ROR2

Gene Summary

Gene:ROR2; receptor tyrosine kinase like orphan receptor 2
Aliases: BDB, BDB1, NTRKR2
Location:9q22.31
Summary:The protein encoded by this gene is a receptor protein tyrosine kinase and type I transmembrane protein that belongs to the ROR subfamily of cell surface receptors. The protein may be involved in the early formation of the chondrocytes and may be required for cartilage and growth plate development. Mutations in this gene can cause brachydactyly type B, a skeletal disorder characterized by hypoplasia/aplasia of distal phalanges and nails. In addition, mutations in this gene can cause the autosomal recessive form of Robinow syndrome, which is characterized by skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly, and a dysmorphic facial appearance. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:tyrosine-protein kinase transmembrane receptor ROR2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (22)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • DNA Methylation
  • Chromosome 9
  • Stomach Cancer
  • Stromal Cells
  • siRNA
  • Xenograft Models
  • Biomarkers, Tumor
  • Receptor Tyrosine Kinase-like Orphan Receptors
  • Wnt3A Protein
  • Oligonucleotide Array Sequence Analysis
  • Genomics
  • Neoplasm Proteins
  • Transfection
  • Mutation
  • Signal Transduction
  • VHL
  • Wnt Proteins
  • RTPCR
  • Cell Proliferation
  • Gene Expression Profiling
  • Cell Movement
  • Proto-Oncogene Proteins
  • Promoter Regions
  • Lung Cancer
  • Immunoblotting
  • Gene Knockdown Techniques
  • RNA Interference
  • Neoplasm Invasiveness
  • Kidney Cancer
  • Wnt1 Protein
  • Chronic Lymphocytic Leukemia
  • rac1 GTP-Binding Protein
  • Western Blotting
  • Protein-Tyrosine Kinases
  • Receptor Protein-Tyrosine Kinases
  • Gene Expression
  • Neoplasm Metastasis
  • beta Catenin
  • Wnt2 Protein
  • Renal Cell Carcinoma
  • Immunohistochemistry
  • Cancer Gene Expression Regulation
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ROR2 (cancer-related)

Aoki T, Nishita M, Sonoda J, et al.
Intraflagellar transport 20 promotes collective cancer cell invasion by regulating polarized organization of Golgi-associated microtubules.
Cancer Sci. 2019; 110(4):1306-1316 [PubMed] Free Access to Full Article Related Publications
Collective invasion is an important strategy of cancers of epithelial origin, including colorectal cancer (CRC), to infiltrate efficiently into local tissues as collective cell groups. Within the groups, cells at the invasive front, called leader cells, are highly polarized and motile, thereby providing the migratory traction that guides the follower cells. However, its underlying mechanisms remain unclear. We have previously shown that signaling emanating from the receptor tyrosine kinase Ror2 can promote invasion of human osteosarcoma cells and that intraflagellar transport 20 (IFT20) mediates its signaling to regulate Golgi structure and transport. Herein, we investigated the role of Ror2 and IFT20 in collective invasion of CRC cells, where Ror2 expression is either silenced or nonsilenced. We show by cell biological analyses that IFT20 promotes collective invasion of CRC cells, irrespective of expression and function of Ror2. Intraflagellar transport 20 is required for organization of Golgi-associated, stabilized microtubules, oriented toward the direction of invasion in leader cells. Our results also indicate that IFT20 promotes reorientation of the Golgi apparatus toward the front side of leader cells. Live cell imaging of the microtubule plus-end binding protein EB1 revealed that IFT20 is required for continuous polarized microtubule growth in leader cells. These results indicate that IFT20 plays an important role in collective invasion of CRC cells by regulating organization of Golgi-associated, stabilized microtubules and Golgi polarity in leader cells.

Zheng M, Zhou Q, Liu X, et al.
CTHRC1 overexpression promotes cervical carcinoma progression by activating the Wnt/PCP signaling pathway.
Oncol Rep. 2019; 41(3):1531-1538 [PubMed] Free Access to Full Article Related Publications
The tumorigenesis and metastasis of tumors are associated with human collagen triple helix repeats containing 1 (CTHRC1). To study the effects and possible impacting mechanisms of CTHRC1 on human cervical carcinoma development, samples of paraffin‑embedded cervical carcinoma and HeLa cells were examined. Immunofluorescence, cell wound scratch assay, western blot analysis and Transwell invasion assay were used to evaluate HeLa cells in response to silencing of the CTHRC1 gene in cervical carcinoma. The expression levels of gap‑associated proteins of the Wnt/PCP pathway in paraffin‑embedded cervical carcinoma samples were also evaluated by immunohistochemical staining. CTHRC1 promoted the migration and invasion of HeLa cells in vitro, downregulated Ror2 and p‑c‑Jun and activated the Wnt/PCP pathway. Furthermore, the expression of p‑c‑Jun, Ror2 and Wnt5a was increased after overexpression of CTHRC1 as revealed in HeLa cells compared to control group. The present experiments revealed that CTHRC1 promoted HeLa cell progression by activating the Wnt/PCP signaling pathway and may play a key role in the invasion and metastasis of cervical carcinoma.

Verma SP, Das P
Novel splicing in IGFN1 intron 15 and role of stable G-quadruplex in the regulation of splicing in renal cell carcinoma.
PLoS One. 2018; 13(10):e0205660 [PubMed] Free Access to Full Article Related Publications
The IGFN1 (Immunoglobulin-Like And Fibronectin Type III Domain Containing 1) gene has a role in skeletal muscle function and is also involved in metastatic breast cancer, and the isoforms with three N-terminal globular domains are sufficient for its function in skeletal muscle. Two novel splicing isoforms of IGFN1 have been identified in renal cell carcinoma (RCC), one with 5'exon extension and an isoform with a novel exon. The role of G-quadruplex, a non-B DNA, was explored for the splicing alteration of IGFN1 in RCC. G-quadruplexes are the secondary structures acquired by stacking of G-quartets by Hoogsteen hydrogen bonding in DNA and RNA. IGFN1 has intronic potential G-quadruplex forming sequence (PQS) folding into G-quadruplex and is studied for its involvement in aberrant splicing. A PQS in the intron 15 of IGFN1 gene was observed in our in silico analysis by QGRS mapper and non BdB web servers. We observed PQS folds into stable G-quadruplex structure in gel shift assay and circular dichroism (CD) spectroscopy in the presence of G-quadruplex stabilizing agents Pyridostatin (PDS) and KCl, respectively. G-quadruplex formation site with single base resolution was mapped by Sanger sequencing of the plasmid constructs harbouring the cloned PQS and its mutant. This stable G-quadruplex inhibits reverse transcriptase and taq polymerase in reverse transcriptase & PCR stop assays. PDS changes the different splicing isoforms of IGFN1 in UOK146 cell line, displaying involvement of intronic G-quadruplex in IGFN1 splicing. These results lead us to propose that a stable G-quadruplex structure is formed in IGFN1 intron and a reason behind IGFN1 aberrant splicing which could be targeted for therapeutic intervention.

Saji T, Nishita M, Ogawa H, et al.
Critical role of the Ror-family of receptor tyrosine kinases in invasion and proliferation of malignant pleural mesothelioma cells.
Genes Cells. 2018; 23(7):606-613 [PubMed] Related Publications
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis and closely related to exposure to asbestos. MPM is a heterogeneous tumor with three main histological subtypes, epithelioid, sarcomatoid, and biphasic types, among which sarcomatoid type shows the poorest prognosis. The Ror-family of receptor tyrosine kinases, Ror1 and Ror2, is expressed in various types of tumor cells at higher levels and affects their aggressiveness. However, it is currently unknown whether they are expressed in and involved in aggressiveness of MPM. Here, we show that Ror1 and Ror2 are expressed in clinical specimens and cell lines of MPM with different histological features. Studies using MPM cell lines indicate that expression of Ror2 is associated tightly with high invasiveness of MPM cells, whereas Ror1 can contribute to their invasion in the absence of Ror2. However, both Ror1 and Ror2 promote proliferation of MPM cells. We also show that promoted invasion and proliferation of MPM cells by Ror signaling can be mediated by the Rho-family of small GTPases, Rac1, and Cdc42. These findings elucidate the critical role of Ror signaling in promoting invasion and proliferation of MPM cells.

Henry CE, Llamosas E, Daniels B, et al.
ROR1 and ROR2 play distinct and opposing roles in endometrial cancer.
Gynecol Oncol. 2018; 148(3):576-584 [PubMed] Related Publications
OBJECTIVE: In recent years, the Wnt signalling pathway and the ROR1 and ROR2 receptors have been implicated in a range of gynecological cancers. These receptors have been described as prospective therapeutic targets, and this study investigated such potential in an endometrial cancer context.
METHOD: Immunohistochemistry for ROR1 and ROR2 was performed in a patient cohort, and expression was correlated with clinicopathological parameters including type, stage, grade, myometrial invasion, lymphovascular involvement, patient age and survival. The functional role of these receptors in endometrial cancer was investigated via siRNA knockdown of ROR1 and ROR2 in three cell line models (KLE, RL95-2 and MFE-319). Effects on proliferation, adhesion, migration and invasion were measured.
RESULTS: High ROR1 expression in patient samples correlated with worse overall survival (p = 0.0169) while high ROR2 expression correlated with better overall survival (p = 0.06). ROR1 knockdown in KLE cells significantly decreased proliferation (p = 0.047) and reduced migration and invasion. ROR2 knockdown in RL95-2 cells increased cell migration and invasion (p = 0.011). Double ROR1 and ROR2 knockdown in MFE-319 cells decreased adhesion and significantly increased cell migration (P = 0.008) and invasion (p < 0.001).
CONCLUSION: ROR1 and ROR2 play distinct roles in endometrial cancer. ROR1 may promote tumor progression, similar to its role in ovarian cancer, while ROR2 may act as a tumor suppressor in endometrioid endometrial cancer, similar to its role in colorectal cancer. With several ROR-targeting therapies currently in development and phase I clinical trials for other tumor types, this study supports the potential of these receptors as therapeutic targets for women with endometrial cancer.

Morales-Ruiz T, García-Ortiz MV, Devesa-Guerra I, et al.
DNA methylation reprogramming of human cancer cells by expression of a plant 5-methylcytosine DNA glycosylase.
Epigenetics. 2018; 13(1):95-107 [PubMed] Free Access to Full Article Related Publications
Patterns of DNA methylation, an important epigenetic modification involved in gene silencing and development, are disrupted in cancer cells. Understanding the functional significance of aberrant methylation in tumors remains challenging, due in part to the lack of suitable tools to actively modify methylation patterns. DNA demethylation caused by mammalian DNA methyltransferase inhibitors is transient and replication-dependent, whereas that induced by TET enzymes involves oxidized 5mC derivatives that perform poorly understood regulatory functions. Unlike animals, plants possess enzymes that directly excise unoxidized 5mC from DNA, allowing restoration of unmethylated C through base excision repair. Here, we show that expression of Arabidopsis 5mC DNA glycosylase DEMETER (DME) in colon cancer cells demethylates and reactivates hypermethylated silenced loci. Interestingly, DME expression causes genome-wide changes that include both DNA methylation losses and gains, and partially restores the methylation pattern observed in normal tissue. Furthermore, such methylome reprogramming is accompanied by altered cell cycle responses and increased sensibility to anti-tumor drugs, decreased ability to form colonospheres, and tumor growth impairment in vivo. Our study shows that it is possible to reprogram a human cancer DNA methylome by expression of a plant DNA demethylase.

Carbone C, Piro G, Gaianigo N, et al.
Adipocytes sustain pancreatic cancer progression through a non-canonical WNT paracrine network inducing ROR2 nuclear shuttling.
Int J Obes (Lond). 2018; 42(3):334-343 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Solid epidemiological evidences connect obesity with incidence, stage and survival in pancreatic cancer. However, the underlying mechanistic basis linking adipocytes to pancreatic cancer progression remain largely elusive. We hypothesized that factors secreted by adipocytes could be responsible for epithelial-to-mesenchymal transition (EMT) induction and, in turn, a more aggressive phenotype in models of pancreatic preneoplastic lesions.
METHODS: We studied the role of factors secreted by two adipogenic model systems from primary human bone marrow stromal cells (hBMSCs) in an in vitro experimental cell transformation model system of human pancreatic ductal epithelial (HPDE) cell stably expressing activated KRAS (HPDE/KRAS),Results:We measured a significant induction of EMT and aggressiveness in HPDE and HPDE/KRAS cell lines when cultured with medium conditioned by fully differentiated adipocytes (ADIPO
CONCLUSIONS: We demonstrated that adipocytes could induce EMT and aggressiveness in models of pancreatic preneoplastic lesions by orchestrating a complex paracrine signaling of soluble modulators of the non-canonical WNT signaling pathway that determine, in turn, the activation and nuclear translocation of ROR2. This signaling pathway could represent a novel target for pancreatic cancer chemoprevention. Most importantly, these factors could serve as novel biomarkers to select a risk population among obese subjects for screening and, thus, early diagnosis of pancreatic cancer.

Verma SP, Das P
G-quadruplex structure at intron 2 of TFE3 and its role in Xp11.2 translocation and splicing.
Biochim Biophys Acta Gen Subj. 2018; 1862(3):630-636 [PubMed] Related Publications
Transcription Factor E3 (TFE3) translocation is found in a group of different type of cancers and most of the translocations are located in the 5' region of TFE3 which may be considered as Breakpoint Region (BR). In our In silico study by QGRS mapper and non BdB web servers we found a Potential G-quadruplex forming Sequence (PQS) in the intron 2 of TFE3 gene. In vitro G-quadruplex formation was shown by native PAGE in presence of Pyridostatin(PDS), which with inter molecular secondary structure caused reduced mobility to migrate slower. G-quadruplex formation was mapped at single base resolution by Sanger sequencing and Circular Dichroism showed the formation of parallel G-quadruplex. FRET analysis revealed increased and decreased formation of G-quadruplex in presence of PDS and antisense oligonucleotide respectively. PCR stop assay, transcriptional and translational inhibition by PQS showed stable G-quadruplex formation affecting the biological processes. TFE3 minigene splicing study showed the involvement of this G-quadruplex in TFE3 splicing too. Therefore, G-quadruplex is evident to be the reason behind TFE3 induced oncogenesis executed by translocation and also involved in the mRNA splicing.

Wang B, Tang Z, Gong H, et al.
Wnt5a promotes epithelial-to-mesenchymal transition and metastasis in non-small-cell lung cancer.
Biosci Rep. 2017; 37(6) [PubMed] Free Access to Full Article Related Publications
A recent study indicated that high Wnt5a expression is associated with poor prognosis in non-small-cell lung cancer (NSCLC) patients; however, the underlying mechanism was not clear yet. Immunohistochemistry and Western blotting were performed to examine the protein expression level in NSCLC tissues and cell lines. The role of Wnt5a in clone formation, invasiveness, migration, and epithelial-to-mesenchymal transition (EMT) of NSCLC cells was studied. Luciferase reporter assay was used to evaluate the Tcf/Lef transcriptional activity. For assessing the effects of Wnt5a on tumor growth and metastasis

Roarty K, Pfefferle AD, Creighton CJ, et al.
Ror2-mediated alternative Wnt signaling regulates cell fate and adhesion during mammary tumor progression.
Oncogene. 2017; 36(43):5958-5968 [PubMed] Free Access to Full Article Related Publications
Cellular heterogeneity is a common feature in breast cancer, yet an understanding of the coexistence and regulation of various tumor cell subpopulations remains a significant challenge in cancer biology. In the current study, we approached tumor cell heterogeneity from the perspective of Wnt pathway biology to address how different modes of Wnt signaling shape the behaviors of diverse cell populations within a heterogeneous tumor landscape. Using a syngeneic TP53-null mouse model of breast cancer, we identified distinctions in the topology of canonical Wnt β-catenin-dependent signaling activity and non-canonical β-catenin-independent Ror2-mediated Wnt signaling across subtypes and within tumor cell subpopulations in vivo. We further discovered an antagonistic role for Ror2 in regulating canonical Wnt/β-catenin activity in vivo, where lentiviral shRNA depletion of Ror2 expression augmented canonical Wnt/β-catenin signaling activity across multiple basal-like models. Depletion of Ror2 expression yielded distinct phenotypic outcomes and divergent alterations in gene expression programs among different tumors, despite all sharing basal-like features. Notably, we uncovered cell state plasticity and adhesion dynamics regulated by Ror2, which influenced Ras Homology Family Member A (RhoA) and Rho-Associated Coiled-Coil Kinase 1 (ROCK1) activity downstream of Dishevelled-2 (Dvl2). Collectively, these studies illustrate the integration and collaboration of Wnt pathways in basal-like breast cancer, where Ror2 provides a spatiotemporal function to regulate the balance of Wnt signaling and cellular heterogeneity during tumor progression.

Jiang Z, Jiang C, Yu C, Fang J
MicroRNA-208b inhibits human osteosarcoma progression by targeting ROR2.
Tumour Biol. 2017; 39(6):1010428317705751 [PubMed] Related Publications
MicroRNAs are widely involved in cancer progression by inhibiting the expression levels of oncogenes or tumor suppressor genes, and dysregulation of microRNAs may contribute to tumorigenesis. Here, we found that overexpressed miR-208b can reduce the proliferation of human osteosarcoma cell lines U-2OS and Saos-2 by arresting cell cycle progression. The in vivo xenograft tumors induced by Saos-2 cells overexpressing miR-208b had smaller size and grew more slowly than those induced by the control cells. The mobility of U-2OS or Saos-2 cells was also downregulated by miR-208b. MiR-208b targeted a site in the 3' untranslated region of receptor tyrosine kinase-like orphan receptor 2. Inhibition of receptor tyrosine kinase-like orphan receptor 2 suppresses osteosarcoma metastasis in vitro. Recovering the expression levels of receptor tyrosine kinase-like orphan receptor 2 in miR-208b-overexpressed U-2OS or Saos-2 cells attenuated the inhibitory effects of miR-208b. In addition, the expression levels of miR-208b are significantly reduced in human osteosarcoma tissue samples compared to normal tissue samples, and miR-208b levels correlated inversely with receptor tyrosine kinase-like orphan receptor 2 levels. On these bases, we identified that miR-208b targets receptor tyrosine kinase-like orphan receptor 2 gene by which miR-208b can regulate the development of osteosarcoma.

Arabzadeh S, Hossein G, Salehi-Dulabi Z, Zarnani AH
WNT5A-ROR2 is induced by inflammatory mediators and is involved in the migration of human ovarian cancer cell line SKOV-3.
Cell Mol Biol Lett. 2016; 21:9 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Wnt5A, which is a member of the non-transforming Wnt protein family, is implicated in inflammatory processes. It is also highly expressed by ovarian cancer cells. ROR2, which is a member of the Ror-family of receptor tyrosine kinases, acts as a receptor or co-receptor for Wnt5A. The Wnt5A-ROR2 signaling pathway plays essential roles in the migration and invasion of several types of tumor cell and influences their cell polarity. We investigated the modulation of Wnt5A-ROR2 by inflammatory mediators and its involvement in the migration of the human ovarian cancer cell line SKOV-3.
METHODS: SKOV-3 cells were treated with LPS (lipopolysaccharide), LTA (lipoteichoic acid) and recombinant human IL-6 alone or in combination with STAT3 inhibitor (S1155S31-201) or NF-kB inhibitor (BAY11-7082) for 4, 8, 12, 24 and 48 h. The Wnt5A and ROR2 expression levels were determined at the gene and protein levels. Cells were transfected with specific siRNA against Wnt5A in the absence or presence of human anti-ROR2 antibody and cell migration was assessed using transwells.
RESULTS: There was a strong downregulation of Wnt5A expression in the presence of STAT3 or NF-kB inhibitors. Cell stimulation with LTA or IL-6 for 8 h led to significantly increased levels of Wnt5A (5- and 3-fold higher, respectively). LPS, LTA or IL-6 treatment significantly increased ROR2 expression (2-fold after 48 h). LPS- or LTA-induced Wnt5A or ROR2 expression was abrogated in the presence of STAT3 inhibitor (
CONCLUSIONS: This study revealed for the first time that inflammatory mediators modulate Wnt5A and ROR2 through NF-kB and STAT3 transcription factors and this may play a role in ovarian cancer cell migration. The results described here provide new insight into the role of the Wnt5A-ROR2 complex in ovarian cancer progression in relation to inflammation.

Xu Y, Ma YH, Pang YX, et al.
Ectopic repression of receptor tyrosine kinase-like orphan receptor 2 inhibits malignant transformation of ovarian cancer cells by reversing epithelial-mesenchymal transition.
Tumour Biol. 2017; 39(5):1010428317701627 [PubMed] Related Publications
Receptor tyrosine kinase-like orphan receptor 2 is an enzyme-linked receptor which specifically modulates WNT5A signaling and plays an important role in tumorigenesis, invasion, and metastasis; however, the precise role of receptor tyrosine kinase-like orphan receptor 2 in cancer is controversial. The purpose of this study was to investigate the expression and role of receptor tyrosine kinase-like orphan receptor 2 in ovarian carcinoma and clarify the biological functions and interactions of receptor tyrosine kinase-like orphan receptor 2 with non-canonical Wnt pathways in ovarian cancer. The result of the human ovary tissue microarray revealed that the receptor tyrosine kinase-like orphan receptor 2-positive rate increased in malignant epithelial ovarian cancers and was extremely higher in the metastatic tumor tissues, which was also higher than that in the malignant ovarian tumor tissues. In addition, high expression of receptor tyrosine kinase-like orphan receptor 2 was closely related with ovarian cancer grading. The expression of receptor tyrosine kinase-like orphan receptor 2 protein was higher in SKOV3 and A2780 cells than OVCAR3 and 3AO cells. Knockdown of receptor tyrosine kinase-like orphan receptor 2 inhibited ovarian cancer cell proliferation, migration, invasion, and induced morphologic as well as digestive state alterations in stably transfected SKOV3 cells. Detailed study further revealed that silencing of receptor tyrosine kinase-like orphan receptor 2 reversed the epithelial-mesenchymal transition and inhibited non-canonical Wnt signaling. Our findings suggest that receptor tyrosine kinase-like orphan receptor 2 may be an important regulator of epithelial-mesenchymal transition, primarily regulated the non-canonical Wnt signaling pathway in ovarian cancer cells, and may display a promising therapeutic target for ovarian cancer.

Chiyo T, Kato K, Iwama H, et al.
Therapeutic potential of the antidiabetic drug metformin in small bowel adenocarcinoma.
Int J Oncol. 2017; 50(6):2145-2153 [PubMed] Related Publications
Small bowel adenocarcinoma (SBAC) accounts for 3% of all gastrointestinal tract tumors and approximately 0.5% of all cancer cases. Recent studies have indicated that the use of metformin, one of the most commonly prescribed antidiabetic drugs, is associated with a better prognosis for certain malignant diseases. However, there have been no reports on the effect of metformin in SBAC. In the present study, we evaluated the effect of metformin on human SBAC cell proliferation in vitro and in vivo and identified the microRNAs (miRNAs) associated with its antitumor effects. Metformin inhibited the proliferation of HuTu80 cells in a time- and dose-dependent manner. Importantly, metformin reduced the expression of cyclin D1, cyclin E, cyclin-dependent kinase 4, and phosphorylated retinoblastoma protein, which resulted in cell cycle arrest at the G0/G1 phase. This arrest was accompanied by activation of AMPKα and inhibition of mammalian target of rapamycin and p70s6k. Additionally, metformin reduced the levels of phosphorylated epidermal growth factor receptor and ROR2 as well as markedly altered miRNA expression in HuTu80 cells. Metformin also inhibited tumor growth in vivo in a xenograft mouse model. Our data suggest that metformin might have therapeutic potential in SBAC.

Saling M, Duckett JK, Ackers I, et al.
Wnt5a / planar cell polarity signaling pathway in urothelial carcinoma, a potential prognostic biomarker.
Oncotarget. 2017; 8(19):31655-31665 [PubMed] Free Access to Full Article Related Publications
Bladder cancer is the fourth most common cancer in men and the most common malignancy of the urinary tract. Bladder cancers detected at an early stage have a very high five-year survival rate, but when detected after local metastasis the rate is only about 50%. Our group recently reported a positive correlation between the expression of Wnt5a, a member of the Wnt proteins family, and histopathological grade and stage of urothelial carcinoma (UC). The objective of this study was to analyze UC cases reported in Athens, Ohio and investigate the major components of Wnt5a / planar cell polarity (PCP) signaling pathway in UC human tissue samples and UC cell lines.Formalin fixed and paraffin embedded transurethral resection tissues were immunostained for Wnt5a, Ror-2, CTHRC1 and E-cadherin. In addition, in vitro studies using UC cell lines were investigated for Wnt5a/PCP signaling and epithelial mesenchymal transition (EMT) gene expression. The IHC results showed a correlation between the expression of Wnt5a, Ror2 and CTHRC1 with high histological grade of the tumor, while E-cadherin showed an opposite trend of expression. Real time RT-PCR results showed that RNA expression of the Wnt5a/ PCP pathway genes vary in low and high grade UC cell lines and that the high grade cell lines exhibited signs of EMT.These findings support that Wnt5a-Ror2 signaling plays a role in UC, support the potential use of Wnt5a as a prognostic marker and provide evidence that Wnt5a signaling may be used as an effective molecular target for novel therapeutic tools.

Karvonen H, Niininen W, Murumägi A, Ungureanu D
Targeting ROR1 identifies new treatment strategies in hematological cancers.
Biochem Soc Trans. 2017; 45(2):457-464 [PubMed] Related Publications
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the ROR receptor family consisting of two closely related type I transmembrane proteins ROR1 and ROR2. Owing to mutations in their canonical motifs required for proper kinase activity, RORs are classified as pseudokinases lacking detectable catalytic activity. ROR1 stands out for its selective and high expression in numerous blood and solid malignancies compared with a minimal expression in healthy adult tissues, suggesting high potential for this molecule as a drug target for cancer therapy. Current understanding attributes a survival role for ROR1 in cancer cells; however, its oncogenic function is cancer-type-specific and involves various signaling pathways. High interest in ROR1-targeted therapies resulted in the development of ROR1 monoclonal antibodies such as cirmtuzumab, currently in a phase I clinical trial for chronic lymphocytic leukemia. Despite these advances in translational studies, the molecular mechanism employed by ROR1 in different cancers is not yet fully understood; therefore, more insights into the oncogenic role of ROR1 signaling are crucial in order to optimize the use of targeted drugs. Recent studies provided evidence that targeting ROR1 simultaneously with inhibition of B-cell receptor (BCR) signaling is more effective in killing ROR1-positive leukemia cells, suggesting a synergistic correlation between co-targeting ROR1 and BCR pathways. Although this synergy has been previously reported for B-cell acute lymphoblastic leukemia, the molecular mechanism appears rather different. These results provide more insights into ROR1-BCR combinatorial treatment strategies in hematological malignancies, which could benefit in tailoring more effective targeted therapies in other ROR1-positive cancers.

Yang CM, Ji S, Li Y, et al.
Ror2, a Developmentally Regulated Kinase, Is Associated With Tumor Growth, Apoptosis, Migration, and Invasion in Renal Cell Carcinoma.
Oncol Res. 2017; 25(2):195-205 [PubMed] Related Publications
Renal cell carcinoma (RCC) represents one of the most resistant tumors to radiation and chemotherapy. Current therapies for RCC patients are inefficient due to the lack of diagnostic and therapeutic markers. The expression of novel tumor-associated kinases has the potential to dramatically shape tumor cell behavior. Identifying tumor-associated kinases can lend insight into patterns of tumor growth and characteristics. In the present study, we investigated the receptor tyrosine kinase-like orphan receptor 2 (Ror2), a new tumor-associated kinase, in RCC primary tumors and cell lines. Knockdown of Ror2 expression in RCC cells with specific shRNA significantly reduced cell proliferation and induced apoptosis. Using in vitro migration and Matrigel invasion assays, we found that cell migration and invasive ability were also significantly inhibited. In RCC, Ror2 expression correlated with expression of genes involved at the cell cycle and migration, including PCNA, CDK1, TWIST, and MMP-2. Furthermore, in vivo xenograft studies in nude mice revealed that administration of a Ror2 shRNA plasmid significantly inhibited tumor growth. These findings suggest a novel pathway of tumor-promoting activity by Ror2 within renal carcinomas, with significant implications for unraveling the tumorigenesis of RCC.

Ma SS, Henry CE, Llamosas E, et al.
Validation of specificity of antibodies for immunohistochemistry: the case of ROR2.
Virchows Arch. 2017; 470(1):99-108 [PubMed] Related Publications
The Wnt signalling receptor receptor tyrosine kinase-like orphan receptor 2 (ROR2) is implicated in numerous human cancers. However, there have been conflicting reports regarding ROR2 expression, some studies showing upregulation and others downregulation of ROR2 in the same cancer type. The majority of these studies used immunohistochemistry (IHC) to detect ROR2 protein, without validation of the used antibodies. There appears to be currently no consensus on the antibody best suited for ROR2 detection or how ROR2 expression changes in various cancer types. We examined three commercially available ROR2 antibodies and found that only one bound specifically to ROR2. Another antibody cross-reacted with other proteins, and the third failed to detect ROR2 at all. ROR2 detection by IHC on 107 patient samples using the ROR2 specific antibody showed that the majority of colorectal cancers show loss of ROR2 protein. We found no association between ROR2 staining and poor patient survival, as had been previously reported. These results question the previously reported association between ROR2 and poor patient survival in colorectal cancer. Future studies should use fully validated antibodies when detecting ROR2 protein, as non-specific staining can lead to irrelevant observations and misinterpretations.

Tseng JC, Lin CY, Su LC, et al.
CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling.
Oncotarget. 2016; 7(25):38010-38024 [PubMed] Free Access to Full Article Related Publications
Prostate cancer (PCa) was the fifth most common cancer overall in the world. More than 80% of patients died from PCa developed bone metastases. Caffeic acid phenethyl ester (CAPE) is a main bioactive component of honeybee hive propolis. Transwell and wound healing assays demonstrated that CAPE treatment suppressed the migration and invasion of PC-3 and DU-145 PCa cells. Gelatin zymography and Western blotting indicated that CAPE treatment reduced the abundance and activity of MMP-9 and MMP-2. Analysis using Micro-Western Array (MWA), a high-throughput antibody-based proteomics platform with 264 antibodies detecting signaling proteins involved in important pathways indicated that CAPE treatment induced receptor tyrosine kinase-like orphan receptor 2 (ROR2) in non-canonical Wnt signaling pathway but suppressed abundance of β-catenin, NF-κB activity, PI3K-Akt signaling, and epithelial-mesenchymal transition (EMT). Overexpression or knockdown of ROR2 suppressed or enhanced cell migration of PC-3 cells, respectively. TCF-LEF promoter binding assay revealed that CAPE treatment reduced canonical Wnt signaling. Intraperitoneal injection of CAPE reduced the metastasis of PC-3 xenografts in tail vein injection nude mice model. Immunohistochemical staining demonstrated that CAPE treatment increased abundance of ROR2 and Wnt5a but decreased protein expression of Ki67, Frizzle 4, NF-κB p65, MMP-9, Snail, β-catenin, and phosphorylation of IκBα. Clinical evidences suggested that genes affected by CAPE treatment (CTNNB1, RELA, FZD5, DVL3, MAPK9, SNAl1, ROR2, SMAD4, NFKBIA, DUSP6, and PLCB3) correlate with the aggressiveness of PCa. Our study suggested that CAPE may be a potential therapeutic agent for patients with advanced PCa.

Bordinhão AL, Evangelista AF, Oliveira RJ, et al.
MicroRNA profiling in human breast cancer cell lines exposed to the anti-neoplastic drug cediranib.
Oncol Rep. 2016; 36(6):3197-3206 [PubMed] Related Publications
Cediranib, a pan-tyrosine kinase inhibitor is showing promising results for the treatment of several solid tumours. In breast cancer, its effects remain unclear, and there are no predictive biomarkers. Several studies have examined the expression profiles of microRNAs (miRNAs) in response to different chemotherapy treatments and found that the expression patterns may be associated with the treatment response. Therefore, our aim was to evaluate the cellular behaviour and differential expression profiles of miRNAs in breast cancer cell lines exposed to cediranib. The biological effect of this drug was measured by viability, migration, invasion and cell death in in vitro assays. Signaling pathways were assessed using a human phospho-receptor tyrosine kinase array. Furthermore, using a miRNA array and quantitative real-time PCR (qRT‑PCR), we assessed the relative expression of miRNAs following cediranib treatment. The breast cancer cell lines exhibited a distinct cytotoxic response to cediranib treatment. Cediranib exposure resulted in a decrease in the cell migration and invasion of all the breast cancer cell lines. Treatment with cediranib appeared to be able to modulate the activation of several RTKs that are targets of cediranib such as EGFR and a new potential target ROR2. Furthermore, this drug was able to modulate the expression profile of different microRNAs such as miR-494, miR-923, miR-449a, miR-449b and miR-886-3 in breast cancer cell lines. These miRNAs are reported to regulate genes involved in important molecular processes, according to bioinformatics prediction tools.

Ma SS, Srivastava S, Llamosas E, et al.
ROR2 is epigenetically inactivated in the early stages of colorectal neoplasia and is associated with proliferation and migration.
BMC Cancer. 2016; 16:508 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Colorectal cancer (CRC) is closely linked to Wnt signalling, with 94 % of cases exhibiting a Wnt related mutation. ROR2 is a receptor tyrosine kinase that is thought to repress β-catenin dependent Wnt signalling. Our study aims to determine if ROR2 is epigenetically silenced in CRC and determine if in vitro silencing of ROR2 potentiates Wnt signalling, and alters the proliferative, migratory or invasive potential of cells.
METHODS: ROR2 expression was examined in CRC cell lines and patient adenomas using qRT-PCR, while COBRA and bisulphite sequencing was used to analyse ROR2 promoter methylation. 258 patient primary tumour samples from publicly available databases were also examined for ROR2 expression and methylation. In addition, the functional effects of ROR2 modulation were investigated in HCT116 cells following ROR2 siRNA knockdown and in RKO and SW620 cells following ectopic ROR2 expression.
RESULTS: Reduced ROR2 expression was found to correlate with ROR2 promoter hypermethylation in colorectal cancer cell lines, carcinomas and adenomas. ROR2 expression was downregulated in 76.7 % (23/30) of CRC cell lines with increasing ROR2 promoter hypermethylation correlating with progressively lower expression. Analysis of 239 primary tumour samples from a publicly available cohort also found a significant correlation between reduced ROR2 expression and increased promoter methylation. Methylation analysis of 88 adenomas and 47 normal mucosa samples found greater percentage of adenoma samples to be methylated. Additional analysis also revealed that adenoma samples with reduced ROR2 expression also possessed ROR2 promoter hypermethylation. ROR2 knockdown in the CRC cell line HCT116 significantly decreased expression of the β-catenin independent Wnt targets genes JNK and NFATC1, increased cellular proliferation and migration but decreased invasion. When ROR2 was ectopically expressed in RKO and SW620 cells, there was no significant change to either cellular proliferation or migration.
CONCLUSION: ROR2 is frequently epigenetically inactivated by promoter hypermethylation in the early stages of colorectal neoplasia and this may contribute to colorectal cancer progression by increasing cellular proliferation and migration.

Yang L, Lee MS, Lu H, et al.
Analyzing Somatic Genome Rearrangements in Human Cancers by Using Whole-Exome Sequencing.
Am J Hum Genet. 2016; 98(5):843-856 [PubMed] Free Access to Full Article Related Publications
Although exome sequencing data are generated primarily to detect single-nucleotide variants and indels, they can also be used to identify a subset of genomic rearrangements whose breakpoints are located in or near exons. Using >4,600 tumor and normal pairs across 15 cancer types, we identified over 9,000 high confidence somatic rearrangements, including a large number of gene fusions. We find that the 5' fusion partners of functional fusions are often housekeeping genes, whereas the 3' fusion partners are enriched in tyrosine kinases. We establish the oncogenic potential of ROR1-DNAJC6 and CEP85L-ROS1 fusions by showing that they can promote cell proliferation in vitro and tumor formation in vivo. Furthermore, we found that ∼4% of the samples have massively rearranged chromosomes, many of which are associated with upregulation of oncogenes such as ERBB2 and TERT. Although the sensitivity of detecting structural alterations from exomes is considerably lower than that from whole genomes, this approach will be fruitful for the multitude of exomes that have been and will be generated, both in cancer and in other diseases.

Bleckmann A, Conradi LC, Menck K, et al.
β-catenin-independent WNT signaling and Ki67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases.
Clin Exp Metastasis. 2016; 33(4):309-23 [PubMed] Free Access to Full Article Related Publications
Liver metastasis development in breast cancer patients is common and confers a poor prognosis. So far, the prognostic significance of surgical resection and clinical relevance of biomarker analysis in metastatic tissue have barely been investigated. We previously demonstrated an impact of WNT signaling in breast cancer brain metastasis. This study aimed to investigate the value of established prognostic markers and WNT signaling components in liver metastases. Overall N = 34 breast cancer liver metastases (with matched primaries in 19/34 cases) were included in this retrospective study. Primaries and metastatic samples were analyzed for their expression of the estrogen (ER) and progesterone receptor, HER-2, Ki67, and various WNT signaling-components by immunohistochemistry. Furthermore, β-catenin-dependent and -independent WNT scores were generated and analyzed for their prognostic value. Additionally, the influence of the alternative WNT receptor ROR on signaling and invasiveness was analyzed in vitro. ER positivity (HR 0.09, 95 % CI 0.01-0.56) and high Ki67 (HR 3.68, 95 % CI 1.12-12.06) in the primaries had prognostic impact. However, only Ki67 remained prognostic in the metastatic tissue (HR 2.46, 95 % CI 1.11-5.44). Additionally, the β-catenin-independent WNT score correlated with reduced overall survival only in the metastasized situation (HR 2.19, 95 % CI 1.02-4.69, p = 0.0391). This is in line with the in vitro results of the alternative WNT receptors ROR1 and ROR2, which foster invasion. In breast cancer, the value of prognostic markers established in primary tumors cannot directly be translated to metastases. Our results revealed β-catenin-independent WNT signaling to be associated with poor prognosis in patients with breast cancer liver metastasis.

Takiguchi G, Nishita M, Kurita K, et al.
Wnt5a-Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis.
Cancer Sci. 2016; 107(3):290-7 [PubMed] Free Access to Full Article Related Publications
Wnt5a-Ror2 signaling has been shown to play important roles in promoting aggressiveness of various cancer cells in a cell-autonomous manner. However, little is known about its function in cancer-associated stromal cells, including mesenchymal stem cells (MSCs). Thus, we examined the role of Wnt5a-Ror2 signaling in bone marrow-derived MSCs in regulating proliferation of undifferentiated gastric cancer cells. Coculture of a gastric cancer cell line, MKN45, with MSCs either directly or indirectly promotes proliferation of MKN45 cells, and suppressed expression of Ror2 in MSCs prior to coculture inhibits enhanced proliferation of MKN45 cells. In addition, conditioned media from MSCs, treated with control siRNA, but not siRNAs against Ror2, can enhance proliferation of MKN45 cells. Interestingly, it was found that expression of CXCL16 in MSCs is augmented by Wnt5a-Ror2 signaling, and that recombinant chemokine (C-X-C motif) ligand (CXCL)16 protein can enhance proliferation of MKN45 cells in the absence of MSCs. In fact, suppressed expression of CXCL16 in MSCs or an addition of a neutralizing antibody against CXCL16 fails to promote proliferation of MKN45 cells in either direct or indirect coculture with MSCs. Importantly, we show that MKN45 cells express chemokine (C-X-C motif) receptor (CXCR)6, a receptor for CXCL16, and that suppressed expression of CXCR6 in MKN45 cells results in a failure of its enhanced proliferation in either direct or indirect coculture with MSCs. These findings indicate that Wnt5a-Ror2 signaling enhances expression of CXCL16 in MSCs and, as a result, enhanced secretion of CXCL16 from MSCs might act on CXCR6 expressed on MKN45, leading to the promotion of its proliferation.

Wang L, Yang D, Wang YH, et al.
Wnt5a and Ror2 expression associate with the disease progress of primary thyroid lymphoma.
Tumour Biol. 2016; 37(5):6085-90 [PubMed] Free Access to Full Article Related Publications
Primary thyroid lymphoma (PTL) is a rare malignant thyroid tumor; its pathogenesis is closely related to chronic lymphocytic thyroiditis. The different pathological subtypes and stages of PTL have distinct clinical characteristics and prognosis, but the specific reasons are not clear. Wnt5a is a representative protein of non-canonical Wnt signaling. It plays an important role in many different types of tumors. This study is to explore the changes of Wnt5a and its receptor Ror2 in PTL development process and the clinical significance of their represent. We collected 22 PTL patient tumor specimens and clinical data. We observed the expression of Wnt5a and Ror2 in PTL tumor tissues by immunohistochemistry. Wnt5a was expressed positively in 12 (54.5 %) cases, and Ror2 was expressed positively in 18 (81.8 %) cases. The expression of Wnt5a had a significant difference in different pathological subtypes of PTL (P < 0.05). Wnt5a and Ror2 expression were associated with local invasion and clinical stage, respectively (P < 0.05), and had no significant correlation with age, gender, and tumor size. Although, no significant difference in overall survival was found between positive and negative groups of Wnt5a (P = 0.416) or Ror2 (P = 0.256), respectively. We still consider that Wnt5a and Ror2 play a complex and subtle role in the pathogenesis and progression of PTL and may become potential biomarkers and therapeutic targets of PTL.

Henry C, Llamosas E, Knipprath-Meszaros A, et al.
Targeting the ROR1 and ROR2 receptors in epithelial ovarian cancer inhibits cell migration and invasion.
Oncotarget. 2015; 6(37):40310-26 [PubMed] Free Access to Full Article Related Publications
AIM: In recent years, the Wnt signalling pathway has been implicated in epithelial ovarian cancer and its members have potential as diagnostic, prognostic and therapeutic targets. Here we investigated the role of two Wnt receptor tyrosine kinases (RTKs), ROR1 and ROR2, and their putative ligand, Wnt5a, in ovarian cancer.
METHODS: Immunohistochemistry for ROR2 was performed in a large patient cohort, including benign controls, borderline tumours and epithelial ovarian cancer. In addition, siRNA was used to silence ROR1, ROR2 and Wnt5a individually, and together, in two ovarian cancer cell lines, and the effects on cell proliferation, adhesion, migration and invasion were measured.
RESULTS: ROR2 expression is significantly increased in ovarian cancer patients compared to patients with benign disease. In vitro assays showed that silencing either receptor inhibits ovarian cancer cell migration and invasion, and concurrently silencing both receptors has an even stronger inhibitory effect on proliferation, migration and invasion.
CONCLUSIONS: ROR2 expression is increased in epithelial ovarian cancer, and silencing ROR2 and its sister receptor ROR1 has a strong inhibitory effect on the ability of ovarian cancer cells to proliferate, migrate and invade through an extracellular matrix.

van Beuge MM, Ten Dam EJ, Werker PM, Bank RA
Wnt pathway in Dupuytren disease: connecting profibrotic signals.
Transl Res. 2015; 166(6):762-771.e3 [PubMed] Related Publications
A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways.

Lu C, Wang X, Zhu H, et al.
Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer.
Oncotarget. 2015; 6(28):24912-21 [PubMed] Free Access to Full Article Related Publications
We investigated the expression of receptor tyrosine kinase-like orphan receptor (ROR) 2 and Wnt5a and their prognostic significance in non-small cell lung cancer (NSCLC). Tissue microarray-based immunohistochemical analysis was performed to determine the expression of ROR2 and Wnt5a in 219 patients. mRNA expression of ROR2 and Wnt5a was examined in 20 pairs of NSCLC and matched adjacent normal tissues by real-time PCR. Compared with non-tumorous tissues, both mRNA expression and protein product of ROR2 and Wnt5a genes were significantly increased in NSCLC. c2 analysis revealed that high ROR2 or Wnt5a expression in NSCLC was significantly associated with advanced TNM stage. High expression of both ROR2 and Wnt5a was also related to advanced TNM stage. Multivariate analyses suggested that ROR2, Wnt5a and TNM stage were independent prognostic factors in NSCLC. Our clinical findings suggest that high ROR2 or Wnt5a expression is associated with poor prognosis in NSCLC, and combined detection of ROR2 and Wnt5a is helpful in predicting the prognosis of NSCLC.

Huang J, Fan X, Wang X, et al.
High ROR2 expression in tumor cells and stroma is correlated with poor prognosis in pancreatic ductal adenocarcinoma.
Sci Rep. 2015; 5:12991 [PubMed] Free Access to Full Article Related Publications
RTK-like orphan receptor 2 (ROR2) is overexpressed in several cancers and has tumorigenic activity. However, the expression of ROR2 and its functional and prognostic significance have yet to be evaluated in pancreatic ductal adenocarcinoma (PDAC). Quantitative real-time polymerase chain reaction was used to characterize the expression of ROR2 mRNA in PDAC, corresponding peritumoral tissues, and PDAC cell lines. Immunohistochemical analysis with tissue microarrays was used to evaluate ROR2 expression in PDAC and to investigate the relationship of this expression to clinicopathological factors and prognosis. The expression of ROR2 mRNA and protein was significantly higher in PDAC than in normal pancreatic tissues. High cytoplasmic ROR2 expression in cancer cells was significantly associated with a primary tumor, distant metastasis, and TNM stage, and high stromal ROR2 expression was significantly associated with regional lymph node metastasis and TNM stage. The Kaplan-Meier method and Cox regression analyses showed that high ROR2 expression in tumor cytoplasm or stromal cells was significantly associated with malignant attributes and reduced survival in PDAC. We present strong evidence that ROR2 could be used as an indicator of poor prognosis and could represent a novel therapeutic target for PDAC.

Zhang C, Hu Y, Wan J, He H
MicroRNA-124 suppresses the migration and invasion of osteosarcoma cells via targeting ROR2-mediated non-canonical Wnt signaling.
Oncol Rep. 2015; 34(4):2195-201 [PubMed] Related Publications
MicroRNAs (miRs) have been implicated in tumorigenesis through inhibition of the expression of their target genes at post-transcriptional levels. miR-124 has been found to be downregulated in many malignant tumors including osteosarcoma (OS). However, the detailed mechanism of miR-124 in the regulation of OS malignant phenotypes remains largely unclear. Here we aimed to explore the role of miR-124 in mediating OS cell migration and invasion, as well as the underlying regulatory mechanisms. Real-time RT-PCR data showed that miR-124 was frequently downregulated in OS cell lines compared to normal human osteoblast cells. We further conducted bioinformatic analysis and a luciferase reporter assay, and identified receptor tyrosine kinase-like orphan receptor 2 (ROR2) as a novel target of miR-124. Furthermore, we found that ROR2 was significantly upregulated in OS cell lines compared to normal human osteoblast cells, and miR-124 negatively mediated the protein level of ROR2 in U-2OS and Saos-2 cells. Moreover, transfection with miR-124 mimics significantly suppressed migration and invasion in the U-2OS and Saos-2 cells, while overexpression of ROR2 in the miR-124-transfected OS cells reversed the inhibitory effect of miR-124 upregulation on OS cell migration and invasion. In addition, we found that overexpression of miR-124 significantly suppressed the activity of non-canonical Wnt signaling, downstream of ROR2. Based on these findings, we suggest that miR-124 may inhibit OS metastasis, partly at least, via targeting ROR2 and thus suppressing the activity of ROR2-mediated non-canonical Wnt signaling.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ROR2, Cancer Genetics Web: http://www.cancer-genetics.org/ROR2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999