TGFBR1

Gene Summary

Gene:TGFBR1; transforming growth factor beta receptor 1
Aliases: AAT5, ALK5, ESS1, LDS1, MSSE, SKR4, TBRI, ALK-5, LDS1A, LDS2A, TBR-i, TGFR-1, ACVRLK4, tbetaR-I
Location:9q22.33
Summary:The protein encoded by this gene forms a heteromeric complex with type II TGF-beta receptors when bound to TGF-beta, transducing the TGF-beta signal from the cell surface to the cytoplasm. The encoded protein is a serine/threonine protein kinase. Mutations in this gene have been associated with Loeys-Dietz aortic aneurysm syndrome (LDAS). Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Aug 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:TGF-beta receptor type-1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (90)
Pathways:What pathways are this gene/protein implicaed in?
Show (13)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: TGFBR1 (cancer-related)

Gao L, Hu Y, Tian Y, et al.
Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition.
Nat Commun. 2019; 10(1):1665 [PubMed] Free Access to Full Article Related Publications
Lung cancer is the leading cause of cancer-related deaths worldwide. Tumor suppressor genes remain to be systemically identified for lung cancer. Through the genome-wide screening of tumor-suppressive transcription factors, we demonstrate here that GATA4 functions as an essential tumor suppressor in lung cancer in vitro and in vivo. Ectopic GATA4 expression results in lung cancer cell senescence. Mechanistically, GATA4 upregulates multiple miRNAs targeting TGFB2 mRNA and causes ensuing WNT7B downregulation and eventually triggers cell senescence. Decreased GATA4 level in clinical specimens negatively correlates with WNT7B or TGF-β2 level and is significantly associated with poor prognosis. TGFBR1 inhibitors show synergy with existing therapeutics in treating GATA4-deficient lung cancers in genetically engineered mouse model as well as patient-derived xenograft (PDX) mouse models. Collectively, our work demonstrates that GATA4 functions as a tumor suppressor in lung cancer and targeting the TGF-β signaling provides a potential way for the treatment of GATA4-deficient lung cancer.

Guo Y, Cui W, Pei Y, Xu D
Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway.
Gynecol Oncol. 2019; 153(3):639-650 [PubMed] Related Publications
OBJECTIVE: To test whether platelets could increase invasion potential and initiate EMT in ovarian cancer cells via a TGF-β signaling pathway.
METHODS: Blood samples were collected in 69 patients with ovarian cancer, 16 patients with benign ovarian tumor and 64 healthy donors. SK-OV-3 and OVCAR-3 ovarian cancer cells were treated with platelets. Transwell assays were used to analyze the invasive capacity, and EMT was assessed by microarray analysis, quantitative real-time PCR (qPCR) and Western blotting. Activation of TGF-β pathway was examined by ELISA and Western blotting. TGF-β type I receptor (TβR I) inhibitor A83-01 was used to confirm the role of TGF-β pathway in vitro and in vivo.
RESULTS: Clinical data showed ovarian cancer patients with elevated platelet counts had a higher incidence of advanced stages. Treatment with platelets increased the invasive properties of both cell lines. Mesenchymal markers (snail family transcriptional repressor-1, vimentin, neural cadherin, fibronectin-1 and matrix metalloproteinase-2) were up-regulated in platelet-treated cells, while the epithelial marker (epithelial cadherin) was down-regulated. Higher TGF-β level was observed in patients with elevated platelet counts when compared to the subjects. Higher levels of TGF-β were also found in culture medium treated with platelets, and cells treated with platelets also showed increased phosphorylation of Smad2. TβR I inhibitor A83-01 reversed the EMT-like alterations and inhibited platelet-induced invasion in vitro and in vivo.
CONCLUSION: Platelet increased invasion potential and induced EMT in ovarian cancer cells in a TGF-β dependent pathway. Platelet-derived TGF-β may be useful as a new target treatment for ovarian cancer.

Peng R, Zhang PF, Yang X, et al.
Overexpression of RNF38 facilitates TGF-β signaling by Ubiquitinating and degrading AHNAK in hepatocellular carcinoma.
J Exp Clin Cancer Res. 2019; 38(1):113 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: RING finger protein 38 (RNF38), a member of the RNF protein family, has just emerged as a vital driver of cancer progression. However, the oncogenic mechanisms of RNF38 remain unexplored.
METHODS: Using frozen tumor tissue and tissue microarray from hepatocellular carcinoma (HCC) patients, we tried to probe the expression of RNF38 in HCC and its clinical value. Then the biological functions of RNF38 were analyzed in vivo and vitro. Stable isotope labeling with amino acids (SILAC) in cell culture and co-immunoprecipitation proteomic analyses were combined to reveal the potential mechanism of RNF38 in HCC progression.
RESULTS: We report that RNF38 expression was markedly higher in HCC tissues than in peritumor tissues. Correspondingly, RNF38 overexpression promoted the HCC cell migration and invasion and inhibited apoptosis both in vitro and in vivo. And elevated RNF38 expression induced HCC cell epithelial-mesenchymal transition by facilitating transforming growth factor-β (TGF-β) signaling via ubiquitinating and degrading neuroblast differentiation-associated protein (AHNAK), a well-established inhibitor of TGF-β signaling. Furthermore, AHNAK interference restored the HCC cell invasion and metastasis deprived by RNF38 downregulation. Clinically, elevated RNF38 and transforming growth factor beta receptor 1 (TGFBR1) expression was related to short overall survival (OS) and high cumulative recurrence rates in HCC patients.
CONCLUSIONS: High levels of RNF38 promote HCC by facilitating TGF-β signaling and are a novel marker for predicting the prognosis of HCC patients and a potential therapeutic target in HCC.

Wang B, Xu X, Yang Z, et al.
POH1 contributes to hyperactivation of TGF-β signaling and facilitates hepatocellular carcinoma metastasis through deubiquitinating TGF-β receptors and caveolin-1.
EBioMedicine. 2019; 41:320-332 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hyper-activation of TGF-β signaling is critically involved in progression of hepatocellular carcinoma (HCC). However, the events that contribute to the dysregulation of TGF-β pathway in HCC, especially at the post-translational level, are not well understood.
METHODS: Associations of deubiquitinase POH1 with TGF-β signaling activity and the outcomes of HCC patients were examined by data mining of online HCC datasets, immunohistochemistry analyses using human HCC specimens, spearman correlation and survival analyses. The effects of POH1 on the ubiquitination and stability of the TGF-β receptors (TGFBR1 and TGFBR2) and the activation of downstream effectors were tested by western blotting. Primary mouse liver tissues from polyinosinic:polycytidylic acid (poly I:C)- treated Mx-Cre+, poh1
FINDINGS: Here we show that POH1 is a critical regulator of TGF-β signaling and promotes tumor metastasis. Integrative analyses of HCC subgroups classified with unsupervised transcriptome clustering of the TGF-β response, metastatic potential and outcomes, reveal that POH1 expression positively correlates with activities of TGF-β signaling in tumors and with malignant disease progression. Functionally, POH1 intensifies TGF-β signaling delivery and, as a consequence, promotes HCC cell metastatic properties both in vitro and in vivo. The expression of the TGF-β receptors was severely downregulated in POH1-deficient mouse hepatocytes. Mechanistically, POH1 deubiquitinates the TGF-β receptors and CAV1, therefore negatively regulates lysosome pathway-mediated turnover of TGF-β receptors.
CONCLUSION: Our study highlights the pathological significance of aberrantly expressed POH1 in TGF-β signaling hyperactivation and aggressive progression in HCC.

Monsivais D, Peng J, Kang Y, Matzuk MM
Activin-like kinase 5 (ALK5) inactivation in the mouse uterus results in metastatic endometrial carcinoma.
Proc Natl Acad Sci U S A. 2019; 116(9):3883-3892 [PubMed] Free Access to Full Article Related Publications
The endometrial lining of the uterine cavity is a highly dynamic tissue that is under the continuous control of the ovarian steroid hormones, estrogen and progesterone. Endometrial adenocarcinoma arises from the uncontrolled growth of the endometrial glands, which is typically associated with unopposed estrogen action and frequently occurs in older postmenopausal women. The incidence of endometrial cancer among younger women has been rising due to increasing rates of obesity, a major risk factor for the disease. The transforming growth factor β (TGFβ) family is a highly conserved group of proteins with roles in cellular differentiation, proliferation, and cancer. Inactivating mutations in the genes encoding the TGFβ cell surface receptors (

Cao L, Jin H, Zheng Y, et al.
DANCR-mediated microRNA-665 regulates proliferation and metastasis of cervical cancer through the ERK/SMAD pathway.
Cancer Sci. 2019; 110(3):913-925 [PubMed] Free Access to Full Article Related Publications
Emerging evidence has indicated that microRNAs (miRNAs) play an important role in cervical cancer (CC). However, the role of miRNA (miR)-665 in cervical cancer remains unclear. The aim of the present study was to investigate the potential functions of miR-665 in CC and to identify the underlying mechanisms of action. Herein, we show that miR-665 was downregulated in CC tissues and cell lines, which is negatively correlated with tumor size, distant metastasis, advanced TNM stage and poor prognosis. Functionally, miR-665 inhibited cell proliferation, migration and invasion and resistance of cisplatin for CC cells, as well as tumor growth. We validated that transforming growth factor beta receptor 1 (TGFBR1) was a direct target of miR-665 and mediated the ERK/SMAD pathway. In addition, we identified miR-665 as the competing endogenous RNA for long noncoding (lnc)-DANCR. These observations suggested that lnc-DANCR-mediated miR-665 downregulation regulates the malignant phenotype of CC cells by targeting TGFBR1 through the ERK/SMAD pathway, which may present a pathway for novel therapeutic stratagems for CC therapy.

Gao P, Wang H, Yu J, et al.
miR-3607-3p suppresses non-small cell lung cancer (NSCLC) by targeting TGFBR1 and CCNE2.
PLoS Genet. 2018; 14(12):e1007790 [PubMed] Free Access to Full Article Related Publications
Accumulating evidence indicates that miRNAs can be promising diagnostic and/or prognostic markers for various cancers. In this study, we identified a novel miRNA, miR-3607-3p, and its targets in non-small cell lung cancer (NSCLC). The expression of miR-3607-3p was measured and its correlation with patient prognosis was determined. Ectopic expression in NSCLC cells, xenografts, and metastasis models was used to evaluate the effects of miR-3607-3p on proliferation and migration of NSCLC. Luciferase assay and western blotting were performed to validate the potential targets of miR-3607-3p after preliminary screening by microarray analysis and computer-aided algorithms. We demonstrated that miR-3607-3p was downregulated in NSCLC tissues and that miR-3607-3p might act as an independent predictor for overall survival in NSCLC. Moreover, serum miR-3607-3p may be a novel and stable marker for NSCLC. We found that overexpression of miR-3607-3p inhibited cell proliferation, colony formation, migration and invasion, and hampered the cell cycle of NSCLC cell lines in vitro. Our results suggested that miR-3607-3p directly targets TGFBR1 and CCNE2. In accordance with in vitro studies, we confirmed that miR-3607-3p functions as a potent suppressor miRNA of NSCLC. We showed that miR-3607-3p agomir could reduce tumor growth and inhibit TGFBR1 and CCNE2 protein expression. Taken together, our findings indicate that miR-3607-3p can inhibit NSCLC cell growth and metastasis by targeting TGFBR1 and CCNE2 protein expression, and provide new evidence of miR-3607-3p as a potential non-invasive biomarker and therapeutic target for NSCLC.

Jiang F, Yu Q, Chu Y, et al.
MicroRNA-98-5p inhibits proliferation and metastasis in non-small cell lung cancer by targeting TGFBR1.
Int J Oncol. 2019; 54(1):128-138 [PubMed] Free Access to Full Article Related Publications
MicroRNAs (miRNAs or miRs) have recently emerged as key regulators of various types of cancer, including non‑small cell lung cancer (NSCLC). The disrupted expression of miRNAs is associated with tumorigenesis and metastasis; however, the underlying mechanisms remain unclear. In this study, we demonstrate that miR‑98‑5p is downregulated in NSCLC and that miR‑98‑5p deficiency is associated with an advanced clinical stage and metastasis. A dual‑luciferase reporter assay was performed to confirm that transforming growth factor beta receptor 1 (TGFBR1), a key stimulator of tumor proliferation and metastasis, was a direct target of miR‑98‑5p. miR‑98‑5p overexpression resulted in the downregulation of TGFBR1 and the suppression of the viability, proliferation, migration and invasion of A549 and H1299 cells. Furthermore, miR‑98‑5p was demonstrated to be an efficient suppressor of tumor growth in an A549 subcutaneous xenograft tumor mouse model. Finally, miR‑98‑5p overexpression exerted a significant anti‑metastatic effect in a mouse model of pulmonary metastasis. On the whole, the results of the present study suggest that miR‑98‑5p/TGFBR1 may serve as promising targets for NSCLC therapy.

Ye Y, Li SL, Wang SY
Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.
PLoS One. 2018; 13(8):e0198055 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Prostate cancer (PCa) causes a common male urinary system malignant tumour, and the molecular mechanisms of PCa are related to the abnormal regulation of various signalling pathways. An increasing number of studies have suggested that mRNAs, miRNAs, lncRNAs, and TFs could play important roles in various biological processes that are associated with cancer pathogenesis. This study aims to reveal functional genes and investigate the underlying molecular mechanisms of PCa with bioinformatics.
METHODS: Original gene expression profiles were obtained from the GSE64318 and GSE46602 datasets in the Gene Expression Omnibus (GEO). We conducted differential screens of the expression of genes (DEGs) between two groups using the online tool GEO2R based on the R software limma package. Interactions between differentially expressed miRNAs, mRNAs and lncRNAs were predicted and merged with the target genes. Co-expression of miRNAs, lncRNAs and mRNAs was selected to construct mRNA-miRNA-lncRNA interaction networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for the DEGs. Protein-protein interaction (PPI) networks were constructed, and transcription factors were annotated. Expression of hub genes in the TCGA datasets was verified to improve the reliability of our analysis.
RESULTS: The results demonstrate that 60 miRNAs, 1578 mRNAs and 61 lncRNAs were differentially expressed in PCa. The mRNA-miRNA-lncRNA networks were composed of 5 miRNA nodes, 13 lncRNA nodes, and 45 mRNA nodes. The DEGs were mainly enriched in the nuclei and cytoplasm and were involved in the regulation of transcription, related to sequence-specific DNA binding, and participated in the regulation of the PI3K-Akt signalling pathway. These pathways are related to cancer and focal adhesion signalling pathways. Furthermore, we found that 5 miRNAs, 6 lncRNAs, 6 mRNAs and 2 TFs play important regulatory roles in the interaction network. The expression levels of EGFR, VEGFA, PIK3R1, DLG4, TGFBR1 and KIT were significantly different between PCa and normal prostate tissue.
CONCLUSION: Based on the current study, large-scale effects of interrelated mRNAs, miRNAs, lncRNAs, and TFs established a new prostate cancer network. In addition, we conducted functional module analysis within the network. In conclusion, this study provides new insight for exploration of the molecular mechanisms of PCa and valuable clues for further research into the process of tumourigenesis and its development in PCa.

Li Y, Liu G, Li X, et al.
Long non-coding RNA SBF2-AS1 promotes hepatocellular carcinoma progression through regulation of miR-140-5p-TGFBR1 pathway.
Biochem Biophys Res Commun. 2018; 503(4):2826-2832 [PubMed] Related Publications
A growing number of studies has suggested that long non-coding RNAs (lncRNAs) exert essential roles in the development and progression of hepatocellular carcinoma (HCC). However, the roles of lncRNA and its molecular mechanism in HCC are largely unknown. In the present study, the functions and molecular mechanisms of a novel lncRNA, SET-binding factor 2 (SBF2) antisense RNA1 (SBF2-AS1), were investigated in HCC tissues and cell lines. We found that the expression levels of SBF2-AS1 were significantly up-regulated in HCC tissues and correlated with poor prognosis. SBF2-AS1 knockdown could inhibit the proliferation of HCC cells and attenuate the development of HCC tumor in vivo. Moreover, wound healing and Transwell assays revealed that down-regulation of SBF2-AS1 suppressed the migration and invasion of HCC cells by modulating epithelial-mesenchymal transition (EMT) ability. Mechanistically, we observed that SBF2-AS1 served as a competing endogenous RNA (ceRNA) of miR-140-5p. Subsequently, transforming growth factor beta receptor 1 (TGFBR1) was certified as a direct target of miR-140-5p and enforcing SBF2-AS1 expression elevated TGFBR1 expression in HCC. Taken together, our study suggested that SBF2-AS1 modulated TGFBR1 through sponging miR-140-5p in HCC development and progression indicating that SBF2-AS1 might be further chosen as a potential anticancer therapeutic target and a promising prognostic biomarker for HCC.

Duan L, Ye L, Zhuang L, et al.
VEGFC/VEGFR3 axis mediates TGFβ1-induced epithelial-to-mesenchymal transition in non-small cell lung cancer cells.
PLoS One. 2018; 13(7):e0200452 [PubMed] Free Access to Full Article Related Publications
In the tumor progression, transforming growth factor β1 (TGFβ1) plays a critical role in tumorigenesis as well as metastasis. It is known that high plasma level of TGFβ1 in patients with advanced non-small cell lung cancer (NSCLC) is correlated with poor prognostics. In addition, the generation of cancer stem-like cells is associated with metastasis, drug resistance, and tumor recurrence, which also lead to poor outcomes in NSCLC patients. However, it remains unclear how TGFβ1 promotes NSCLC cells to acquire stem-like properties and accelerate tumor metastasis. In our study, we found that short term TGFβ1 treatment resulted in a significant epithelial-mesenchymal transition (EMT) morphological change in TGFβ1-sensitive NSCLC cells but not in insensitive cells. Western blotting confirmed increased Vimentin and reduced E-Cadherin protein expression after TGFβ1 treatment in A549, NCI-H1993, and NCI-H358 cells. TGFβ1 incubation dramatically decreased in vitro cell proliferation and increased cell invasion in TGFβ1-sensitive NSCLC cells but not in NCI-H1975, NCI-H1650, and HCC827 cells. Moreover, TGFβ1 was able to enhance the mRNA expression of Oct4, Nanog and Sox2 and drastically increased anchorage-independent colony formation in TGFβ1-sensitive NSCLC cells, suggesting the acquisition of cancer stem-like properties. Interestingly, we found that vascular endothelial growth factor receptor 3 (VEGFR3) mRNA expression was significantly elevated in TGFβ1-sensitive NSCLC cells compared to insensitive cells. And TGFβ1 was capable of inducing VEGF-C gene expression. Pharmacological blocking TGFβ type I receptor kinase (ALK5) significantly inhibited TGFβ1-induced VEGF-C expression. Silencing of ALK5 by siRNA also dramatically reduced TGFβ1-induced VEGF-C expression in TGFβ1-sensitive NSCLC cells. Therefore, TGFβ1 contributes for NSCLC metastasis through promoting EMT, generation of high invasive cancer cells with stem-like properties, and increasing VEGF-C expression. Blocking TGFβ pathway is a potential therapeutic target in human non-small cell lung cancer.

Pellatt AJ, Mullany LE, Herrick JS, et al.
The TGFβ-signaling pathway and colorectal cancer: associations between dysregulated genes and miRNAs.
J Transl Med. 2018; 16(1):191 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The TGFβ-signaling pathway plays an important role in the pathogenesis of colorectal cancer (CRC). Loss of function of several genes within this pathway, such as bone morphogenetic proteins (BMPs) have been seen as key events in CRC progression.
METHODS: In this study we comprehensively evaluate differential gene expression (RNASeq) of 81 genes in the TGFβ-signaling pathway and evaluate how dysregulated genes are associated with miRNA expression (Agilent Human miRNA Microarray V19.0). We utilize paired carcinoma and normal tissue from 217 CRC cases. We evaluate the associations between differentially expressed genes and miRNAs and sex, age, disease stage, and survival months.
RESULTS: Thirteen genes were significantly downregulated and 14 were significantly upregulated after considering fold change (FC) of > 1.50 or < 0.67 and multiple comparison adjustment. Bone morphogenetic protein genes BMP5, BMP6, and BMP2 and growth differentiation factor GDF7 were downregulated. BMP4, BMP7, INHBA (Inhibin beta A), TGFBR1, TGFB2, TGIF1, TGIF2, and TFDP1 were upregulated. In general, genes with the greatest dysregulation, such as BMP5 (FC 0.17, BMP6 (FC 0.25), BMP2 (FC 0.32), CDKN2B (FC 0.32), MYC (FC 3.70), BMP7 (FC 4.17), and INHBA (FC 9.34) showed dysregulation in the majority of the population (84.3, 77.4, 81.1, 80.2, 82.0, 51.2, and 75.1% respectively). Four genes, TGFBR2, ID4, ID1, and PITX2, were un-associated or slightly upregulated in microsatellite-stable (MSS) tumors while downregulated in microsatellite-unstable (MSI) tumors. Eight dysregulated genes were associated with miRNA differential expression. E2F5 and THBS1 were associated with one or two miRNAs; RBL1, TGFBR1, TGIF2, and INHBA were associated with seven or more miRNAs with multiple seed-region matches. Evaluation of the joint effects of mRNA:miRNA identified interactions that were stronger in more advanced disease stages and varied by survival months.
CONCLUSION: These data support an interaction between miRNAs and genes in the TGFβ-signaling pathway in association with CRC risk. These interactions are associated with unique clinical characteristics that may provide targets for further investigations.

Yu GT, Mao L, Wu L, et al.
Inhibition of SRC family kinases facilitates anti-CTLA4 immunotherapy in head and neck squamous cell carcinoma.
Cell Mol Life Sci. 2018; 75(22):4223-4234 [PubMed] Related Publications
The immune system plays a critical role in the establishment, development, and progression of head and neck squamous cell carcinoma (HNSCC). As treatment with single-immune checkpoint agent results in a lower response rate in patients, it is important to investigate new strategies to maintain favorable anti-tumor immune response. Herein, the combination immunotherapeutic value of CTLA4 blockade and SFKs inhibition was assessed in transgenic HNSCC mouse model. Our present work showed that tumor growth was not entirely controlled when HNSCC model mice were administered anti-CTLA4 chemotherapeutic treatment. Moreover, it was observed that Src family kinases (SFKs) were hyper-activated and lack of anti-tumor immune responses following anti-CTLA4 chemotherapeutic treatment. We hypothesized that activation of SFKs is a mechanism of anti-CTLA4 immunotherapy resistance. We, therefore, carried out combined drug therapy using anti-CTLA4 mAbs and an SFKs' inhibitor, dasatinib. As expected, dasatinib and anti-CTLA4 synergistically inhibited tumor growth in Tgfbr1/Pten 2cKO mice. Furthermore, dasatinib and anti-CTLA4 combined to reduce the number of myeloid-derived suppressor cells and Tregs, increasing the CD8

Itoh S, Itoh F
TMEPAI family: involvement in regulation of multiple signalling pathways.
J Biochem. 2018; 164(3):195-204 [PubMed] Related Publications
The TMEPAI family, composed of TMEPAI and C18ORF1, is known to inhibit transforming growth factor-β (TGF-β) signalling via its competition for binding of receptor-regulated Smad with Smad anchor for receptor activation. However, TMEPAI has also been reported to be involved in androgen receptor signalling, phosphatase and tensin homologue deleted on chromosome 10 signalling, and formation of autophagosomes in addition to degradation of TβRI (TGF-β type I receptor) through lysosomes. Thus, TMEPAI seems to act as a regulator of multiple signalling pathways. A great deal of attention has already been paid to the relationship between the TMEPAI family and tumourigenicity. In this paper, therefore, we describe recent progresses in the understanding of how the TMEPAI family physiologically contributes to cellular functions and diseases.

Zonneville J, Safina A, Truskinovsky AM, et al.
TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association.
BMC Cancer. 2018; 18(1):670 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The breast cancer microenvironment promotes tumor vascularization through the complex interactions involving tumor-associated fibroblasts (TAFs). Emerging data indicate that TAFs increase production and signaling by TGF-β cytokines, while the role of TGF-β signaling in the regulation of tumor blood vessels is not fully understood. The current study presents evidence that TAFs enhance the organization of tumor blood capillaries, and TGF-β signaling plays an important role in this response.
METHODS: Tumor vascularization was studied in xenograft models of breast carcinoma cells, alone and in combination with fibroblasts. TGF-β signaling in breast cancer cells was modulated by expression of kinase-inactive TGFBR1-K232R (dnTGFBR1) or constitutive-active TGFBR1-T204D (caTGFBR1) receptor mutants. The architecture of tumor blood capillaries was assessed by immune-histochemical analysis of endothelium and pericytes. The role of TGF-β-Smad signaling in fibronectin expression was examined using adenoviral transduction of signaling components.
RESULTS: Our studies revealed that TAFs significantly increase the lumen size of blood microvessels. Inactivation of TGF-β signaling in tumor cells by dnTGFBR1 reduced the microvessel density and lumen sizes, decreasing tumor growth. In contrast, caTGFBR1-tumors exhibited greater vessel density and lumen sizes. Tumors with inactive dnTGFBR1 showed lower amounts of TAFs, while caTGFBR1 increased amounts of TAFs compared to the control. Inspection of pericytes and endothelial cells in tumor vasculature revealed that TAFs enhanced vessel coverage by pericytes, vascular cells supporting capillaries. This effect was impaired in dnTGFBR1-tumors, whereas active caTGFBR1 enhanced the association of pericytes with endothelium. Accordingly, dnTGFBR1-tumors exhibited the presence of hemorrhages, a sign of fragile blood vessels. Biochemical analysis showed that TGFBR1-SMAD signaling up-regulates fibronectin, a prominent regulator of endothelium-pericyte interactions.
CONCLUSIONS: The current study indicates that tumor-fibroblast crosstalk enhances tumor vascularization by increasing the pericyte-endothelium association via a mechanism involving the TGFβ-fibronectin axis. The tumor-fibroblast model represents a useful system for dissecting the complex interactions governing tumor angiogenesis and developing new approaches to therapeutic targeting tumor vasculature.

Petiti JP, Sosa LDV, Picech F, et al.
Trastuzumab inhibits pituitary tumor cell growth modulating the TGFB/SMAD2/3 pathway.
Endocr Relat Cancer. 2018; 25(10):837-852 [PubMed] Related Publications
In pituitary adenomas, early recurrences and resistance to conventional pharmacotherapies are common, but the mechanisms involved are still not understood. The high expression of epidermal growth factor receptor 2 (HER2)/extracellular signal-regulated kinase (ERK1/2) signal observed in human pituitary adenomas, together with the low levels of the antimitogenic transforming growth factor beta receptor 2 (TBR2), encouraged us to evaluate the effect of the specific HER2 inhibition with trastuzumab on experimental pituitary tumor cell growth and its effect on the antiproliferative response to TGFB1. Trastuzumab decreased the pituitary tumor growth as well as the expression of ERK1/2 and the cell cycle regulators CCND1 and CDK4. The HER2/ERK1/2 pathway is an attractive therapeutic target, but its intricate relations with other signaling modulators still need to be unraveled. Thus, we investigated possible cross-talk with TGFB signaling, which has not yet been studied in pituitary tumors. In tumoral GH3 cells, co-incubation with trastuzumab and TGFB1 significantly decreased cell proliferation, an effect accompanied by a reduction in ERK1/2 phosphorylation, an increase of SMAD2/3 activation. In addition, through immunoprecipitation assays, a diminution of SMAD2/3-ERK1/2 and an increase SMAD2/3-TGFBR1 interactions were observed when cells were co-incubated with trastuzumab and TGFB1. These findings indicate that blocking HER2 by trastuzumab inhibited pituitary tumor growth and modulated HER2/ERK1/2 signaling and consequently the anti-mitogenic TGFB1/TBRs/SMADs cascade. The imbalance between HER2 and TGFBRs expression observed in human adenomas and the response to trastuzumab on experimental tumor growth may make the HER2/ERK1/2 pathway an attractive target for future pituitary adenoma therapy.

Ungefroren H, Gieseler F, Kaufmann R, et al.
Signaling Crosstalk of TGF-β/ALK5 and PAR2/PAR1: A Complex Regulatory Network Controlling Fibrosis and Cancer.
Int J Mol Sci. 2018; 19(6) [PubMed] Free Access to Full Article Related Publications
Both signaling by transforming growth factor-β (TGF-β) and agonists of the G Protein-coupled receptors proteinase-activated receptor-1 (PAR1) and -2 (PAR2) have been linked to tissue fibrosis and cancer. Intriguingly, TGF-β and PAR signaling either converge on the regulation of certain matrix genes overexpressed in these pathologies or display mutual regulation of their signaling components, which is mediated in part through sphingosine kinases and sphingosine-1-phosphate and indicative of an intimate signaling crosstalk between the two pathways. In the first part of this review, we summarize the various regulatory interactions that have been discovered so far according to the organ/tissue in which they were described. In the second part, we highlight the types of signaling crosstalk between TGF-β on the one hand and PAR2/PAR1 on the other hand. Both ligand⁻receptor systems interact at various levels and by several mechanisms including mutual regulation of ligand⁻ligand, ligand⁻receptor, and receptor⁻receptor at the transcriptional, post-transcriptional, and receptor transactivation levels. These mutual interactions between PAR2/PAR1 and TGF-β signaling components eventually result in feed-forward loops/vicious cycles of matrix deposition and malignant traits that exacerbate fibrosis and oncogenesis, respectively. Given the crucial role of PAR2 and PAR1 in controlling TGF-β receptor activation, signaling, TGF-β synthesis and bioactivation, combining PAR inhibitors with TGF-β blocking agents may turn out to be more efficient than targeting TGF-β alone in alleviating unwanted TGF-β-dependent responses but retaining the beneficial ones.

Liu B, Tan J, Wang X, Liu X
Identification of recurrent risk-related genes and establishment of support vector machine prediction model for gastric cancer.
Neoplasma. 2018; 65(3):360-366 [PubMed] Related Publications
This study sought to investigate genes related to recurrent risk and establish a support vector machine (SVM) classifier for prediction of recurrent risk in gastric cancer (GC).Based on the gene expression profiling dataset GSE26253, feature genes that were significantly associated with survival time and status were screened out. Subsequently, protein-protein interaction (PPI) network was constructed for these feature genes, and genes in this network was optimized using betweenness centrality algorithm in order to identify genes potentially correlated with GC (named as GCGs). In total, 1202 feature genes were identified to be significantly associated with survival time and status of GC, among of which, 65 genes were identified as a classifier that was able to recognize recurrence and nonrecurrence GC cases with a high sensitivity and specificity, predictive value (PPV), negative predictive value (NPV) and area under the receiver operating characteristic curve (AUC). Furthermore, the classifier was able to reasonably classify tumor samples in GSE15459 into high and low recurrent risk groups. Among those genes, a set of genes were predicted to have interactions (e.g. RHOA interacting with TGFBR1, PRKACA and PLCG1; TGFBR1 interacting with TGFBR2) and be involved in pathways like MAPK signaling (e.g. TGFBR1 and TGFBR2), adherens junction (e.g. RHOA) and apoptosis (e.g. PRKACA).The genes in the classifier model may be related to GC recurrence, and the classifier model may contribute to the prediction of recurrent risk in GC.

Fang X, Ni N, Gao Y, et al.
A novel mouse model of testicular granulosa cell tumors.
Mol Hum Reprod. 2018; 24(7):343-356 [PubMed] Free Access to Full Article Related Publications
STUDY QUESTION: What is the role of dysregulated transforming growth factor beta (TGFB) signaling in the development of sex cord-stromal tumors in the testis?
SUMMARY ANSWER: Overactivation of TGFB signaling results in the development of testicular tumors resembling granulosa cell tumors (GrCTs).
WHAT IS KNOWN ALREADY: In an earlier study, we demonstrated that constitutively active TGFB receptor 1 (TGFBR1) in ovarian somatic cells promotes the development of ovarian GrCTs. However, the consequence of dysregulation of TGFB signaling in the pathobiology of the testis, remains poorly defined.
STUDY DESIGN, SIZE, DURATION: To identify the impact of dysregulation of TGFB signaling on the testis, we generated mice with constitutive activation of TGFBR1 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase. The effect of constitutively active TGFBR1 on testis development and the timeline of testicular tumor formation were examined. We further investigated the molecular features of testicular tumors and determined the expression of beta-catenin (CTNNB1) known to be involved in testicular GrCT development.
PARTICIPANTS/MATERIALS, SETTING, METHODS: Male mice with constitutive activation of TGFBR1 were examined at various developmental stages (i.e. from 1 week up to 6 months) along with controls. Testis samples were collected and processed for histological and molecular analyses, including haematoxylin and eosin (H and E) staining, real-time PCR, immunohistochemistry, immunofluorescence and western blotting. Immunostaining/immunoblotting and real-time PCR experiments were performed using at least three animals per genotype. Data are presented as mean ± SEM. Statistical significance was determined using unpaired two-tail t-test and reported when P value is <0.05.
MAIN RESULTS AND THE ROLE OF CHANCE: Mice harboring constitutively active TGFBR1 in the testes developed tumors resembling testicular GrCTs, a rare type of tumors in the testis. The formation of testicular tumors led to altered cell proliferation, loss of germ cells and defective spermatogenesis. Immunohistochemically, these tumors were positive for inhibin alpha (INHA), forkhead box O1 (FOXO1), and more importantly, forkhead box L2 (FOXL2), a protein specifically expressed in the ovary and required for normal granulosa cell differentiation and function. Consistent with the immunohistochemical findings, FOXL2 proteins were only detectable in testes of TGFBR1-CAAcre mice but not those of controls by western blotting, suggesting potential alteration of Sertoli cell fate. To explore mechanisms underlying the tumor-promoting effect of TGFBR1 overactivation, we examined the expression of CTNNB1. The results revealed increased expression of CTNNB1 in testicular tumors in TGFBR1-CAAcre mice. Collectively, this study uncovered tumorigenic function of enhanced TGFB signaling in the testis.
LARGE-SCALE DATA: N/A.
LIMITATIONS, REASONS FOR CAUTION: This study was performed using mice, and the direct relevance of the experimental paradigm and findings to human testicular GrCTs awaits further investigation. Of note, constitutive activation of TGFBR1 was employed to enhance TGFB/SMAD signaling activity and may not be interpreted as the genetic cause of the disease.
WIDER IMPLICATIONS OF THE FINDINGS: This mouse model may prove to be a useful addition to the mouse genetics toolkit for GrCT research. Our finding that dysregulation of TGFB signaling results in the development of testicular GrCTs supports a common origin between Sertoli cells and granulosa cells, and highlights the paramount importance of balanced TGFB signaling in reproduction and development.
STUDY FUNDING/COMPETING INTEREST(S): This research was supported by the National Institutes of Health grant R03HD082416 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development and the New Faculty Start-up Funds from Texas A&M University awarded to Q.L. The authors declare no competing interest.

Tan J, Qian X, Song B, et al.
Integrated bioinformatics analysis reveals that the expression of cathepsin S is associated with lymph node metastasis and poor prognosis in papillary thyroid cancer.
Oncol Rep. 2018; 40(1):111-122 [PubMed] Free Access to Full Article Related Publications
The prognosis of the majority of patients with papillary thyroid cancer (PTC) is excellent, although there are patients who experience disease recurrence and progression. The aim of the present study was to identify potential prognostic risk markers in PTC. Differentially expressed genes (DEGs), identified from four Genome Expression Omnibus cohorts were subjected to functional enrichment analyses with Gene Ontology terms and the Kyoto Encyclopedia of Genes and Genome pathways. Hub genes, filtered from cytoHubba, were validated using the The Cancer Genome Atlas (TCGA) cohort, and their associations with clinicopathological features and prognosis were analyzed. A total of 277 DEGs were identified following data preprocessing. DEGs were primarily enriched in 'small cell lung cancer', 'ECM-receptor interaction', 'pathways in cancer'and 'tyrosine metabolism'. Hub genes [APOE, cathepsin S (CTSS), insulin receptor substrate 1 (IRS1), KIT, LGALS3, RUNX2 and TGFBR1] were extracted from cytoHubba. Their expression in the TCGA cohort was consistent with that in the GEO cohorts. CTSS (P=0.006) and IRS1 (P=0.005) were associated with disease‑free survival, as determined using the Kaplan-Meier analysis. CTSS was an independent risk factor for poor disease‑free survival (HR, 2.649; 95% CI, 1.095-6.409; P=0.031). Patients with high expression of CTSS exhibited different histological types (increased tall-cell subtype and reduced follicular subtype; P<0.001), more frequent lymph node metastasis (P<0.001) and advanced tumor-node-metastasis stages (P=0.049) compared with the low-expression group. High expression of CTSS was independently associated with lymph node metastasis (OR, 2.015; 95% CI, 1.225-3.315; P=0.006). Therefore, CTSS may serve as a predictive risk marker for the progression and prognosis of PTC.

Deng C, Lin YX, Qi XK, et al.
TNFRSF19 Inhibits TGFβ Signaling through Interaction with TGFβ Receptor Type I to Promote Tumorigenesis.
Cancer Res. 2018; 78(13):3469-3483 [PubMed] Related Publications
Genetic susceptibility underlies the pathogenesis of cancer. We and others have previously identified a novel susceptibility gene

Murillo-Garzón V, Gorroño-Etxebarria I, Åkerfelt M, et al.
Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer.
Nat Commun. 2018; 9(1):1747 [PubMed] Free Access to Full Article Related Publications
Wnt-11 promotes cancer cell migration and invasion independently of β-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD

Deng WW, Li YC, Ma SR, et al.
Specific blockade CD73 alters the "exhausted" phenotype of T cells in head and neck squamous cell carcinoma.
Int J Cancer. 2018; 143(6):1494-1504 [PubMed] Related Publications
The adenosine-induced immunosuppression hampers the immune response toward tumor cells and facilitates the tumor cells to evade immunosurveillance. CD73, an ecto-5-nucleotidase, is the ectoenzyme dephosphorylating extracellular AMP to adenosine. Here, using immunocompetent transgenic head and neck squamous cell carcinoma (HNSCC) mouse model, immune profiling showed high expression of CD73 on CD4

Wojciech S, Ahmad R, Belaid-Choucair Z, et al.
The orphan GPR50 receptor promotes constitutive TGFβ receptor signaling and protects against cancer development.
Nat Commun. 2018; 9(1):1216 [PubMed] Free Access to Full Article Related Publications
Transforming growth factor-β (TGFβ) signaling is initiated by the type I, II TGFβ receptor (TβRI/TβRII) complex. Here we report the formation of an alternative complex between TβRI and the orphan GPR50, belonging to the G protein-coupled receptor super-family. The interaction of GPR50 with TβRI induces spontaneous TβRI-dependent Smad and non-Smad signaling by stabilizing the active TβRI conformation and competing for the binding of the negative regulator FKBP12 to TβRI. GPR50 overexpression in MDA-MB-231 cells mimics the anti-proliferative effect of TβRI and decreases tumor growth in a xenograft mouse model. Inversely, targeted deletion of GPR50 in the MMTV/Neu spontaneous mammary cancer model shows decreased survival after tumor onset and increased tumor growth. Low GPR50 expression is associated with poor survival prognosis in human breast cancer irrespective of the breast cancer subtype. This describes a previously unappreciated spontaneous TGFβ-independent activation mode of TβRI and identifies GPR50 as a TβRI co-receptor with potential impact on cancer development.

Liu JF, Wu L, Yang LL, et al.
Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer.
J Exp Clin Cancer Res. 2018; 37(1):44 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: T-cell immunoglobulin mucin 3 (TIM3) is a negative immune checkpoint and plays a crucial part in tumor-induced immune suppression. However, the mechanism of TIM3 in regulating immunosuppression in head and neck squamous cell carcinoma (HNSCC) was still not quite clear.
METHODS: We carried out the immunohistochemistry staining of HNSCC tissue microarrays. Through quantification of the histoscore, we performed the correlation analysis among the TIM3, Galectin-9, Foxp3, CD68 and CD163. The effects of TIM3 on regulatory T cells (Tregs) and macrophages were detected by utilizing the Tgfbr1/Pten 2cKO HNSCC mouse model. Flow cytometry were used to analysis the percent of Tregs, macrophages and IFN-γ.
RESULTS: We demonstrated the close association among TIM3/Galectin-9 pathway, regulatory T cell marker (Foxp3) and macrophage marker (CD68, CD163) in human HNSCC. In the transgenic HNSCC mouse model, blockade of TIM3 by the anti-TIM3 monoclonal antibody induced a reduction of CD4
CONCLUSIONS: The present study demonstrated that TIM3 was associated with the immunosuppression in HNSCC. And targeting TIM3 can enhance anti-tumor immune response by decreasing Tregs in HNSCC.

He J, Jin Y, Zhou M, et al.
Solute carrier family 35 member F2 is indispensable for papillary thyroid carcinoma progression through activation of transforming growth factor-β type I receptor/apoptosis signal-regulating kinase 1/mitogen-activated protein kinase signaling axis.
Cancer Sci. 2018; 109(3):642-655 [PubMed] Free Access to Full Article Related Publications
Solute carrier family members control essential physiological functions and are tightly linked to human diseases. Solute carrier family 35 member F2 (SLC35F2) is aberrantly activated in several malignancies. However, the biological function and molecular mechanism of SLC35F2 in papillary thyroid carcinoma (PTC) are yet to be fully explored. Here, we showed that SLC35F2 was prominently upregulated in PTC tissues at both protein and mRNA expression level compared with matched adjacent normal tissues. Besides, the high expression of SLC35F2 was significantly associated with lymph node metastasis in patients with PTC. CRISPR/Cas9-mediated knockout of SLC35F2 attenuated the tumorigenic properties of PTC, including cell proliferation, migration and invasion and induced G1 phase arrest. In contrast, ectopic expression of SLC35F2 brought about aggressive malignant phenotypes of PTC cells. Moreover, SLC35F2 expedited the proliferation and migration of PTC cells by targeting transforming growth factor-β type I receptor (TGFBR1) and phosphorylation of apoptosis signal-regulating kinase 1 (p-ASK-1), thereby activating the mitogen-activated protein kinase signaling pathway. The malignant behaviors induced by overexpression of SLC35F2 could be abrogated by silencing of TGFBR1 using a specific inhibitor. We conducted the first study on SLC35F2 in thyroid cancer with the aim of elucidating the functional significance and molecular mechanism of SLC35F2. Our findings suggest that SLC35F2 exerts its oncogenic effect on PTC progression through the mitogen-activated protein kinase pathway, with dependence on activation of TGFBR-1 and apoptosis signal-regulating kinase 1.

Zhang L, Zhou D, Guan W, et al.
Pyridoxine 5'-phosphate oxidase is a novel therapeutic target and regulated by the TGF-β signalling pathway in epithelial ovarian cancer.
Cell Death Dis. 2017; 8(12):3214 [PubMed] Free Access to Full Article Related Publications
Pyridoxine 5'-phosphate oxidase (PNPO) is an enzyme that converts pyridoxine 5'-phosphate into pyridoxal 5'-phosphate (PLP), an active form of vitamin B6 implicated in several types of cancer. However, the role of PNPO and its regulatory mechanism in epithelial ovarian cancer (EOC) are unknown. In the present study, PNPO expression in human ovarian tumour tissue and its association with the clinicopathological features of patients with EOC were examined. Further, the biological function of PNPO in EOC cells and in xenograft was evaluated. We demonstrated for the first time that PNPO was overexpressed in human EOC. Knockdown of PNPO induced EOC cell apoptosis, arrested cell cycle at G2/M phase, decreased cell proliferation, migration and invasion. Xenografts of PNPO-shRNA-expressing cells into the nude mouse attenuated tumour growth. PNPO at mRNA and protein levels in EOC cells was decreased after transforming growth factor-β1 (TGF-β1) treatment. The inhibitory effect of TGF-β1 on PNPO expression was abolished in the presence of SB-431542, a TGF-β type I receptor kinase inhibitor. Moreover, we found that TGF-β1-mediated PNPO expression was at least in part through the upregulation of miR-143-3p. These data indicate a mechanism underlying PNPO regulation by the TGF-β signalling pathway. Furthermore, PLP administration reduced PNPO expression and decreased EOC cell proliferation, suggesting a feedback loop between PLP and PNPO. Thus, our findings reveal that PNPO can serve as a novel tissue biomarker of EOC and may be a potential target for therapeutic intervention.

Shinriki S, Jono H, Maeshiro M, et al.
Loss of CYLD promotes cell invasion via ALK5 stabilization in oral squamous cell carcinoma.
J Pathol. 2018; 244(3):367-379 [PubMed] Related Publications
Oral squamous cell carcinoma (OSCC) has a very poor prognosis because of its highly invasive nature, and the 5-year survival rate has not changed appreciably for the past 30 years. Although cylindromatosis (CYLD), a deubiquitinating enzyme, is thought to be a potent tumour suppressor, its biological and clinical significance in OSCC is largely unknown. This study aimed to clarify the roles of CYLD in OSCC progression. Our immunohistochemical analyses revealed significantly reduced CYLD expression in invasive areas in OSCC tissues, whereas CYLD expression was conserved in normal epithelium and carcinoma in situ. Furthermore, downregulation of CYLD by siRNA led to the acquisition of mesenchymal features and increased migratory and invasive properties in OSCC cells and HaCaT keratinocytes. It is interesting that CYLD knockdown promoted transforming growth factor-β (TGF-β) signalling by inducing stabilization of TGF-β receptor I (ALK5) in a cell autonomous fashion. In addition, the response to exogenous TGF-β stimulation was enhanced by CYLD downregulation. The invasive phenotypes induced by CYLD knockdown were completely blocked by an ALK5 inhibitor. In addition, lower expression of CYLD was significantly associated with the clinical features of deep invasion and poor overall survival, and also with increased phosphorylation of Smad3, which is an indicator of activation of TGF-β signalling in invasive OSCC. These findings suggest that downregulation of CYLD promotes invasion with mesenchymal transition via ALK5 stabilization in OSCC cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Witte D, Otterbein H, Förster M, et al.
Negative regulation of TGF-β1-induced MKK6-p38 and MEK-ERK signalling and epithelial-mesenchymal transition by Rac1b.
Sci Rep. 2017; 7(1):17313 [PubMed] Free Access to Full Article Related Publications
Prompted by earlier findings that the Rac1-related isoform Rac1b inhibits transforming growth factor (TGF)-β1-induced canonical Smad signalling, we studied here whether Rac1b also impacts TGF-β1-dependent non-Smad signalling such as the MKK6-p38 and MEK-ERK mitogen-activated protein kinase (MAPK) pathways and epithelial-mesenchymal transition (EMT). Transient depletion of Rac1b protein in pancreatic cancer cells by RNA interference increased the extent and duration of TGF-β1-induced phosphorylation of p38 MAPK in a Smad4-independent manner. Rac1b depletion also strongly increased basal ERK activation - independent of the kinase function of the TGF-β type I receptor ALK5 - and sensitised cells towards further upregulation of phospho-ERK levels by TGF-β1, while ectopic overexpression of Rac1b had the reverse effect. Rac1b depletion increased an EMT phenotype as evidenced by cell morphology, gene expression of EMT markers, cell migration and growth inhibition. Inhibition of MKK6-p38 or MEK-ERK signalling partially relieved the Rac1b depletion-dependent increase in TGF-β1-induced gene expression and cell migration. Rac1b depletion also enhanced TGF-β1 autoinduction of crucial TGF-β pathway components and decreased that of TGF-β pathway inhibitors. Our results show that Rac1b antagonises TGF-β1-dependent EMT by inhibiting MKK6-p38 and MEK-ERK signalling and by controlling gene expression in a way that favors attenuation of TGF-β signalling.

Gao Y, Fang X, Vincent DF, et al.
Disruption of postnatal folliculogenesis and development of ovarian tumor in a mouse model with aberrant transforming growth factor beta signaling.
Reprod Biol Endocrinol. 2017; 15(1):94 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Transforming growth factor beta (TGFB) superfamily signaling is implicated in the development of sex cord-stromal tumors, a category of poorly defined gonadal tumors. The aim of this study was to determine potential effects of dysregulated TGFB signaling in the ovary using Cre recombinase driven by growth differentiation factor 9 (Gdf9) promoter known to be expressed in oocytes.
METHODS: A mouse model containing constitutively active TGFBR1 (TGFBR1
RESULTS: TGFBR1-CA
CONCLUSIONS: These results reinforce the role of constitutively active TGFBR1 in promoting ovarian tumorigenesis in mice. The mouse model created in this study may be further exploited to define the cellular and molecular mechanisms of TGFB/activin downstream signaling in granulosa cell tumor development. Future studies are needed to test whether activation of TGFB/activin signaling contributes to the development of human granulosa cell tumors.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. TGFBR1, Cancer Genetics Web: http://www.cancer-genetics.org/TGFBR1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999