SULF2

Gene Summary

Gene:SULF2; sulfatase 2
Aliases: HSULF-2
Location:20q13.12
Summary:Heparan sulfate proteoglycans (HSPGs) act as coreceptors for numerous heparin-binding growth factors and cytokines and are involved in cell signaling. Heparan sulfate 6-O-endosulfatases, such as SULF2, selectively remove 6-O-sulfate groups from heparan sulfate. This activity modulates the effects of heparan sulfate by altering binding sites for signaling molecules (Dai et al., 2005 [PubMed 16192265]).[supplied by OMIM, Mar 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:extracellular sulfatase Sulf-2
HPRD
Source:NCBIAccessed: 20 August, 2015

Ontology:

What does this gene/protein do?
Show (24)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 20 August 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 20 August, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SULF2 (cancer-related)

Leszczynska KB, Foskolou IP, Abraham AG, et al.
Hypoxia-induced p53 modulates both apoptosis and radiosensitivity via AKT.
J Clin Invest. 2015; 125(6):2385-98 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Restoration of hypoxia-induced apoptosis in tumors harboring p53 mutations has been proposed as a potential therapeutic strategy; however, the transcriptional targets that mediate hypoxia-induced p53-dependent apoptosis remain elusive. Here, we demonstrated that hypoxia-induced p53-dependent apoptosis is reliant on the DNA-binding and transactivation domains of p53 but not on the acetylation sites K120 and K164, which, in contrast, are essential for DNA damage-induced, p53-dependent apoptosis. Evaluation of hypoxia-induced transcripts in multiple cell lines identified a group of genes that are hypoxia-inducible proapoptotic targets of p53, including inositol polyphosphate-5-phosphatase (INPP5D), pleckstrin domain-containing A3 (PHLDA3), sulfatase 2 (SULF2), B cell translocation gene 2 (BTG2), cytoplasmic FMR1-interacting protein 2 (CYFIP2), and KN motif and ankyrin repeat domains 3 (KANK3). These targets were also regulated by p53 in human cancers, including breast, brain, colorectal, kidney, bladder, and melanoma cancers. Downregulation of these hypoxia-inducible targets associated with poor prognosis, suggesting that hypoxia-induced apoptosis contributes to p53-mediated tumor suppression and treatment response. Induction of p53 targets, PHLDA3, and a specific INPP5D transcript mediated apoptosis in response to hypoxia through AKT inhibition. Moreover, pharmacological inhibition of AKT led to apoptosis in the hypoxic regions of p53-deficient tumors and consequently increased radiosensitivity. Together, these results identify mediators of hypoxia-induced p53-dependent apoptosis and suggest AKT inhibition may improve radiotherapy response in p53-deficient tumors.

Wade A, Engler JR, Tran VM, Phillips JJ
Measuring sulfatase expression and invasion in glioblastoma.
Methods Mol Biol. 2015; 1229:507-16 [PubMed] Related Publications
Extracellular sulfatases (SULF1 and SULF2) selectively remove 6-O-sulfate groups from heparan sulfate proteoglycans (HSPGs) and by this process control important interactions of HSPGs with extracellular factors including morphogens, growth factors, and extracellular matrix components. The expression of SULF1 and SULF2 is dynamically regulated during development and is altered in pathological states such as glioblastoma (GBM), a highly malignant and highly invasive brain cancer. SULF2 protein is increased in an important subset of human GBM and it helps regulate receptor tyrosine kinase signaling and tumor growth in a murine model of the disease. By altering ligand binding to HSPGs, SULF2 has the potential to modify the extracellular availability of factors important in a number of cell processes including proliferation, chemotaxis, and migration. Diffuse invasion of malignant tumor cells into surrounding healthy brain is a characteristic feature of GBM that makes therapy challenging. Here, we describe methods to assess SULF2 expression in human tumor tissue and cell lines and how to relate this to tumor cell invasion.

Solari V, Borriello L, Turcatel G, et al.
MYCN-dependent expression of sulfatase-2 regulates neuroblastoma cell survival.
Cancer Res. 2014; 74(21):5999-6009 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Heparan sulfate proteoglycans (HSPG) play a critical role in the interaction of tumor cells and their microenvironment. HSPG activity is dictated by sulfation patterns controlled by sulfotransferases, which add sulfate groups, and sulfatases (Sulf), which remove 6-O-sulfates. Here, we report altered expression of these enzymes in human neuroblastoma cells with higher levels of Sulf-2 expression, a specific feature of MYCN-amplified cells (MYCN-A cells) that represent a particularly aggressive subclass. Sulf-2 overexpression in neuroblastoma cells lacking MYCN amplification (MYCN-NA cells) increased their in vitro survival. Mechanistic investigations revealed evidence of a link between Sulf-2 expression and MYCN pathogenicity in vitro and in vivo. Analysis of Sulf-2 protein expression in 65 human neuroblastoma tumors demonstrated a higher level of Sulf-2 expression in MYCN-A tumors than in MYCN-NA tumors. In two different patient cohorts, we confirmed the association in expression patterns of Sulf-2 and MYCN and determined that Sulf-2 overexpression predicted poor outcomes in a nonindependent manner with MYCN. Our findings define Sulf-2 as a novel positive regulator of neuroblastoma pathogenicity that contributes to MYCN oncogenicity. Cancer Res; 74(21); 5999-6009. ©2014 AACR.

Gill RM, Michael A, Westley L, et al.
SULF1/SULF2 splice variants differentially regulate pancreatic tumour growth progression.
Exp Cell Res. 2014; 324(2):157-71 [PubMed] Related Publications
This study highlights the highly dynamic nature of SULF1/SULF2 splice variants in different human pancreatic cancers that regulate the activities of multiple cell signalling pathways in development and disease. Most pancreatic tumours expressed variable levels of both SULF1 and SULF2 variants including some expression during inflammation and pancreatitis. Many ductal and centro-acinar cell-derived pancreatic tumours are known to evolve into lethal pancreatic ductal adenocarcinomas but the present study also detected different stages of such tumour progression in the same tissue biopsies of not only acinar cell origin but also islet cell-derived cancers. The examination of caerulein-induced pancreatic injury and tumorigenesis in a Kras-driven mouse model confirmed the activation and gradual increase of SULF1/SULF2 variants during pancreatitis and tumorigenesis but with reduced levels in Stat3 conditional knockout mice with reduced inflammation. The significance of differential spatial and temporal patterns of specific SULF1/SULF2 splice variant expression during cancer growth became further apparent from their differential stimulatory or inhibitory effects on growth factor activities, tumour growth and angiogenesis not only during in vitro but also in vivo growth thus providing possible novel therapeutic targets.

Bruse S, Petersen H, Weissfeld J, et al.
Increased methylation of lung cancer-associated genes in sputum DNA of former smokers with chronic mucous hypersecretion.
Respir Res. 2014; 15:2 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Chronic mucous hypersecretion (CMH) contributes to COPD exacerbations and increased risk for lung cancer. Because methylation of gene promoters in sputum has been shown to be associated with lung cancer risk, we tested whether such methylation was more common in persons with CMH.
METHODS: Eleven genes commonly silenced by promoter methylation in lung cancer and associated with cancer risk were selected. Methylation specific PCR (MSP) was used to profile the sputum of 900 individuals in the Lovelace Smokers Cohort (LSC). Replication was performed in 490 individuals from the Pittsburgh Lung Screening Study (PLuSS).
RESULTS: CMH was significantly associated with an overall increased number of methylated genes, with SULF2 methylation demonstrating the most consistent association. The association between SULF2 methylation and CMH was significantly increased in males but not in females both in the LSC and PLuSS (OR = 2.72, 95% CI = 1.51-4.91, p = 0.001 and OR = 2.97, 95% CI = 1.48-5.95, p = 0.002, respectively). Further, the association between methylation and CMH was more pronounced among 139 male former smokers with persistent CMH compared to current smokers (SULF2; OR = 3.65, 95% CI = 1.59-8.37, p = 0.002).
CONCLUSIONS: These findings demonstrate that especially male former smokers with persistent CMH have markedly increased promoter methylation of lung cancer risk genes and potentially could be at increased risk for lung cancer.

Wang L, Xie L, Wang J, et al.
Correlation between the methylation of SULF2 and WRN promoter and the irinotecan chemosensitivity in gastric cancer.
BMC Gastroenterol. 2013; 13:173 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: At present, no study has compared the correlation between SULF2, WRN promoter methylation and clinicopathological parameters of patients with gastric cancer and the sensitivity to irinotecan (CPT-11).
METHODS: We collected 102 fresh tumor tissues from pathologically diagnosed gastric carcinoma patients. Methylation specific PCR was used to detect the promoter methylation of SULF2 and WRN. The chemosensitivity of irinotecan to gastric tumor was tested by MTT. Then we compared the chemosensitivity difference of the methylated group with unmethylated group.
RESULTS: The rates of SULF2, WRN methylation were 28.3% (29/102) and 23.6% (24/102), separately. Patients with SULF2 methylation were more sensitive to CPT-11 than those without SULF2 methylation (P < 0.01). Patients with both SULF2 and WRN methylation were also more sensitive to CPT-11 than others (P < 0.05).
CONCLUSION: SULF2 and WRN promoter methylation detection indicates potential predictive biomarkers to identify and target the most sensitive gastric cancer subpopulation for personalized CPT-11 therapy.

Shen J, Wei J, Wang H, et al.
SULF2 methylation is associated with in vitro cisplatin sensitivity and clinical efficacy for gastric cancer patients treated with a modified FOLFOX regimen.
PLoS One. 2013; 8(10):e75564 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
OBJECTIVE: Biomarkers capable of discriminating the patients who are likely to respond to certain chemotherapeutic agents could improve the clinical efficiency. The sulfatases(SULFs) play a critical role in the pathogenesis of a variety of human cancers. Here, we focused our investigation on the prognostic and predictive impact of SULF2 methylation in gastric cancer.
METHODS: Promoter CpG island methylation of SULF2 was analyzed in 100 gastric cancer samples. The in vitro sensitivity to cisplatin, docetaxel, gemcitabine, irinotecan and pemetrexed were determined by histoculture drug response assay(HDRA). Additionally, 56 gastric cancer patients treated with a modified FOLFOX regimen(biweekly oxaliplatin plus 5-FU and folinic acid) were retrospectively analyzed to further evaluate the prognostic and predictive impact of SULF2 methylation in gastric cancer.
RESULTS: Methylated SULF2(SULF2M) was detected in 28 patients, while the remaining 72 patients showed unmethylated SULF2(SULF2U, methylation rate: 28%). Samples with SULF2U were more sensitive to cisplatin than those with SULF2M(inhibition rate: 48.80% vs. 38.15%, P = 0.02), while samples with SULF2M were more sensitive to irinotecan than SULF2U(inhibition rate: 53.61% vs. 40.92%, P = 0.01). There were no association between SULF2 methylation and in vitro sensitivity to docetaxel, gemcitabine and pemetrexed. SULF2 methylation was found to have a significant association with cisplatin efficacy(SULF2M: 57.14%, SULF2U: 80.56%, P = 0.02) and irinotecan efficacy(SULF2M: 89.29%, SULF2U: 62.50%, P = 0.01). Among the 56 patients receiving the modified FOLFOX regimen, a significant association was observed between survival and SULF2 methylation status(SULF2M: 309 days, 95% CI = 236 to 382 days; SULF2U: 481 days, 95% CI = 418 to 490 days; P = 0.02). Multivariate analysis revealed that SULF2 methylation was an independent prognostic factor of overall survival in gastric cancer patients treated with platinum-based chemotherapy.
CONCLUSION: SULF2 methylation is negatively associated with cisplatin sensitivity in vitro. SULF2 methylation may be a novel prognostic biomarker for gastric cancer patients treated with platinum-based chemotherapy.

Shen J, Wei J, Wang H, et al.
A three-gene signature as potential predictive biomarker for irinotecan sensitivity in gastric cancer.
J Transl Med. 2013; 11:73 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
OBJECTIVE: Personalized chemotherapy based on molecular biomarkers can maximize anticancer efficiency. We aim to investigate predictive biomarkers capable of predicting response to irinotecan-based treatment in gastric cancer.
METHODS: We examined gene expression of APTX, BRCA1, ERCC1, ISG15, Topo1 and methylation of SULF2 in formalin-fixed paraffin-embedded gastric cancer tissues from 175 patients and evaluated the association between gene expression levels or methylation status and in vitro sensitivity to irinotecan. We used multiple linear regression analysis to develop a gene-expression model to predict irinotecan sensitivity in gastric cancer and validated this model in vitro and vivo.
RESULTS: Gene expression levels of APTX, BRCA1 and ERCC1 were significantly lower in irinotecan-sensitive gastric cancer samples than those irinotecan-resistant samples (P<0.001 for all genes), while ISG15 (P=0.047) and Topo1 (P=0.002) were significantly higher. Based on those genes, a three-gene signature were established, which was calculated as follows: Index =0.488 - 0.020× expression level of APTX + 0.015× expression level of Topo1 - 0.011 × expression level of BRCA1. The three-gene signature was significantly associated with irinotecan sensitivity (rho=0.71, P<0.001). The sensitivity and specificity for the prediction of irinotecan sensitivity based on the three-gene signature reached 73% and 86%, respectively. In another independent testing set, the irinotecan inhibition rates in gastric samples with sensitive-signature were much higher than those with resistant-signature (65% vs. 22%, P<0.001). Irinotecan therapy with 20 mg/kg per week to immunodeficient mice carrying xenografts with sensitive-signature dramatically arrested the growth of tumors (P<0.001), but had no effect on mice carrying xenografts with resistant-signature.
CONCLUSIONS: The three-gene signature established herein is a potential predictive biomarker for irinotecan sensitivity in gastric cancer.

Wade A, Robinson AE, Engler JR, et al.
Proteoglycans and their roles in brain cancer.
FEBS J. 2013; 280(10):2399-417 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Glioblastoma, a malignant brain cancer, is characterized by abnormal activation of receptor tyrosine kinase signalling pathways and a poor prognosis. Extracellular proteoglycans, including heparan sulfate and chondroitin sulfate, play critical roles in the regulation of cell signalling and migration via interactions with extracellular ligands, growth factor receptors and extracellular matrix components, as well as intracellular enzymes and structural proteins. In cancer, proteoglycans help drive multiple oncogenic pathways in tumour cells and promote critical tumour-microenvironment interactions. In the present review, we summarize the evidence for proteoglycan function in gliomagenesis and examine the expression of proteoglycans and their modifying enzymes in human glioblastoma using data obtained from The Cancer Genome Atlas (http://cancergenome.nih.gov/). Furthermore, we demonstrate an association between specific proteoglycan alterations and changes in receptor tyrosine kinases. Based on these data, we propose a model in which proteoglycans and their modifying enzymes promote receptor tyrosine kinase signalling and progression in glioblastoma, and we suggest that cancer-associated proteoglycans are promising biomarkers for disease and therapeutic targets.

Zheng X, Gai X, Han S, et al.
The human sulfatase 2 inhibitor 2,4-disulfonylphenyl-tert-butylnitrone (OKN-007) has an antitumor effect in hepatocellular carcinoma mediated via suppression of TGFB1/SMAD2 and Hedgehog/GLI1 signaling.
Genes Chromosomes Cancer. 2013; 52(3):225-36 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Human sulfatase 2 (SULF2) functions as an oncoprotein in hepatocellular carcinoma (HCC) development by promoting tumor growth and metastasis via enhancement of fibroblast growth factor-2/extracellular signal-regulated kinase and WNT/β-catenin signaling. Recent results implicate that SULF2 activates the transforming growth factor beta (TGFB) and Hedgehog/GLI1 pathways in HCC. OKN-007 is a novel phenyl-sulfonyl compound that inhibits the enzymatic activity of SULF2. To investigate the antitumor effect of OKN-007 in HCC, we treated Huh7 cells, which express high levels of SULF2, with OKN-007 and found that it significantly promoted tumor cell apoptosis and inhibited cell proliferation, viability, and migration. To understand the action of OKN-007 on SULF2, we used Huh7 cells which normally express SULF2 and Hep3B cells that do not normally express SULF2. Utilizing Huh7 cells transfected with short hairpin RNA targeting SULF2 and transfection of Hep3B cells with a SULF2 plasmid to enhance SULF2 expression, we showed that the antitumor activity of OKN-007 was more pronounced in cells expressing SULF2. Furthermore, in vivo experiments verified that OKN-007 repressed tumor growth significantly. These results identify SULF2 as an important target of the antitumor effect of OKN-007. To determine the molecular mechanism of the antitumor effect of OKN-007, both TGFB1/SMAD and Hedgehog/GLI1 signaling pathway activity were measured by Western blot and SMAD- or GLI-reporter luciferase assays. We found that both signaling pathways were inhibited by OKN-007. Together, these results show that OKN-007 can suppress TGFB1/SMAD and Hedgehog/GLI1 signaling via its inhibition of SULF2 enzymatic activity. We conclude that OKN-007 or more potent derivatives may be promising agents for the treatment of HCC.

Gill RB, Day A, Barstow A, et al.
Mammalian Sulf1 RNA alternative splicing and its significance to tumour growth regulation.
Tumour Biol. 2012; 33(5):1669-80 [PubMed] Related Publications
SULF1/SULF2 enzymes regulate the activities of several growth factors by selective hydrolysis of 6-O-sulphates of heparan sulphate proteoglycan co-receptors, the sulfation of which is essential for signal transduction of some ligand/receptor interactions but not others. This study demonstrates the existence of SULF1 variants with a wide spectrum of splicing patterns in mammalian tumours. The levels and relative proportions of SULF1/SULF2 splice variants markedly vary in different tumours with a potential to regulate cell growth differentially. Although mammalian Sulf1 compared with Sulf2 gene generates a much larger number of splice variants, both enzymes follow generally similar distribution and signalling association trends in hepatocellular carcinomas.

Hur K, Han TS, Jung EJ, et al.
Up-regulated expression of sulfatases (SULF1 and SULF2) as prognostic and metastasis predictive markers in human gastric cancer.
J Pathol. 2012; 228(1):88-98 [PubMed] Related Publications
Gastric cancer (GC) is the fourth most common cancer worldwide. In spite of the mortality incidence associated with GC, no reliable prognostic biomarkers are currently available for this malignancy. The sulfatases (or SULFs), SULF1 and SULF2, play a critical role in the pathogenesis of a variety of human cancers. We sought to evaluate the potential of SULFs as biomarkers for GC. Thirty pairs of GC and corresponding normal tissues were analysed for the expression and methylation status of SULFs. Furthermore, the functional role of SULF overexpression was investigated in GC cell lines and tumour xenograft animal models. Lastly, we validated the expression of SULF1 protein in a large cohort of 450 GC patients. GC tissues showed conspicuously higher expression of SULF1 (p = 0.0002) and SULF2 (p = 0.001) compared to normal mucosa, which was correlated with its promoter hypomethylation. Furthermore, high expression of SULFs caused marked acceleration in the growth of xenograft tumours in nude mice. The expression of SULF1 protein significantly correlated with higher recurrence rates (p = 0.0002) and worse overall survival (p < 0.0001) in GC patients. Multivariate analysis revealed that SULF1 is an independent prognostic (p = 0.0123) and lymph node metastasis predictive factor (p = 0.0003) in patients with GC. We provide novel evidence that hypomethylation of promoter CpG islands within SULF genes imparts them with oncogenic potential in GC. Moreover, our data suggest that SULF1 may serve as a promising biomarker for patients with GC.

Leng S, Do K, Yingling CM, et al.
Defining a gene promoter methylation signature in sputum for lung cancer risk assessment.
Clin Cancer Res. 2012; 18(12):3387-95 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
PURPOSE: To evaluate the methylation state of 31 genes in sputum as biomarkers in an expanded nested, case-control study from the Colorado cohort, and to assess the replication of results from the most promising genes in an independent case-control study of asymptomatic patients with stage I lung cancer from New Mexico.
EXPERIMENTAL DESIGN: Cases and controls from Colorado and New Mexico were interrogated for methylation of up to 31 genes using nested, methylation-specific PCR. Individual genes and methylation indices were used to assess the association between methylation and lung cancer with logistic regression modeling.
RESULTS: Seventeen genes with ORs of 1.4 to 3.6 were identified and selected for replication in the New Mexico study. Overall, the direction of effects seen in New Mexico was similar to Colorado with the largest increase in case discrimination (ORs, 3.2-4.2) seen for the PAX5α, GATA5, and SULF2 genes. Receiver operating characteristic (ROC) curves generated from seven-gene panels from Colorado and New Mexico studies showed prediction accuracy of 71% and 77%, respectively. A 22-fold increase in lung cancer risk was seen for a subset of New Mexico cases with five or more genes methylated. Sequence variants associated with lung cancer did not improve the accuracy of this gene methylation panel.
CONCLUSIONS: These studies have identified and replicated a panel of methylated genes whose integration with other promising biomarkers could initially identify the highest risk smokers for computed tomographic screening for early detection of lung cancer.

Khurana A, McKean H, Kim H, et al.
Silencing of HSulf-2 expression in MCF10DCIS.com cells attenuate ductal carcinoma in situ progression to invasive ductal carcinoma in vivo.
Breast Cancer Res. 2012; 14(2):R43 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
INTRODUCTION: Ductal carcinoma in situ (DCIS) of the breast is a heterogeneous group of proliferative cellular lesions that have the potential to become invasive. Very little is known about the molecular alterations involved in the progression from DCIS to invasive ductal carcinoma (IDC). Heparan endosulfatase (HSulf-2) edits sulfate moieties on heparan sulfate proteoglycans (HSPGs) and has been implicated in modulating heparin binding growth factor signaling, angiogenesis and tumorigenesis. However, the role of HSulf-2 in breast cancer progression is poorly understood. MCF10DCIS.com cells (referred as MCF10DCIS) express HSulf-2 and form comedo type DCIS and progress to IDC when transplanted in immune-deficient mice and, therefore, is an ideal model to study breast cancer progression. We evaluated the role of HSulf-2 in progression from DCIS to IDC using mouse fat pad mammary xenografts.
METHODS: Non-target control (NTC) and HSulf-2 knockdown in MCF10DCIS breast cancer cells were achieved by NTC shRNA and two different lentiviral shRNA against HSulf-2 respectively. Xenografts were established by injecting NTC and HSulf-2 deficient MCF10DCIS cells in mouse mammary fat pads. Xenografts were subjected to H&E staining for morphological analysis, TUNEL and Propidium iodide staining (to determine the extent of apoptosis), Western blot analysis and zymography.
RESULTS: Using a mouse mammary fat pad derived xenograft model, we observed that compared to control treated xenografts, down-regulation of HSulf-2 was associated with significant delays in growth at Week 7 (P-value < 0.05). Histological examination of the tumors demonstrated substantial differences in comedo necrosis, with marked luminal apoptosis and up-regulation of apoptotic markers Bim, cleaved PARP and cleaved caspase 3 in HSulf-2 depleted xenografts. Furthermore, HSulf-2 depleted xenografts retained the basement membrane integrity with decreased activity and expression of matrix metalloproteinase 9 (MMP-9), an enzyme critical for degradation of extracellular matrix compared to nontargeted control.
CONCLUSION: Our data suggest that HSulf-2 expression may be critical for human breast cancer progression. Down-regulation of HSulf-2 leads to retention of comedo type DCIS and delays the progression of DCIS to IDC. Further studies are necessary to determine if therapeutic targeting of HSulf-2 expression might delay the progression of DCIS to IDC.

Phillips JJ, Huillard E, Robinson AE, et al.
Heparan sulfate sulfatase SULF2 regulates PDGFRα signaling and growth in human and mouse malignant glioma.
J Clin Invest. 2012; 122(3):911-22 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Glioblastoma (GBM), a uniformly lethal brain cancer, is characterized by diffuse invasion and abnormal activation of multiple receptor tyrosine kinase (RTK) signaling pathways, presenting a major challenge to effective therapy. The activation of many RTK pathways is regulated by extracellular heparan sulfate proteoglycans (HSPG), suggesting these molecules may be effective targets in the tumor microenvironment. In this study, we demonstrated that the extracellular sulfatase, SULF2, an enzyme that regulates multiple HSPG-dependent RTK signaling pathways, was expressed in primary human GBM tumors and cell lines. Knockdown of SULF2 in human GBM cell lines and generation of gliomas from Sulf2(-/-) tumorigenic neurospheres resulted in decreased growth in vivo in mice. We found a striking SULF2 dependence in activity of PDGFRα, a major signaling pathway in GBM. Ablation of SULF2 resulted in decreased PDGFRα phosphorylation and decreased downstream MAPK signaling activity. Interestingly, in a survey of SULF2 levels in different subtypes of GBM, the proneural subtype, characterized by aberrations in PDGFRα, demonstrated the strongest SULF2 expression. Therefore, in addition to its potential as an upstream target for therapy of GBM, SULF2 may help identify a subset of GBMs that are more dependent on exogenous growth factor-mediated signaling. Our results suggest the bioavailability of growth factors from the microenvironment is a significant contributor to tumor growth in a major subset of human GBM.

Tessema M, Yingling CM, Thomas CL, et al.
SULF2 methylation is prognostic for lung cancer survival and increases sensitivity to topoisomerase-I inhibitors via induction of ISG15.
Oncogene. 2012; 31(37):4107-16 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
The heparan sulfate 6-O-endosulfatase (SULF2) promotes growth and metastasis of solid tumors. We recently identified that cytosine methylation of the SULF2 promoter is associated with better survival of resected lung adenocarcinoma patients, and now also demonstrates a marginal improvement in survival of advanced non-small cell lung cancer (NSCLC) patients receiving standard chemotherapy (hazard ratio=0.63, P=0.07). Subsequent studies focused on investigating the effect of methylation on SULF2 expression and its genome-wide impact. The genes and pathways modulated by epigenetic inactivation of SULF2 and the effects on sensitivity to chemotherapy were characterized in vitro and in vivo. Silencing SULF2 through small interfering RNA or methylation primarily increased expression of interferon-inducible genes including ISG15, a marker for increased sensitivity to topoisomerase-1 inhibitors such as camptothecin (CPT). NSCLC cell lines with methylated SULF2 (SULF2M) express 60-fold higher ISG15 compared with SULF2 unmethylated (SULF2U) NSCLC cell lines and normal human bronchial epithelial cells. In vitro, SULF2M and high ISG15 (ISG15H)-expressing NSCLC cell lines were 134-fold more sensitive to CPT than SULF2U and low ISG15 (ISG15L)-expressing cell lines. Topotecan, a soluble analog of CPT and FDA-approved anticancer drug, dramatically arrested the growth of SULF2M-ISG15H, but not SULF2U-ISG15L lung tumors in nude mice (P<0.002). Similarly, high ISG15 expression that is comparable to the topotecan (TPT)-sensitive NSCLC cell lines was found in tumors from 25% of NSCLC patients compared with normal lung, indicating a potential to identify and target the most sensitive NSCLC subpopulation for personalized TPT therapy.

Ciampa J, Yeager M, Jacobs K, et al.
Application of a novel score test for genetic association incorporating gene-gene interaction suggests functionality for prostate cancer susceptibility regions.
Hum Hered. 2011; 72(3):182-93 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
AIMS: We introduce an innovative multilocus test for disease association. It is an extension of an existing score test that gains power over alternative methods by incorporating a parsimonious one-degree-of-freedom model for interaction. We use our method in applications designed to detect interactions that generate hypotheses about the functionality of prostate cancer (PRCA) susceptibility regions.
METHODS: Our proposed score test is designed to gain additional power through the use of a retrospective likelihood that exploits an assumption of independence between unlinked loci in the underlying population. Its performance is validated through simulation. The method is used in conditional scans with data from stage II of the Cancer Genetic Markers of Susceptibility PRCA genome-wide association study.
RESULTS: Our proposed method increases power to detect susceptibility loci in diverse settings. It identified two high-ranking, biologically interesting interactions: (1) rs748120 of NR2C2 and subregions of 8q24 that contain independent susceptibility loci specific to PRCA and (2) rs4810671 of SULF2 and both JAZF1 and HNF1B that are associated with PRCA and type 2 diabetes.
CONCLUSIONS: Our score test is a promising multilocus tool for genetic epidemiology. The results of our applications suggest functionality for poorly understood PRCA susceptibility regions. They motivate replication study.

Gill RB, Day A, Barstow A, et al.
Sulf2 gene is alternatively spliced in mammalian developing and tumour tissues with functional implications.
Biochem Biophys Res Commun. 2011; 414(3):468-73 [PubMed] Related Publications
SULF2 enzyme regulates the activities of a number of signalling pathways that in many tissues are up-regulated during development and disease. As we recently showed for avian Sulf1, the present study demonstrates that mammalian Sulf2 gene can also generate functionally distinct splice variants that would regulate normal development and tumour growth differentially. It is thus important to distinguish SULF1/SULF2 isoforms in mammalian tissues to understand their functional and clinical relevance to disease. This study demonstrates that unlike normal adult lung with little or no SULF2 expression, this enzyme is expressed at high levels in most lung tumours showing differential cellular distribution of full length and shorter SULF2 variants in such tumours. Furthermore, we show that the short SULF2 splice variants are associated with those signalling pathways that are inhibited by full length SULF1/SULF2 variants and therefore could promote growth in such lung tumours.

Khurana A, Tun HW, Marlow L, et al.
Hypoxia negatively regulates heparan sulfatase 2 expression in renal cancer cell lines.
Mol Carcinog. 2012; 51(7):565-75 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Inactivation of von Hippel-Lindau (VHL), a tumor suppressor gene is often associated with clear cell renal cell carcinoma (ccRCC). VHL inactivation leads to multitude of responses including enhanced growth factor signaling such as bFGF2, SDF-1α, and HGF. Here, we have identified a novel VHL-inducible gene, heparan sulfatase 2 (HSulf-2) that attenuates heparan-binding growth factor such as bFGF2 signaling. VHL-mediated HIF-1 alpha degradation was essential to restore HSulf-2 expression. Mechanistically, HSulf-2 negatively regulated vimentin expression and knockdown of vimentin abolished cell migration. This study reveals a novel layer of regulation of heparan-binding growth factor signaling via modulation of heparan sulfate by HSulf-2 in ccRCC.

Bret C, Moreaux J, Schved JF, et al.
SULFs in human neoplasia: implication as progression and prognosis factors.
J Transl Med. 2011; 9:72 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: The sulfation pattern of heparan sulfate chains influences signaling events mediated by heparan sulfate proteoglycans located on cell surface. SULF1 and SULF2 are two endosulfatases able to cleave specific 6-O sulfate groups within the heparan chains. Their action can modulate signaling processes, many of which with key relevance for cancer development and expansion. SULF1 has been associated with tumor suppressor effects in various models of cancer, whereas SULF2 dysregulation was in relation with protumorigenic actions. However, other observations argue for contradictory effects of these sulfatases in cancer, suggesting the complexity of their action in the tumor microenvironment.
METHODS: We compared the expression of the genes encoding SULF1, SULF2 and heparan sulfate proteoglycans in a large panel of cancer samples to their normal tissue counterparts using publicly available gene expression data, including the data obtained from two cohorts of newly-diagnosed multiple myeloma patients, the Oncomine Cancer Microarray database, the Amazonia data base and the ITTACA database. We also analysed prognosis data in relation with these databases.
RESULTS: We demonstrated that SULF2 expression in primary multiple myeloma cells was associated with a poor prognosis in two independent large cohorts of patients. It remained an independent predictor when considered together with conventional multiple myeloma prognosis factors. Besides, we observed an over-representation of SULF2 gene expression in skin cancer, colorectal carcinoma, testicular teratoma and liver cancer compared to their normal tissue counterpart. We found that SULF2 was significantly over-expressed in high grade uveal melanoma compared to low grade and in patients presenting colorectal carcinoma compared to benign colon adenoma.We observed that, in addition to previous observations, SULF1 gene expression was increased in T prolymphocytic leukemia, acute myeloid leukemia and in renal carcinoma compared to corresponding normal tissues. Furthermore, we found that high SULF1 expression was associated with a poor prognosis in lung adenocarcinoma.Finally, SULF1 and SULF2 were simultaneously overexpressed in 6 cancer types: brain, breast, head and neck, renal, skin and testicular cancers.
CONCLUSIONS: SULF1 and SULF2 are overexpressed in various human cancer types and can be associated to progression and prognosis. Targeting SULF1 and/or SULF2 could be interesting strategies to develop novel cancer therapies.

Yang JD, Sun Z, Hu C, et al.
Sulfatase 1 and sulfatase 2 in hepatocellular carcinoma: associated signaling pathways, tumor phenotypes, and survival.
Genes Chromosomes Cancer. 2011; 50(2):122-35 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
The heparin-degrading endosulfatases sulfatase 1 (SULF1) and sulfatase 2 (SULF2) have opposing effects in hepatocarcinogenesis despite structural similarity. Using mRNA expression arrays, we analyzed the correlations of SULF expression with signaling networks in human hepatocellular carcinomas (HCCs) and the associations of SULF expression with tumor phenotype and patient survival. Data from two mRNA microarray analyses of 139 and 36 HCCs and adjacent tissues were used as training and validation sets. Partek and Metacore software were used to identify SULF correlated genes and their associated signaling pathways. Associations between SULF expression, the hepatoblast subtype of HCC, and survival were examined. Both SULF1 and 2 had strong positive correlations with periostin, IQGAP1, TGFB1, and vimentin and inverse correlations with HNF4A and IQGAP2. Genes correlated with both SULFs were highly associated with the cell adhesion, cytoskeletal remodeling, blood coagulation, TGFB, and Wnt/β-catenin and epithelial mesenchymal transition signaling pathways. Genes uniquely correlated with SULF2 were more associated with neoplastic processes than genes uniquely correlated with SULF1. High SULF expression was associated with the hepatoblast subtype of HCC. There was a bimodal effect of SULF1 expression on prognosis, with patients in the lowest or highest tertile having a worse prognosis than those in the middle tertile. SULFs have complex effects on HCC signaling and patient survival. There are functionally similar associations with cell adhesion, ECM remodeling, TGFB, and WNT pathways, but also unique associations of SULF1 and SULF2. The roles and targeting of the SULFs in cancer require further investigation.

Lai JP, Sandhu DS, Yu C, et al.
Sulfatase 2 protects hepatocellular carcinoma cells against apoptosis induced by the PI3K inhibitor LY294002 and ERK and JNK kinase inhibitors.
Liver Int. 2010; 30(10):1522-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Sulfatase 2 (SULF2), an extracellular heparan sulphate 6-O-endosulphatase, has an oncogenic effect in hepatocellular carcinoma (HCC) that is partially mediated through glypican 3, which promotes heparin-binding growth factor signalling and HCC cell growth. SULF2 also increases phosphorylation of the anti-apoptotic Akt kinase substrate GSK3β and SULF2 expression is associated with a decreased apoptotic index in human HCCs.
METHODS: We investigated the functional and mechanistic effects of SULF2 on drug-induced apoptosis of HCC cells using immunohistochemistry, Western immunoblotting, gene transfection, real-time quantitative polymerase chain reaction, MTT and apoptosis assays and immunocytochemistry.
RESULTS: The increased expression of SULF2 in human HCCs was confirmed by immunohistochemistry and immunoblotting. Treatment with inhibitors of MEK, JNK and PI3 kinases decreased the viability of SULF2-negative Hep3B HCC cells and induced apoptotic caspase 3 and 7 activity, which was most strongly induced by the PI3K inhibitor LY294002. Forced expression of SULF2 in Hep3B cells significantly decreased activity of the apoptotic caspases 3 and 7 and induced resistance to LY294002-induced apoptosis. As expected, LY294002 inhibited activation of Akt kinase by PI3K. Conversely, knockdown of SULF2 using an shRNA construct targeting the SULF2 mRNA induced profound cell growth arrest and sensitized the endogenously SULF2-expressing HCC cell lines Huh7 and SNU182 to drug-induced apoptosis. The effects of knockdown of SULF2 on HCC cells were mediated by decreased Akt phosphorylation, downregulation of cyclin D1 and the anti-apoptotic molecule Bcl-2, and upregulation of the pro-apoptotic molecule BAD.
CONCLUSION: The prosurvival, anti-apoptotic effect of SULF2 in HCC is mediated through activation of the PI3K/Akt pathway.

Lai JP, Oseini AM, Moser CD, et al.
The oncogenic effect of sulfatase 2 in human hepatocellular carcinoma is mediated in part by glypican 3-dependent Wnt activation.
Hepatology. 2010; 52(5):1680-9 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
UNLABELLED: Heparan sulfate proteoglycans (HSPGs) act as coreceptors or storage sites for growth factors and cytokines such as fibroblast growth factor and Wnts. Glypican 3 (GPC3) is the most highly expressed HSPG in hepatocellular carcinoma (HCC). Sulfatase 2 (SULF2), an enzyme with 6-O-desulfatase activity on HSPGs, is up-regulated in 60% of primary HCCs and is associated with a worse prognosis. We have previously shown that the oncogenic effect of SULF2 in HCC may be mediated in part through up-regulation of GPC3. Here we demonstrate that GPC3 stimulates the Wnt/β-catenin pathway and mediates the oncogenic function of SULF2 in HCC. Wnt signaling in vitro and in vivo was assessed in SULF2-negative Hep3B HCC cells transfected with SULF2 and in SULF2-expressing Huh7 cells transfected with short hairpin RNA targeting SULF2. The interaction between GPC3, SULF2, and Wnt3a was assessed by coimmunoprecipitation and flow cytometry. β-catenin-dependent transcriptional activity was assessed with the TOPFLASH (T cell factor reporter plasmid) luciferase assay. In HCC cells, SULF2 increased cell surface GPC3 and Wnt3a expression, stabilized β-catenin, and activated T cell factor transcription factor activity and expression of the Wnt/β-catenin target gene cyclin D1. Opposite effects were observed in SULF2-knockdown models. In vivo, nude mouse xenografts established from SULF2-transfected Hep3B cells showed enhanced GPC3, Wnt3a, and β-catenin levels.
CONCLUSION: Together, these findings identify a novel mechanism mediating the oncogenic function of SULF2 in HCC that includes GPC3-mediated activation of Wnt signaling via the Wnt3a/glycogen synthase kinase 3 beta axis.

Akutsu N, Yamamoto H, Sasaki S, et al.
Association of glypican-3 expression with growth signaling molecules in hepatocellular carcinoma.
World J Gastroenterol. 2010; 16(28):3521-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
AIM: To clarify the association of glypican-3 (GPC3) expression with Wnt and other growth signaling molecules in hepatocellular carcinoma (HCC).
METHODS: Expression of GPC3, Wnt, matrix metalloproteinases (MMPs), sulfatase (SULF)1, SULF2, and other growth signaling molecules was analyzed in HCC cell lines and tissue samples by real-time reverse transcription-polymerase chain reaction, immunoblotting, and/or immunostaining. Expression of various genes in GPC3 siRNA-transfected HCC cells was analyzed.
RESULTS: GPC3 was overexpressed in most HCCs at mRNA and protein levels and its serum levels were significantly higher in patients with HCC than in non-HCC subjects (P < 0.05). Altered expressions of various MMPs and growth signaling molecules, some of which were correlated with GPC3 expression, were observed in HCCs. Down-regulation of GPC3 expression by siRNA in GPC3-overexpressing HCC cell lines resulted in a significant decrease in expressions of MMP2, MMP14, fibroblast growth factor receptor 1, insulin-like growth factor 1 receptor. GPC3 expression was significantly correlated with nuclear/cytoplasmic localization of beta-catenin.
CONCLUSION: These results suggest that GPC3, in conjunction with MMPs and growth signaling molecules, might play an important role in the progression of HCC.

Rosen SD, Lemjabbar-Alaoui H
Sulf-2: an extracellular modulator of cell signaling and a cancer target candidate.
Expert Opin Ther Targets. 2010; 14(9):935-49 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
IMPORTANCE OF THE FIELD: Sulf-1 and Sulf-2 are sulfatases that edit the sulfation status of heparan sulfate proteoglycans (HSPGs) on the outside of cells and regulate a number of critical signaling pathways. The Sulfs are dysregulated in many cancers with Sulf-2 in particular implicated as a driver of carcinogenesis in NSCLC, pancreatic cancer and hepatocellular carcinoma.
AREAS COVERED IN THIS REVIEW: This review describes the novel activity of the Sulfs in altering the sulfation pattern of HSPG chains on the outside of cells. Thereby, the Sulfs can change the binding of growth factors to these chains and can either promote (e.g., Wnt) or inhibit (e.g., fibroblast growth factor-2) signaling. The review focuses on the widespread upregulation of both Sulfs in cancers and summarizes the evidence that Sulf-2 promotes the transformed behavior of several types of cancer cells in vitro as well as their tumorigenicity in vivo.
WHAT THE READER WILL GAIN: Sulf-2 is a bonafide candidate as a cancer-causing agent in NSCLC and other cancers in which it is upregulated.
TAKE HOME MESSAGE: Sulf-2 is an extracellular enzyme and as such would be an attractive therapeutic target for the treatment of NSCLC and other cancers.

Moussay E, Palissot V, Vallar L, et al.
Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia.
Mol Cancer. 2010; 9:115 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
BACKGROUND: Chronic lymphocytic leukemia (CLL) cells are often affected by genomic aberrations targeting key regulatory genes. Although fludarabine is the standard first line therapy to treat CLL, only few data are available about the resistance of B cells to this purine nucleoside analog in vivo. Here we sought to increase our understanding of fludarabine action and describe the mechanisms leading to resistance in vivo. We performed an analysis of genomic aberrations, gene expression profiles, and microRNAs expression in CLL blood B lymphocytes isolated during the course of patients' treatment with fludarabine.
RESULTS: In sensitive patients, the differentially expressed genes we identified were mainly involved in p53 signaling, DNA damage response, cell cycle and cell death. In resistant patients, uncommon genomic abnormalities were observed and the resistance toward fludarabine could be characterized based on the expression profiles of genes implicated in lymphocyte proliferation, DNA repair, and cell growth and survival. Of particular interest in some patients was the amplification of MYC (8q) observed both at the gene and transcript levels, together with alterations of myc-transcriptional targets, including genes and miRNAs involved in the regulation of cell cycle and proliferation. Differential expression of the sulfatase SULF2 and of miR-29a, -181a, and -221 was also observed between resistant and sensitive patients before treatment. These observations were further confirmed on a validation cohort of CLL patients treated with fludarabine in vitro.
CONCLUSION: In the present study we identified genes and miRNAs that may predict clinical resistance of CLL to fludarabine, and describe an interesting oncogenic mechanism in CLL patients resistant to fludarabine by which the complete MYC-specific regulatory network was altered (DNA and RNA levels, and transcriptional targets). These results should prove useful for understanding and overcoming refractoriness to fludarabine and also for predicting the clinical outcome of CLL patients before or early during their treatment.

Lemjabbar-Alaoui H, van Zante A, Singer MS, et al.
Sulf-2, a heparan sulfate endosulfatase, promotes human lung carcinogenesis.
Oncogene. 2010; 29(5):635-46 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Heparan sulfate (HS) proteoglycans (HSPGs) bind to multiple growth factors/morphogens and regulate their signaling. 6-O-sulfation (6S) of glucosamine within HS chains is critical for many of these ligand interactions. Sulf-1 and Sulf-2, which are extracellular neutral-pH sulfatases, provide a novel post-synthetic mechanism for regulation of HSPG function by removing 6S from intact HS chains. The Sulfs can thereby modulate several signaling pathways, including the promotion of Wnt signaling. We found induction of SULF2 transcripts and Sulf-2 protein in human lung adenocarcinoma and squamous cell carcinoma, the two major classes of non-small-cell lung carcinomas (NSCLCs). We confirmed widespread Sulf-2 protein expression in tumor cells of 10/10 surgical specimens of human lung squamous carcinomas. We studied five Sulf-2(+) NSCLC cell lines, including two, which were derived by cigarette-smoke transformation of bronchial epithelial cells. shRNA-mediated Sulf-2 knockdown in these lines caused an increase in 6S on their cell surface and in parallel reversed their transformed phenotype in vitro, eliminated autocrine Wnt signaling and strongly blunted xenograft tumor formation in nude mice. Conversely, forced Sulf-2 expression in non-malignant bronchial epithelial cells produced a partially transformed phenotype. Our findings support an essential role for Sulf-2 in lung cancer, the leading cancer killer.

Tessema M, Yu YY, Stidley CA, et al.
Concomitant promoter methylation of multiple genes in lung adenocarcinomas from current, former and never smokers.
Carcinogenesis. 2009; 30(7):1132-8 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Aberrant promoter hypermethylation is one of the major mechanisms in carcinogenesis and some critical growth regulatory genes have shown commonality in methylation across solid tumors. Twenty-six genes, 14 identified through methylation in colon and breast cancers, were evaluated using primary lung adenocarcinomas (n = 175) from current, former and never smokers. Tumor specificity of methylation was validated through comparison of 14 lung cancer cell lines to normal human bronchial epithelial cells derived from bronchoscopy of 20 cancer-free smokers. Twenty-five genes were methylated in 11-81% of primary tumors. Prevalence for methylation of TNFRSF10C, BHLHB5 and BOLL was significantly higher in adenocarcinomas from never smokers than smokers. The relation between methylation of individual genes was examined using pairwise comparisons. A significant association was seen between 138 (42%) of the possible 325 pairwise comparisons. Most notably, methylation of MMP2, BHLHB4 or p16 was significantly associated with methylation of 16-19 other genes, thus predicting for a widespread methylation phenotype. Kaplan-Meier log-rank test and proportional hazard models identified a significant association between methylation of SULF2 (a pro-growth, -angiogenesis and -migration gene) and better patient survival (hazard ratio = 0.23). These results demonstrate a high degree of commonality for targeted silencing of genes between lung and other solid tumors and suggest that promoter hypermethylation in cancer is a highly co-ordinated event.

Bret C, Hose D, Reme T, et al.
Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells.
Br J Haematol. 2009; 145(3):350-68 [PubMed] Article available free on PMC after 01/09/2015 Related Publications
Syndecan-1 is a proteoglycan that concentrates heparin-binding factors on the surface of multiple myeloma cells, and probably plays a major role in multiple myeloma biology. As heparan sulphate and chondroitin sulphate are the bioactive components of syndecan-1, we analysed the signature of genes encoding 100 proteins involved in synthesis of these chains, i.e. from precursor uptake to post-translational modifications, using Affymetrix microarrays. The expression of enzymes required for heparan sulphate and chondroitin sulphate biosynthesis was shown to increase in parallel with syndecan-1 expression, throughout the differentiation of memory B cells into plasmablasts and normal bone marrow plasma cells. Sixteen genes were significantly different between normal and malignant plasma cells, nine of these genes -EXT2, CHSY3, CSGALNACT1, HS3ST2, HS2ST1, CHST11, CSGALNACT2, HPSE, SULF2 - encode proteins involved in glycosaminoglycan chain synthesis or modifications. Kaplan-Meier analysis was performed in two independent series of patients: B4GALT7, CSGALNACT1, HS2ST1 were associated with a good prognosis whereas EXT1 was linked to a bad prognosis. This study provides an overall picture of the major genes encoding for proteins involved in heparan sulphate and chondroitin sulphate synthesis and modifications that can be implicated in normal and malignant plasma cells.

Chau BN, Diaz RL, Saunders MA, et al.
Identification of SULF2 as a novel transcriptional target of p53 by use of integrated genomic analyses.
Cancer Res. 2009; 69(4):1368-74 [PubMed] Related Publications
Microarray analysis has been useful for identifying the targets of many transcription factors. However, gene expression changes in response to transcription factor perturbation reveal both direct transcriptional targets and secondary gene regulation. By integrating RNA interference, gene expression profiling, and chromatin immunoprecipitation technologies, we identified a set of 32 direct transcriptional targets of the tumor suppressor p53. Of these 32 genes, 11 are not currently associated with the core p53 pathway. From among these novel pathway members, we focused on understanding the connection between p53 and SULF2, which encodes an extracellular heparan sulfate 6-O-endosulfatase that modulates the binding of growth factors to their cognate receptors and that has been shown to function as a tumor suppressor. Genetic and pharmacologic perturbation of p53 directly influences SULF2 expression, and similar to silencing of TP53, RNA interference-mediated suppression of SULF2 results in an impaired senescence response of cells to genotoxic stress. Thus, our integrated genomic approach has led to the identification of a novel mediator of p53 network biology.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SULF2, Cancer Genetics Web: http://www.cancer-genetics.org/SULF2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 20 August, 2015     Cancer Genetics Web, Established 1999