdown cells. Furthermore, the overexpression of SGOL1-P1 inhibited the localization of endogenous SGOL1 and cohesin subunit RAD21/SCC1 to the centromere. These results suggest that SGOL1-P1 may function as a negative factor to native SGOL1, and that abundant expression of SGOL1-P1 may be responsible for chromosomal instability.

Arora D, Stopp S, Böhmer SA, et al.
Protein-tyrosine phosphatase DEP-1 controls receptor tyrosine kinase FLT3 signaling.
J Biol Chem. 2011; 286(13):10918-29 [PubMed] Free Access to Full Article Related Publications
Fms-like tyrosine kinase 3 (FLT3) plays an important role in hematopoietic differentiation, and constitutively active FLT3 mutant proteins contribute to the development of acute myeloid leukemia. Little is known about the protein-tyrosine phosphatases (PTP) affecting the signaling activity of FLT3. To identify such PTP, myeloid cells expressing wild type FLT3 were infected with a panel of lentiviral pseudotypes carrying shRNA expression cassettes targeting different PTP. Out of 20 PTP tested, expressed in hematopoietic cells, or presumed to be involved in oncogenesis or tumor suppression, DEP-1 (PTPRJ) was identified as a PTP negatively regulating FLT3 phosphorylation and signaling. Stable 32D myeloid cell lines with strongly reduced DEP-1 levels showed site-selective hyperphosphorylation of FLT3. In particular, the sites pTyr-589, pTyr-591, and pTyr-842 involved in the FLT3 ligand (FL)-mediated activation of FLT3 were hyperphosphorylated the most. Similarly, acute depletion of DEP-1 in the human AML cell line THP-1 caused elevated FLT3 phosphorylation. Direct interaction of DEP-1 and FLT3 was demonstrated by "substrate trapping" experiments showing association of DEP-1 D1205A or C1239S mutant proteins with FLT3 by co-immunoprecipitation. Moreover, activated FLT3 could be dephosphorylated by recombinant DEP-1 in vitro. Enhanced FLT3 phosphorylation in DEP-1-depleted cells was accompanied by enhanced FLT3-dependent activation of ERK and cell proliferation. Stable overexpression of DEP-1 in 32D cells and transient overexpression with FLT3 in HEK293 cells resulted in reduction of FL-mediated FLT3 signaling activity. Furthermore, FL-stimulated colony formation of 32D cells expressing FLT3 in methylcellulose was induced in response to shRNA-mediated DEP-1 knockdown. This transforming effect of DEP-1 knockdown was consistent with a moderately increased activation of STAT5 upon FL stimulation but did not translate into myeloproliferative disease formation in the 32D-C3H/HeJ mouse model. The data indicate that DEP-1 is negatively regulating FLT3 signaling activity and that its loss may contribute to but is not sufficient for leukemogenic cell transformation.

Petermann A, Haase D, Wetzel A, et al.
Loss of the protein-tyrosine phosphatase DEP-1/PTPRJ drives meningioma cell motility.
Brain Pathol. 2011; 21(4):405-18 [PubMed] Related Publications
DEP-1/PTPRJ is a transmembrane protein-tyrosine phosphatase which has been proposed as a suppressor of epithelial tumors. We have found loss of heterozygosity (LOH) of the PTPRJ gene and loss of DEP-1 protein expression in a subset of human meningiomas. RNAi-mediated suppression of DEP-1 in DEP-1 positive meningioma cell lines caused enhanced motility and colony formation in semi-solid media. Cells devoid of DEP-1 exhibited enhanced signaling of endogenous platelet-derived growth factor (PDGF) receptors, and reduced paxillin phosphorylation upon seeding. Moreover, DEP-1 loss caused diminished adhesion to different matrices, and impaired cell spreading. DEP-1-deficient meningioma cells exhibited invasive growth in an orthotopic xenotransplantation model in nude mice, indicating that elevated motility translates into a biological phenotype in vivo. We propose that negative regulation of PDGF receptor signaling and positive regulation of adhesion signaling by DEP-1 cooperate in inhibition of meningioma cell motility, and possibly tumor invasiveness. These phenotypes of DEP-1 loss reveal functions of DEP-1 in adherent cells, and may be more generally relevant for tumorigenesis.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. PTPRJ, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 09 March, 2017     Cancer Genetics Web, Established 1999