SALL4

Gene Summary

Gene:SALL4; spalt like transcription factor 4
Aliases: DRRS, HSAL4, ZNF797
Location:20q13.2
Summary:This gene encodes a zinc finger transcription factor thought to play a role in the development of abducens motor neurons. Defects in this gene are a cause of Duane-radial ray syndrome (DRRS). Alternative splicing results in multiple transcript variants encoding different isoforms. [provided by RefSeq, Dec 2015]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:sal-like protein 4
Source:NCBIAccessed: 29 August, 2019

Ontology:

What does this gene/protein do?
Show (14)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 29 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 29 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SALL4 (cancer-related)

Farawela HM, Zawam HM, Al-Wakeel HA, et al.
Expression pattern and prognostic implication of SALL4 gene in myeloid leukemias: a case-control study.
Scand J Clin Lab Invest. 2019 Feb - Apr; 79(1-2):65-70 [PubMed] Related Publications
SALL4 is a transcription factor that retains stem cells in an undifferentiated state and promotes its self-renewal. In addition, it is implicated in leukemogenesis via its effect on leukemic stem cells. This study aimed to characterize the expression pattern of SALL4 gene in acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) at different progression phases of the leukemic process and to assess its prognostic significance. Real-time PCR was used in 106 patients: 54 AML patients; 43 de novo and 11 in complete remission (CR), 52 CML patients; 31 in chronic phase (CP), 11 in deep molecular response (MR

Assarnia S, Ardalan Khales S, Forghanifard MM
Correlation between SALL4 stemness marker and bone morphogenetic protein signaling genes in esophageal squamous cell carcinoma.
J Biochem Mol Toxicol. 2019; 33(3):e22262 [PubMed] Related Publications
SALL4, as a stemness marker, plays a key role in the maintenance of pluripotency and self-renewal of cancer stem cells. To elucidate probable linkage between SALL4 stemness marker and bone morphogenetic protein (BMP) cell signaling pathway, we aimed to analyze the expression levels of the related genes in esophageal squamous cell carcinoma (ESCC) patients. Tumoral and corresponding margin normal tissues from 50 treatment-naive ESCC patients were subjected for expression analysis using relative comparative real-time reverse transcription polymerase chain reaction. There were significant correlations between SALL4 mRNA and BMP signaling target genes expression including SIZN1, VENTX, and DIDO1 (P < 0.01). Tight associations of gene expression were observed in primary stages of tumor progression (stages I/II), and the invaded tumors to the adventitia (T3/T4). Furthermore, significant correlations between the expression of BMP signaling target genes were observed (P < 0.01). SALL4 may play role in tumorigenesis and tumor cell invasiveness of ESCC through correlation with BMP signaling genes.

Chen LP, Zhang NN, Ren XQ, et al.
miR-103/miR-195/miR-15b Regulate SALL4 and Inhibit Proliferation and Migration in Glioma.
Molecules. 2018; 23(11) [PubMed] Free Access to Full Article Related Publications
Glioma is the common highly malignant primary brain tumor. However, the molecular pathways that result in the pathogenesis of glioma remain elusive. In this study, we found that microRNA-103 (miR-103), microRNA-195 (miR-195), or microRNA-15b (miR-15b), which all have the same 5' "seed" miRNA portion and share common binding sites in the SALL4 3'-untranslated region (UTR), were downregulated in glioma tissues and cell lines. These miRNAs suppressed glioma cell proliferation, migration, and invasion, induced cell apoptosis, and decreased the level of the SALL4 protein, but not that of SALL4 mRNA, which was identified as a direct target of all three miRNAs. The caspase-3/7 activity expression in U251 cells overexpressing these miRNAs was rescued during SALL4 upregulation. An obvious inverse correlation was observed between SALL4 and miR-103 or miR-195 expression levels in clinical glioma samples. Moreover, enforced expression of SALL4 stimulated cell proliferation, migration, and invasion. In conclusion, these data suggest that miR-103, miR-195, and miR-15b post-transcriptionally downregulated the expression of SALL4 and suppressed glioma cell growth, migration, and invasion, and increased cell apoptosis. These results provide a potential therapeutic target that may downregulate SALL4 in glioma.

Abbaszadegan MR, Taghehchian N, Li L, et al.
Contribution of KCTD12 to esophageal squamous cell carcinoma.
BMC Cancer. 2018; 18(1):853 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: It has been shown that the expression of potassium channel tetramerization domain containing 12 (KCTD12) as a regulator of GABAB receptor signaling is reversely associated with gastrointestinal stromal tumors. In present study we examined the probable role of KCTD12 in regulation of several signaling pathways and chromatin remodelers in esophageal squamous cell carcinoma (ESCC).
METHODS: KCTD12 ectopic expression was done in KYSE30 cell line. Comparative quantitative real time PCR was used to assess the expression of stem cell factors and several factors belonging to the WNT/NOTCH and chromatin remodeling in transfected cells in comparison with non-transfected cells.
RESULTS: We observed that the KCTD12 significantly down regulated expression of NANOG, SOX2, SALL4, KLF4, MAML1, PYGO2, BMI1, BRG1, MSI1, MEIS1, EGFR, DIDO1, ABCC4, ABCG2, and CRIPTO1 in transfected cells in comparison with non-transfected cells. Migration assay showed a significant decrease in cell movement in ectopic expressed cells in comparison with non-transfected cells (p = 0.02). Moreover, KCTD12 significantly decreased the 5FU resistance in transfected cells (p = 0.01).
CONCLUSIONS: KCTD12 may exert its inhibitory role in ESCC through the suppression of WNT /NOTCH, stem cell factors, and chromatin remodelers and can be introduced as an efficient therapeutic marker.

Liu BH, Jobichen C, Chia CSB, et al.
Targeting cancer addiction for SALL4 by shifting its transcriptome with a pharmacologic peptide.
Proc Natl Acad Sci U S A. 2018; 115(30):E7119-E7128 [PubMed] Free Access to Full Article Related Publications
Sal-like 4 (SALL4) is a nuclear factor central to the maintenance of stem cell pluripotency and is a key component in hepatocellular carcinoma, a malignancy with no effective treatment. In cancer cells, SALL4 associates with nucleosome remodeling deacetylase (NuRD) to silence tumor-suppressor genes, such as PTEN. Here, we determined the crystal structure of an amino-terminal peptide of SALL4(1-12) complexed to RBBp4, the chaperone subunit of NuRD, at 2.7 Å, and subsequent design of a potent therapeutic SALL4 peptide (FFW) capable of antagonizing the SALL4-NURD interaction using systematic truncation and amino acid substitution studies. FFW peptide disruption of the SALL4-NuRD complex resulted in unidirectional up-regulation of transcripts, turning SALL4 from a dual transcription repressor-activator mode to singular transcription activator mode. We demonstrate that FFW has a target affinity of 23 nM, and displays significant antitumor effects, inhibiting tumor growth by 85% in xenograft mouse models. Using transcriptome and survival analysis, we discovered that the peptide inhibits the transcription-repressor function of SALL4 and causes massive up-regulation of transcripts that are beneficial to patient survival. This study supports the SALL4-NuRD complex as a drug target and FFW as a viable drug candidate, showcasing an effective strategy to accurately target oncogenes previously considered undruggable.

Huynh DL, Zhang JJ, Chandimali N, et al.
SALL4 suppresses reactive oxygen species in pancreatic ductal adenocarcinoma phenotype via FoxM1/Prx III axis.
Biochem Biophys Res Commun. 2018; 503(4):2248-2254 [PubMed] Related Publications
Pancreatic ductal adenocarcinoma (PDAC) is a major malignant phenotype in pancreatic cancer, which is one of the most death causes by cancer in the world. PDAC developed from pancreatic intra-epithelial neoplasms (PanINs) and poorly diagnosed at early stages. Beside of high drug resistance, metastasis is the great concern during pancreatic cancer treatment. SALL4 expression is inherent in the upregulations of endothelial mesenchymal transition (EMT) genes and therefore promoting cancer metastasis. Furthermore, some of evidences indicated reactive oxygen species (ROS) is also influent to metastasis and self-antioxidant capacity seems a gold standard for successful metastasis rate. In this study, we have found the role Spalt like protein 4 (SALL4) to PDAC proliferation, mobility and its regulation to mitochondrial ROS via FoxM1/Prx III axis. It is possible that SALL4 mainly induces endothelial-mesenchymal transition (EMT) phenotype and favors ROS loss to facilitate metastasis efficiency in PDAC cells. Therefore, SALL4 might be a promising marker for PDAC treatment and targeting SALL4 would benefit anti-proliferative and anti-metastasis therapies.

Rahmani M, Talebi M, Hagh MF, et al.
Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia.
Biomed Pharmacother. 2018; 97:1493-1500 [PubMed] Related Publications
DNA methylation is a dynamic process influencing gene expression by altering either coding or non-coding loci. Despite advances in treatment of Acute Lymphoblastic Leukemia (ALL); relapse occurs in approximately 20% of patients. Nowadays, epigenetic factors are considered as one of the most effective mechanisms in pathogenesis of malignancies. These factors are reversible elements which can be potentially regarded as therapy targets and disease prognosis. DNA methylation, which primarily serves as transcriptional suppressor, mostly occurs in CpG islands of the gene promoter regions. This was shown as a key epigenetic factor in inactivating various tumor suppressor genes during cancer initiation and progression. We aimed to review methylation status of key genes involved in hematopoietic malignancies such as IKZF1, CDKN2B, TET2, CYP1B1, SALL4, DLC1, DLX family, TP73, PTPN6, and CDKN1C; and their significance in pathogenesis of ALL. The DNA methylation alterations in promoter regions of the genes have been shown to play crucial roles in tumorigenesis. Methylation -based inactivation of these genes has also been reported as associated with prognosis in acute leukemia. In this review, we also addressed the association of gene expression and methylation pattern in ALL patients.

Sun C, Lan P, Han Q, et al.
Oncofetal gene SALL4 reactivation by hepatitis B virus counteracts miR-200c in PD-L1-induced T cell exhaustion.
Nat Commun. 2018; 9(1):1241 [PubMed] Free Access to Full Article Related Publications
A chronic viral or tumor microenvironment can push T cells to exhaustion by promoting coinhibitory ligand expression. However, how host factors control coinhibitory ligand expression and whether viral infection breaks this control during tumor progress is unknown. Here we show a close negative correlation between SALL4 or PD-L1 and miR-200c in tumors from 98 patients with HBV-related hepatocellular carcinoma. SALL4 or PD-L1 expression correlates negatively with miR-200c expression, and patients with lower levels of SALL4 or PD-L1 and higher miR-200c survive longer. Moreover, over-expression of miR-200c antagonizes HBV-mediated PD-L1 expression by targeting 3'-UTR of CD274 (encoding PD-L1) directly, and reverses antiviral CD8

Liu X, Wang S, Xu J, et al.
Extract of Stellerachamaejasme L(ESC) inhibits growth and metastasis of human hepatocellular carcinoma via regulating microRNA expression.
BMC Complement Altern Med. 2018; 18(1):99 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: MicroRNAs(miRNAs)are involved in the initiation and progression of hepatocellular carcinoma. ESC, an extract of Stellerachamaejasme L, had been confirmed as a potential anti-tumor extract of Traditional Chinese Medicine. In light of the important role of miRNAs in hepatocellular carcinoma, we questioned whether the inhibitory effects of ESC on hepatocellular carcinoma (HCC) were associated with miRNAs.
METHODS: The proliferation inhibition of ESC on HCC cells was measured with MTT assay. The migration inhibition of ESC on HCC cells was measured with transwell assay. The influences of ESC on growth and metastasis inhibition were evaluated with xenograft tumor model of HCC. Protein expressions were measured with western blot and immunofluorescence methods and miRNA profiles were detected with miRNA array. Differential miRNA and target mRNAs were verified with real-time PCR.
RESULTS: The results showed that ESC could inhibit proliferation and epithelial mesenchymal transition (EMT) in HCC cells in vitro and tumor growth and metastasis in xenograft models in vivo. miRNA array results showed that 69 differential miRNAs in total of 429 ones were obtained in MHCC97H cells treated by ESC. hsa-miR-107, hsa-miR-638, hsa-miR-106b-5p were selected to be validated with real-time PCR method in HepG2 and MHCC97H cells. Expressions of hsa-miR-107 and hsa-miR-638 increased obviously in HCC cells treated by ESC. Target genes of three miRNAs were also validated with real-time PCR. Interestingly, only target genes of hsa-miR-107 changed greatly. ESC downregulated the MCL1, SALL4 and BCL2 gene expressions significantly but did not influence the expression of CACNA2D1.
CONCLUSION: The findings suggested ESC regressed growth and metastasis of human hepatocellular carcinoma via regulating microRNAs expression and their corresponding target genes.

Itou J, Li W, Ito S, et al.
Sal-like 4 protein levels in breast cancer cells are post-translationally down-regulated by tripartite motif-containing 21.
J Biol Chem. 2018; 293(17):6556-6564 [PubMed] Free Access to Full Article Related Publications
Sal-like 4 (SALL4) is a transcription factor that enhances proliferation and migration in breast cancer cells. SALL4 expression therefore has the potential to promote cancer malignancy. However, the regulatory mechanisms involved in SALL4 protein expression have not been thoroughly elucidated. In this study, we observed that treating MCF-7 and SUM159 breast cancer cell lines with a proteasome inhibitor increases SALL4 protein levels, suggesting that SALL4 is degraded by the ubiquitin-proteasome system. Using immunoprecipitation to uncover SALL4-binding proteins, we identified an E3 ubiquitin-protein ligase, tripartite motif-containing 21 (TRIM21). Using an EGFP reporter probe of the major SALL4 isoform SALL4B, we observed that shRNA-mediated knockdown of TRIM21 increases cellular SALL4B levels. Immunostaining experiments revealed that TRIM21 localizes to the nucleus, and a K64R substitution in the nuclear localization motif in SALL4B increased SALL4B levels in the cytoplasm. These results suggested that TRIM21 is involved in nuclear SALL4 degradation. To identify the amino acid residue that is targeted by TRIM21, we fragmented the SALL4B sequence, fused it to EGFP, and identified Lys-190 in SALL4B as TRIM21's target residue. Amino acid sequence alignments of SALL family members indicated that the region around SALL4 Lys-190 is conserved in both SALL1 and SALL3. Because SALL1 and SALL4 have similar functions, we constructed a SALL1-EGFP probe and found that the TRIM21 knockdown increases SALL1 levels, indicating that TRIM21 degrades both SALL1 and SALL4. Our findings extend our understanding of SALL4 and SALL1 regulation and may contribute to the development of SALL4-targeting therapies.

Bai C, Liu X, Xu J, et al.
Expression profiles of stemness genes in gastrointestinal stromal tumor.
Hum Pathol. 2018; 76:76-84 [PubMed] Related Publications
Gastrointestinal stromal tumor (GIST) is believed to originate from intestinal cells of Cajal or their stem cell precursors, and expresses stemness-related markers, such as CD117, CD34, DOG1 and nestin. To further characterize phenotypic features of GISTs, we examined expression profiles of a panel of stemness genes in GISTs, by analyzing existing gene expression profiling datasets. Our results showed that mRNA levels of B-lymphoma moloney murine leukaemia virus insertion region-1 (BMI1), kruppel-like factor 4 (KLF4), sal-like protein 4 (SALL4) and telomerase reverse transcriptase (TERT) were significantly unregulated in GISTs. Subsequently, protein expression of BMI1 and TERT was identified in GIST specimens by immunohistochemistry. Especially, we found that high expression of nuclear BMI1 was associated with large tumor size (P = .0239), high mitotic count (P < .01), high Ki-67 index (P = .0357), advanced National Institute of Health (NIH) criteria (P = .0025) and advanced World Health Organization (WHO) classification (P < .01) in GISTs. Functional and pathway enrichment analysis showed that most of BMI1's coexpressed genes were involved in tumor growth-related process, such as regulation of cell cycle and proliferation. Furthermore, we confirmed RAS oncogene family (RAB18) and limb development membrane protein 1 (LMBR1) genes as novel targets for BMI1 in GIST cells. These results provide valuable information for the expression profiles of stemness genes in GISTs, and identified nuclear BMI1 as an important marker of GIST cell proliferation and progression.

Xia Z, Qiu D, Deng J, et al.
Methylation-induced downregulation and tumor-suppressive role of microRNA-98 in glioma through targeting Sal-like protein 4.
Int J Mol Med. 2018; 41(5):2651-2659 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRs) have been found to play key roles in various human cancers, but the detailed regulatory mechanism of miR-98 in glioma remains largely unknown. The findings of the present study demonstrated that miR-98 was frequently downregulated in glioma tissues and cell lines (U87, U251, U373 and SHG44), and the decreased miR-98 levels were associated with DNA methylation. Treatment with 5-Aza-20-deoxycytidine, a DNA methyltransferase inhibitor, significantly increased the expression of miR-98 in glioma cells. Moreover, both miR-98 downregulation and methylation were significantly associated with a more aggressive tumor phenotype in glioma, as well as shorter survival time of glioma patients. Restoration of miR-98 expression caused a marked decrease in the migration and invasion of U87 cells, but did not affect cell proliferation. Sal-like protein 4 (SALL4) was further identified as a novel target gene of miR-98, and its protein expression was negatively regulated by miR-98 in U87 cells. Restoration of SALL4 expression reversed the suppressive effects of miR-98 on the migration and invasion of U87 cells. Furthermore, SALL4 was significantly upregulated in glioma tissues and cell lines, and an inverse correlation between miR-98 and SALL4 expression in glioma tissues was identified. In addition, the increased expression of SALL4 was significantly associated with glioma progression. Taken together, these data demonstrated that downregulation of miR-98, induced by methylation, promotes glioma cell migration and invasion via targeting SALL4. Therefore, miR-98 may become a potential therapeutic candidate for glioma.

Yan TT, Ren LL, Shen CQ, et al.
miR-508 Defines the Stem-like/Mesenchymal Subtype in Colorectal Cancer.
Cancer Res. 2018; 78(7):1751-1765 [PubMed] Related Publications
Colorectal cancer includes an invasive stem-like/mesenchymal subtype, but its genetic drivers, functional, and clinical relevance are uncharacterized. Here we report the definition of an altered miRNA signature defining this subtype that includes a major genomic loss of miR-508. Mechanistic investigations showed that this miRNA affected the expression of cadherin CDH1 and the transcription factors ZEB1, SALL4, and BMI1. Loss of miR-508 in colorectal cancer was associated with upregulation of the novel hypoxia-induced long noncoding RNA AK000053. Ectopic expression of miR-508 in colorectal cancer cells blunted epithelial-to-mesenchymal transition (EMT), stemness, migration, and invasive capacity

Matsumoto Y, Itou J, Sato F, Toi M
SALL4 - KHDRBS3 network enhances stemness by modulating CD44 splicing in basal-like breast cancer.
Cancer Med. 2018; 7(2):454-462 [PubMed] Free Access to Full Article Related Publications
Understanding the mechanism by which cancer cells enhance stemness facilitates cancer therapies. Here, we revealed that a stem cell transcription factor, SALL4, functions to enhance stemness in basal-like breast cancer cells. We used shRNA-mediated knockdown and gene overexpression systems to analyze gene functions. To evaluate stemness, we performed a sphere formation assay. In SALL4 knockdown cells, the sphere formation ability was reduced, indicating that SALL4 enhances stemness. CD44 is a membrane protein and is known as a stemness factor in cancer. CD44 splicing variants are involved in cancer stemness. We discovered that SALL4 modulates CD44 alternative splicing through the upregulation of KHDRBS3, a splicing factor for CD44. We cloned the KHDRBS3-regulated CD44 splicing isoform (CD44v), which lacks exons 8 and 9. CD44v overexpression prevented a reduction in the sphere formation ability by KHDRBS3 knockdown, indicating that CD44v is positively involved in cancer stemness. In addition, CD44v enhanced anoikis resistance under the control of the SALL4 - KHDRBS3 network. Basal-like breast cancer is an aggressive subtype among breast cancers, and there is no effective therapy so far. Our findings provide molecular targets for basal-like breast cancer therapy. In the future, this study may contribute to the establishment of drugs targeting cancer stemness.

Liu C, Wu H, Li Y, et al.
SALL4 suppresses PTEN expression to promote glioma cell proliferation via PI3K/AKT signaling pathway.
J Neurooncol. 2017; 135(2):263-272 [PubMed] Free Access to Full Article Related Publications
Spalt-like transcription factor 4 (SALL4), a oncogene, is known to participate in multiple carcinomas, and is up-regulated in glioma. However, its actual role and underlying mechanisms in the development of glioma remain unclear. The present study explored the molecular functions of SALL4 in promoting cell proliferation in glioma. The expression level of SALL4 in 69 human glioma samples and six non-tumor brain tissues was determined using real-time polymerase chain reaction (PCR). Then, we transfected U87 and U251 cell lines with siRNA, and assessed cellular proliferation and cell cycle to understand the function of SALL4, and the relationship between SALL4, PTEN and PI3K/AKT pathway. PCR confirmed that the expression of SALL4 was higher in the glioma samples than non-tumor brain tissues. Cellular growth and proliferation were dramatically reduced following inhibition of SALL4 expression. Western blot showed increase in PTEN expression when SALL4 was silenced, which in turn depressed the activation of PI3K/AKT pathway, suggesting that PTEN was a downstream target of SALL4 in glioma development. Therefore, SALL4 could act as a proto-oncogene by regulating the PTEN/PI3K/AKT signaling pathway, thereby facilitating proliferation of glioma cells.

Wu HK, Liu C, Fan XX, et al.
Spalt-like transcription factor 4 as a potential diagnostic and prognostic marker of colorectal cancer.
Cancer Biomark. 2017; 20(2):191-198 [PubMed] Related Publications
OBJECTIVE: The study aimed to investigate the role of spalt-like transcription factor 4 (SALL4) in the diagnosis and prognosis of colorectal cancer (CRC).
METHODS: Between May 2008 and January 2010, 135 patients with CRC were recruited and subsequently assigned into the case group of the study. Additionally, 140 healthy individuals under identical conditions were selected as the control group. Venous blood was collected from all subjects. High expression of SALL4 was detected by immunohistochemistry, and SALL4 serum levels were detected using ELISA. A 5-year follow-up was conducted. A Kaplan-Meier curve was applied for analysis of survival rates, and a log-rank was used for univariate analysis.
RESULTS: The case group exhibited largely positive expression levels of SALL4. Levels of SALL4 serum were much higher than those in the control group. The AUC value of CRC detected by serum SALL4 was 0.916 (95% CI was 0.881-0.951), which regarded 0.1255 μcg/l to be the point of critical value. This result was in direct relation to data from the receiver operating characteristic curve (ROC). The sensitivity and specificity of serum SALL4 levels in the diagnosis of CRC were 85.9% and 85.7%, respectively. The AUC value of CRC detected by tissue SALL4 was 0.727 (95% CI was 0.666-0.789), 0.5 was regarded as the critical value. The sensitivity and specificity of SALL4 expression in CRC tissues regarding the diagnosis of CRC was determined to be 58.6% and 86.9% respectively. The levels of SALL4 expression in serum and tissues highlighted a correlation to lymph node metastasis (LNM), differentiation degree, Dukes staging and tumor node metastasis staging. Lower serum SALL4 levels were associated with higher survival rates in CRC patients. In accordance with a COX regression, LNM, differentiation degree and SALL4 levels were determined as being prognostic factors in patients with CRC (both P< 0.05).
CONCLUSION: Our experimental data indicated that over expression of SALL4 was found in CRC and low expression of SALL4 was connected with high survival rate after surgery. Thus our study suggested that SALL4 could serve as a potential diagnostic and prognostic marker of CRC.

Zhao H, Wu L, Wu J, et al.
Aberrantly Expressed SALL4 Promotes Cell Proliferation via β-Catenin/c-Myc Pathway in Human Choriocarcinoma Cells.
Reprod Sci. 2018; 25(3):435-442 [PubMed] Related Publications
Sal-like protein 4 (SALL4) has been proved to play a pivotal role in the development and progression of various cancers. Previous studies showed that SALL4 was highly expressed in human choriocarcinoma tissues. However, the role of SALL4 in the biological behavior of human choriocarcinoma cells remains largely unknown. In this study, we first elucidated that SALL4 was highly expressed in human choriocarcinoma cell line JEG-3 and JAR. Sal-like protein 4 knockdown by small interfering RNA (siRNA) decreased c-Myc expression, whereas SALL4 overexpression by transfection of human pLenti-SALL4 construct promoted c-Myc expression. Further data showed that SALL4 overexpression improved cell proliferation of JEG-3 cells, which can be abrogated by c-Myc siRNA. Moreover, our data showed that SALL4 interact with β-catenin and SALL4 overexpression promoted the localization of β-catenin in the nucleus and β-catenin siRNA abrogated SALL4-induced c-Myc expression in JEG-3 cells. These data indicate that aberrantly expressed SALL4 in human choriocarcinoma cells may promote cell proliferation via β-catenin/c-Myc pathway, indicating that SALL4 may be potential treatment targets of human choriocarcinoma.

Agaimy A, Fuchs F, Moskalev EA, et al.
SMARCA4-deficient pulmonary adenocarcinoma: clinicopathological, immunohistochemical, and molecular characteristics of a novel aggressive neoplasm with a consistent TTF1
Virchows Arch. 2017; 471(5):599-609 [PubMed] Related Publications
Alterations in SMARCA4, a member of the chromatin remodeling Switch Sucrose Non-Fermentable (SWI/SNF) complex, characterize a subset of non-small cell lung cancer (NSCLC), but detailed morphological and immunophenotypic description of this tumor type is lacking. We describe 20 NSCLC cases found on routine screening not to express SMARCA4 by immunohistochemistry (IHC). These tumors were stained for CK7, TTF1, SMARCA2, SMARCA4, SMARCB1, and HepPar-1 and analyzed for molecular alterations, using a 160 cancer-related gene panel including the full coding sequence of SMARCA4. Patients were eight females and 12 males aged 41 to 76 (median, 60). Of 18 tumors with detailed data, 14 presented with synchronous distant metastases (M1). Histological examination showed predominantly solid adenocarcinoma (n = 15), frankly rhabdoid (n = 3) and mucinous (n = 2) patterns. Except for the rhabdoid cases, all tumors showed at least focal unequivocal glands and lacked squamous differentiation, justifying a diagnosis of adenocarcinoma. IHC showed a distinctive uniform immunophenotype (CK7

Yamazawa S, Ushiku T, Shinozaki-Ushiku A, et al.
Gastric Cancer With Primitive Enterocyte Phenotype: An Aggressive Subgroup of Intestinal-type Adenocarcinoma.
Am J Surg Pathol. 2017; 41(7):989-997 [PubMed] Related Publications
A primitive cell-like gene expression signature is associated with aggressive phenotypes of various cancers. We assessed the expression of phenotypic markers characterizing primitive cells and its correlation with clinicopathologic and molecular characteristics in gastric cancer. Immunohistochemical analysis of a panel of primitive phenotypic markers, including embryonic stem cell markers (OCT4, NANOG, SALL4, CLDN6, and LIN28) and known oncofetal proteins (AFP and GPC3), was performed using tissue microarray on 386 gastric cancers. On the basis of the expression profiles, the 386 tumors were clustered into 3 groups: group 1 (primitive phenotype, n=93): AFP, CLDN6, GPC3, or diffuse SALL4 positive; group 2 (SALL4-focal, n=56): only focal SALL4 positive; and group 3 (negative, n=237): all markers negative. Groups 1 and 2 predominantly consisted of intestinal-type adenocarcinoma, including 13 fetal gut-like adenocarcinomas exclusively in group 1. Group 1 was significantly associated with higher T-stage, presence of vascular invasion and nodal metastasis when compared with groups 2 and 3. Group 1 was associated with patients' poor prognosis and was an independent risk factor for disease-free survival. Group 1 showed frequent TP53 overexpression and little association with Epstein-Barr virus or mismatch repair deficiency. Further analysis of the Cancer Genome Atlas data set validated our observations and revealed that tumors with primitive phenotypes were mostly classified as "chromosomal instability" in the Cancer Genome Atlas' molecular classification. We identified gastric cancer with primitive enterocyte phenotypes as an aggressive subgroup of intestinal-type/chromosomal instability gastric cancer. Therapeutic strategies targeting primitive markers, such as GPC3, CLDN6, and SALL4, are highly promising.

Trippel M, Imboden S, Papadia A, et al.
Intestinal differentiated mucinous adenocarcinoma of the endometrium with sporadic MSI high status: a case report.
Diagn Pathol. 2017; 12(1):39 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Intestinal differentiation of primary mucinous adenocarcinoma of the uterine corpus is exceedingly rare in comparison to the approximately 25% rate in endocervical and ovarian mucinous carcinoma. Additionally, little is known about the related genetic and epigenetic alterations, even though large-scale molecular characterisation of the different types of endometrial cancer took place in the TCGA project along the entities defined by the recent WHO classification.
CASE PRESENTATION: We present a 62-year-old patient harbouring a primary mucinous carcinoma of the uterine corpus with a morphological resemblance to mucinous colorectal adenocarcinoma. The intestinal differentiation was substantiated by CDX2 and CK20 positivity in the absence of PAX8, p16, WT1, p53, ER, PgR, AFP, SALL4 and Glypican3. A high MSI status with MLH1 hypermethylation was revealed by molecular testing.
CONCLUSION: Intestinal differentiation of mucinous adenocarcinoma of the endometrium is a unique observation. Besides morphology, it obviously can share molecular features of sporadic MSI colorectal cancers. It can be speculated that either CDX2 positive morula formation or intestinal metaplasia of the endometrium as rare conditions might be the origin of carcinogenesis for this type II endometrial cancer. Both conditions were not detectable in this case. Of note, categorising endometrial cancers in genetic subgroups like MSI high cancers alone might lead to the integration of likewise morphologically different tumours like the case presented here with intestinal differentiation. Hence, careful genotype-phenotype correlations are warranted for studies of mucinous adenocarcinoma of the endometrium.

Nicolè L, Sanavia T, Veronese N, et al.
Oncofetal gene SALL4 and prognosis in cancer: A systematic review with meta-analysis.
Oncotarget. 2017; 8(14):22968-22979 [PubMed] Free Access to Full Article Related Publications
The Spalt-Like Transcription Factor 4 (SALL4) oncogene plays a central function in embryo-fetal development and is absent in differentiated tissues. Evidence suggests that it can be reactivated in several cancers worsening the prognosis. We aimed at investigating the risk associated with SALL4 reactivation for all-cause mortality and recurrence in cancer using the current literature. A PubMed and SCOPUS search until 1st September 2016 was performed, focusing on perspective studies reporting prognostic parameters in cancer data. In addition, 17 datasets of different cancer types from The Cancer Genome Atlas were considered. A total of 9,947 participants across 40 cohorts, followed-up for about 5 years on average, were analyzed comparing patients showing SALL4 presence (SALL4+, n = 1,811) or absence (SALL4-, n = 8,136). All data were summarised using risk ratios (RRs) for the number of deaths/recurrences and hazard ratios (HRs) for the time-dependent risk related to SALL4+, adjusted for potential confounders. SALL4+ significantly increased overall mortality (RR = 1.34, 95% confidence intervals (CI)=1.21-1.48, p<0.0001, I2=66%; HR=1.4; 95%CI: 1.19-1.65; p<0.0001; I2=63%) and recurrence of disease (RR = 1.25, 95% CI = 1.1-1.42, p=0.0006, I2=62%); HR=1.52; 95% CI: 1.22-1.89, p=0.0002; I2=69%) compared to SALL4-. Moreover, SALL4 remained significantly associated with poor prognosis even using HRs adjusted for potential confounders (overall mortality: HR=1.4; 95%CI: 1.19-1.65; p<0.0001; I2=63%; recurrence of disease: HR=1.52; 95% CI: 1.22-1.89, p=0.0002; I2=69%). These results suggest that SALL4 expression increases both mortality and recurrence of cancer, confirming this gene as an important prognostic marker and a potential target for personalized medicine.

Moeini A, Sia D, Zhang Z, et al.
Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity.
J Hepatol. 2017; 66(5):952-961 [PubMed] Related Publications
BACKGROUND & AIMS: Mixed hepatocellular cholangiocarcinoma (HCC-CCA) is a rare and poorly understood type of primary liver cancer. We aimed to perform a comprehensive molecular characterization of this malignancy.
METHODS: Gene expression profiling, DNA copy number detection, and exome sequencing using formalin-fixed samples from 18 patients with mixed HCC-CCA were performed, encompassing the whole histological spectrum of the disease. Comparative genomic analysis was carried out, using independent datasets of HCC (n=164) and intrahepatic cholangiocarcinoma (iCCA) (n=149).
RESULTS: Integrative genomic analysis of HCC-CCAs revealed that cholangiolocellular carcinoma (CLC) represents a distinct biliary-derived entity compared with the stem-cell and classical types. CLC tumors were neural cell adhesion molecule (NCAM) positive (6/6 vs. 1/12, p<0.001), chromosomally stable (mean chromosomal aberrations 5.7 vs. 14.1, p=0.008), showed significant upregulation of transforming growth factor (TGF)-β signaling and enrichment of inflammation-related and immune response signatures (p<0.001). Stem-cell tumors were characterized by spalt-like transcription factor 4 (SALL4) positivity (6/8 vs. 0/10, p<0.001), enrichment of progenitor-like signatures, activation of specific oncogenic pathways (i.e., MYC and insulin-like growth factor [IGF]), and signatures related to poor clinical outcome. In the classical type, there was a significant correlation in the copy number variation of the iCCA and HCC components, suggesting a clonal origin. Exome sequencing revealed an average of 63 non-synonymous mutations per tumor (2 mean driver mutations per tumor). Among those, TP53 was the most frequently mutated gene (6/21, 29%) in HCC-CCAs.
CONCLUSIONS: Mixed HCC-CCA represents a heterogeneous group of tumors, with the stem-cell type characterized by features of poor prognosis, and the classical type with common lineage for HCC and iCCA components. CLC stands alone as a distinct biliary-derived entity associated with chromosomal stability and active TGF-β signaling.
LAY SUMMARY: Molecular analysis of mixed hepatocellular cholangiocarcinoma (HCC-CCA) showed that cholangiolocellular carcinoma (CLC) is distinct and biliary in origin. It has none of the traits of hepatocellular carcinoma (HCC). However, within mixed HCC-CCA, stem-cell type tumors shared an aggressive nature and poor outcome, whereas the classic type showed a common cell lineage for both the HCC and the intrahepatic CCA component. The pathological classification of mixed HCC-CCA should be redefined because of the new molecular data provided.

Peng HX, Liu XD, Luo ZY, et al.
Upregulation of the proto-oncogene Bmi-1 predicts a poor prognosis in pediatric acute lymphoblastic leukemia.
BMC Cancer. 2017; 17(1):76 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Bmi-1, the B cell-specific moloney murine leukemia virus insertion site 1, is a member of the Polycomb-group (PcG) family and acts as an oncogene in various tumors; however, its expression related to the prognosis of pediatric patients with acute lymphoblastic leukemia (ALL) has not been well studied.
METHODS: The Bmi-1 expression levels in the bone marrow of 104 pediatric ALL patients and 18 normal control subjects were determined by using qRT-PCR. The association between the Bmi-1 expression and the clinicopathological characteristics of pediatric ALL patients was analyzed, and the correlation between Bmi-1 and the prognosis of pediatric ALL was calculated according to the Kaplan-Meier method. Furthermore, the association between Bmi-1 expression and its transcriptional regulator Sall4 was investigated.
RESULTS: Compared to normal control subjects, patients with primary pediatric ALL exhibited upregulated levels of Bmi-1. However, these levels were sharply decreased in patients who achieved complete remission. A significant positive association between elevated Bmi-1 levels and a poor response to prednisone as well as an increased clinical risk was observed. Patients who overexpressed Bmi-1 at the time of diagnosis had a lower relapse-free survival (RFS) rate (75.8%), whereas patients with lower Bmi-1 expression had an RFS of 94.1%. Furthermore, in ALL patients, the mRNA expression of Bmi-1 was positively correlated to the mRNA expression of Sall4a.
CONCLUSIONS: Taken together, these data suggest that Bmi-1 could serve as a novel prognostic biomarker in pediatric primary ALL and may be partially regulated by Sall4a. Our study also showed that Bmi-1 could serve as a new therapeutic target for the treatment of pediatric ALL.

Chorzalska A, Kim JF, Roder K, et al.
Long-Term Exposure to Imatinib Mesylate Downregulates Hippo Pathway and Activates YAP in a Model of Chronic Myelogenous Leukemia.
Stem Cells Dev. 2017; 26(9):656-677 [PubMed] Free Access to Full Article Related Publications
Despite the success of tyrosine kinase inhibitor (TKI) therapy in chronic myelogenous leukemia (CML), leukemic stem/progenitor cells remain detectable even in the state of deep molecular remission. Mechanisms that allow them to persist despite continued kinase inhibition remain unclear. We have previously shown that prolonged exposure to imatinib mesylate (IM) results in dysregulation of Akt/Erk 1/2 signaling, upregulation of miR-181a, enhanced adhesiveness, and resistance to high IM. To characterize the molecular basis and reversibility of those effects, we applied gene and protein expression analysis, quantitative phosphoproteomics, and direct miR-181a inhibition to our cellular model of CML cells subjected to prolonged exposure to IM. Those cells demonstrated upregulation of pluripotency markers (SOX2, SALL4) and adhesion receptors (CD44, VLA-4, CXCR4), as well as downregulation of Hippo signaling and upregulation of transcription coactivator YAP. Furthermore, inhibition of miR-181a using a microRNA sponge inhibitor resulted in decreased transcription of SOX2 and SALL4, decreased activation of YAP, and increased sensitivity to IM. Our findings indicate that long-term exposure to IM results in dysregulation of stem cell renewal-regulatory Hippo/YAP signaling, acquisition of expression of stem cell markers and that experimental interference with YAP activity may help to restore chemosensitivity to TKI.

Tian Q, Xiao Y, Wu Y, et al.
MicroRNA-33b suppresses the proliferation and metastasis of hepatocellular carcinoma cells through the inhibition of Sal-like protein 4 expression.
Int J Mol Med. 2016; 38(5):1587-1595 [PubMed] Related Publications
MicroRNAs (miRNAs or miRs) have been found to participate in the development and malignant progression of human cancers by negatively mediating the expression of their target genes. Recently, miR‑33b has been reported to be involved in multiple types of human cancer, including hepatocellular carcinoma (HCC). However, the underlying regulatory mechanisms of miR‑33b in HCC cell growth and metastasis remain largely unclear. In the present study, RT-qPCR revealed that miR‑33b was significantly downregulated in HCC tissues compared to their matched adjacent normal tissues. Moreover, the miR‑33b level was significantly lower in advanced-stage HCC (stages T3-T4) compared to early-stage HCC (stages T1-T2). Furthermore, it was also downregulated in the HCC cell lines, LH86, HepG2, LMH and PLHC-1, when compared with the THLE-3 normal human liver cells. We further demonstrated that the overexpression of miR‑33b led to a significant decrease in the proliferation, migration and invasion of HepG2 and LH86 cells. Luciferase reporter assay identified Sal-like protein 4 (SALL4) as a target gene of miR‑33b, and its protein expression was negatively regulated by miR‑33b in HepG2 and LH86 cells. Moreover, the restoration of SALL4 expression markedly reversed the inhibitory effect of miR‑33b overexpression on the proliferation, migration and invasion of HepG2 and LH86 cells, indicating that SALL4 is involved in miR‑33b-mediated malignant phenotypes of HCC cells. Furthermore, we found that SALL4 was significantly upregulated in HCC tissues compared to their matched adjacent normal tissues, and its increased expression was significantly associated with the advanced malignancy of HCC. Moreover, SALL4 was also upregulated in HCC cell lines compared to the THLE-3 normal human liver cells. Finally, we found that the SALL4 expression inversely correlated with the miR‑33b level in HCC tissues. On the whole, the findings of our study demonstrate that miR‑33b suppresses the proliferation and metastasis of HCC cells through the inhibition of SALL4 expression. Therefore, miR‑33b/SALL4 may become a potential therapeutic target for the treatment of HCC.

Zhang D, Jiang F, Wang X, Li G
Knockdown of SALL4 Inhibits Proliferation, Migration, and Invasion in Osteosarcoma Cells.
Oncol Res. 2017; 25(5):763-771 [PubMed] Related Publications
Sal-like protein 4 (SALL4) is a zinc finger transcription factor that has been reported to be aberrantly expressed in several human malignancies and identified as an oncogene. However, the potential role of SALL4 in osteosarcoma remains to be elucidated. In this study, we explored the biological functions of SALL4 in osteosarcoma. We found that SALL4 was overexpressed in osteosarcoma tissues and cell lines. Knockdown of SALL4 inhibited osteosarcoma cell proliferation, migration, and invasion in vitro. In addition, SALL4 knockdown suppressed osteosarcoma growth and metastasis in vivo. We also showed that SALL4 knockdown decreased the protein expression of Wnt3a and β-catenin in osteosarcoma cells. Taken together, our study showed that SALL4 plays an important role in regulating the proliferation, migration, and invasion of osteosarcoma cells. Thus, SALL4 may represent a potential therapeutic target in the treatment of osteosarcoma.

Liu W, Xiao P, Wu H, et al.
MicroRNA-98 Plays a Suppressive Role in Non-Small Cell Lung Cancer Through Inhibition of SALL4 Protein Expression.
Oncol Res. 2017; 25(6):975-988 [PubMed] Related Publications
MicroRNAs (miRs) have been demonstrated to be significantly associated with the development and progression of non-small cell lung cancer (NSCLC). However, the underlying mechanism of miR-98 in mediating the malignant phenotypes of NSCLC cells remains obscure. In this study, we found that miR-98 was significantly downregulated in NSCLC tissues compared to nontumor lung tissues. Downregulation of miR-98 was significantly associated with poor differentiation and advanced clinical stage. Restoration of miR-98 expression significantly decreased the proliferation, migration, and invasion of NSCLC A549 and H1229 cells. SALL4 was identified as a target gene of miR-98, and the protein expression of SALL4 was negatively regulated by miR-98 in NSCLC A549 and H1229 cells. Overexpression of SALL4 promoted A549 and H1229 cell proliferation, migration, and invasion and reversed the suppressive effects of miR-98 on the malignant phenotypes of A549 and H1229 cells. Moreover, SALL4 was found to be significantly upregulated in NSCLC tissues compared to the nontumor lung tissues. We then observed an inverse correlation between the miR-98 and SALL4 levels in NSCLC tissues. In vivo study revealed that miR-98 overexpression suppressed NSCLC growth. In summary, we demonstrate that miR-98 acts as a tumor suppressor in NSCLC cells by inhibiting the protein expression of its target gene SALL4. Therefore, our study highlights the importance of the miR-98/SALL4 axis in NSCLC.

Zhou Y, Peng Y, Liu M, Jiang Y
MicroRNA-181b Inhibits Cellular Proliferation and Invasion of Glioma Cells via Targeting Sal-Like Protein 4.
Oncol Res. 2017; 25(6):947-957 [PubMed] Related Publications
MicroRNAs (miRs), a class of noncoding RNAs that are 18-25 nucleotides in length, are able to suppress gene expression by targeting complementary regions of mRNAs and inhibiting protein translation. Recently, miR-181b was found to play a suppressive role in glioma, but the regulatory mechanism of miR-181b in the malignant phenotypes of glioma cells remains largely unclear. In this study, we found that miR-181b was significantly downregulated in glioma tissues when compared with normal brain tissues, and decreased miR-181b levels were significantly associated with high-grade pathology and a poor prognosis for patients with glioma. Moreover, miR-181b was downregulated in glioma cell lines (U87, SHG44, U373, and U251) compared to normal astrocytes. Overexpression of miR-181b significantly decreased the proliferation, migration, and invasion of glioma U251 cells. Sal-like protein 4 (SALL4) was identified as a novel target gene of miR-181b in U251 cells. The expression of SALL4 was significantly upregulated in glioma tissues and cell lines, and an inverse correlation was observed between the miR-181b and SALL4 expression levels in glioma. Further investigation showed that the protein expression of SALL4 was negatively regulated by miR-181b in U251 cells. Knockdown of SALL4 significantly inhibited the proliferation, migration, and invasion of U251 cells, while overexpression of SALL4 effectively reversed the suppressive effects of miR-181b on these malignant phenotypes of U251 cells. In conclusion, our study demonstrates that miR-181b has a suppressive effect on the malignant phenotypes of glioma cells, at least partly, by directly targeting SALL4. Therefore, the miR-181b/SALL4 axis may become a potential therapeutic target for glioma.

Fan H, Cui Z, Zhang H, et al.
DNA demethylation induces SALL4 gene re-expression in subgroups of hepatocellular carcinoma associated with Hepatitis B or C virus infection.
Oncogene. 2017; 36(17):2435-2445 [PubMed] Free Access to Full Article Related Publications
Sal-like protein 4 (SALL4), an embryonic stem cell transcriptional regulator, is re-expressed by an unknown mechanism in poor prognosis hepatocellular carcinoma (HCC), often associated with chronic hepatitis B virus (HBV) infection. Herein, we investigated the mechanism of SALL4 re-expression in HBV-related HCCs. We performed bisulfite sequencing PCR of genomic DNA isolated from HBV-related HCCs and HBV replicating cells, and examined DNA methylation of a CpG island located downstream from SALL4 transcriptional start site (TSS). HBV-related HCCs expressing increased SALL4 exhibited demethylation of specific CpG sites downstream of SALL4 TSS. Similarly, SALL4 re-expression and demethylation of these CpGs was observed in HBV replicating cells. SALL4 is also re-expressed in poor prognosis HCCs of other etiologies. Indeed, increased SALL4 expression in hepatitis C virus-related HCCs correlated with demethylation of these CpG sites. To understand how CpG demethylation downstream of SALL4 TSS regulates SALL4 transcription, we quantified by chromatin immunoprecipitation (ChIP) assays RNA polymerase II occupancy of SALL4 gene, as a function of HBV replication. In absence of HBV replication, RNA polymerase II associated with SALL4 exon1. By contrast, in HBV replicating cells RNA polymerase II occupancy of all SALL4 exons increased, suggesting CpG demethylation downstream from SALL4 TSS influences SALL4 transcriptional elongation. Intriguingly, demethylated CpGs downstream from SALL4 TSS are within binding sites of octamer-binding transcription factor 4 (OCT4) and signal transducer and activator of transcription3 (STAT3). ChIP assays confirmed occupancy of these sites by OCT4 and STAT3 in HBV replicating cells, and sequential ChIP assays demonstrated co-occupancy with chromatin remodeling BRG1/Brahma-associated factors. BRG1 knockdown reduced SALL4 expression, whereas BRG1 overexpression increased SALL4 transcription in HBV replicating cells. We conclude demethylation of CpGs located within OCT4 and STAT3 cis-acting elements, downstream of SALL4 TSS, enables OCT4 and STAT3 binding, recruitment of BRG1, and enhanced RNA polymerase II elongation and SALL4 transcription.

Dirican E, Akkiprik M
Functional and clinical significance of SALL4 in breast cancer.
Tumour Biol. 2016; 37(9):11701-11709 [PubMed] Related Publications
The gene encoding Sal-like 4 (Drosophila) (SALL4) is a zinc-finger transcriptional factor and a vertebrate orthologous of the Drosophila gene spalt (sal), which is upregulated in some cancers. SALL4 is expressed in the early developmental stages of Drosophila. Moreover, murine SALL4 plays a vital role in protecting the properties of embryonic stem (ES) cells and guiding the outcome of the primal inner cell mass by interacting with OCT4 and NANOG. SALL4 in ES cells and tumor cells is known as a regulator for controlling cell growth, proliferation, and apoptosis. However, the downstream goals of SALL4 remain largely uncharted. SALL4 expression has been detected in various cancers, including a subset (30 %) of solid tumors, such as breast cancer (BCa), ovarian cancer, gastric cancer, Wilms tumor, and germ cell tumors. A study has reported that SALL4 expression is commonly upregulated in human breast tumors (~86 %) and that overregulation of this gene is often linked to tumor progression. In this review, we provide an overview concerning the role of SALL4 in BCa development and progression. Furthermore, this review may identify some drugs/inhibitors for the development of BCa-specific therapies by targeting SALL4. In the future, SALL4 may be a new biomarker as a diagnostic/therapeutic target of BCa, which would be a new direction in targeted BCa therapy. To our knowledge, this is the first review of the role of SALL4 in BCa development and progression.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SALL4, Cancer Genetics Web: http://www.cancer-genetics.org/SALL4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 29 August, 2019     Cancer Genetics Web, Established 1999