ALCAM

Gene Summary

Gene:ALCAM; activated leukocyte cell adhesion molecule
Aliases: MEMD, CD166
Location:3q13.11
Summary:This gene encodes activated leukocyte cell adhesion molecule (ALCAM), also known as CD166 (cluster of differentiation 166), which is a member of a subfamily of immunoglobulin receptors with five immunoglobulin-like domains (VVC2C2C2) in the extracellular domain. This protein binds to T-cell differentiation antigene CD6, and is implicated in the processes of cell adhesion and migration. Multiple alternatively spliced transcript variants encoding different isoforms have been found. [provided by RefSeq, Aug 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:CD166 antigen
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (10)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: ALCAM (cancer-related)

Wang Y, Yu W, Zhu J, et al.
Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma.
J Exp Clin Cancer Res. 2019; 38(1):168 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chimeric antigen receptor (CAR)-engineered T cells have displayed outstanding performance in the treatment of patients with hematological malignancies. However, their efficacy against solid tumors has been largely limited.
METHODS: In this study, human osteosarcoma cell lines were prepared, flow cytometry using antibodies against CD166 was performed on different cell samples. CD166-specific T cells were obtained by viral gene transfer of corresponding DNA plasmids and selectively expanded using IL-2 and IL-15. The ability of CD166.BBζ CAR-T cells to kill CD166
RESULTS: CD166 was selectively expressed on four different human osteosarcoma cell lines, indicating its role as the novel target for CAR-T cell therapy. CD166.BBζ CAR-T cells killed osteosarcoma cell lines in vitro; the cytotoxicity correlated with the level of CD166 expression on the tumor cells. Intravenous injection of CD166.BBζ CAR-T cells into mice resulted in the regression of the tumor with no obvious toxicity.
CONCLUSIONS: Together, the data suggest that CD166.BBζ CAR-T cells may serve as a new therapeutic strategy in the future clinical practice for the treatment of osteosarcoma.

Sato Y, Yamada T, Hiroyama T, et al.
A robust culture method for maintaining tumorigenic cancer stem cells in the hepatocellular carcinoma cell line Li-7.
Cancer Sci. 2019; 110(5):1644-1652 [PubMed] Free Access to Full Article Related Publications
Cancer tissues contain small populations of highly tumorigenic cells termed cancer stem cells (CSCs). Immortalized cell lines containing CSCs are valuable and powerful experimental tools for research into the characteristics of these stem cells. We previously reported that the hepatocellular carcinoma cell line Li-7 includes abundant CD13

Cheng Y, Lu Y, Zhang D, et al.
Metastatic cancer cells compensate for low energy supplies in hostile microenvironments with bioenergetic adaptation and metabolic reprogramming.
Int J Oncol. 2018; 53(6):2590-2604 [PubMed] Related Publications
Metastasis accounts for the majority of cancer-related mortalities, and the complex processes of metastasis remain the least understood aspect of cancer biology. Metabolic reprogramming is associated with cancer cell survival and metastasis in a hostile envi-ronment with a limited nutrient supply, such as solid tumors. Little is known regarding the differences of bioenergetic adaptation between primary tumor cells and metastatic tumor cells in unfavorable microenvironments; to clarify these differences, the present study aimed to compare metabolic reprogramming of primary tumor cells and metastatic tumor cells. SW620 metastatic tumor cells exhibited stronger bioenergetic adaptation in unfavorable conditions compared with SW480 primary tumor-derived cells, as determined by the sustained elevation of glycolysis and regulation of the cell cycle. This remarkable glycolytic ability of SW620 cells was associated with high expression levels of hexokinase (HK)1, HK2, glucose transporter type 1 and hypoxia-inducible factor 1α. Compared with SW480 cells, the expression of cell cycle regulatory proteins was effectively inhibited in SW620 cells to sustain cell survival when there was a lack of energy. Furthermore, SW620 cells exhibited a stronger mesenchymal phenotype and stem cell characteristics compared with SW480 cells; CD133 and CD166 were highly expressed in SW620 cells, whereas expression was not detected in SW480 cells. These data may explain why metastatic cancer cells exhibit greater microenvironmental adaptability and survivability; specifically, this may be achieved by upregulating glycolysis, optimizing the cell cycle and reprogramming cell metabolism. The present study may provide a target metabolic pathway for cancer metastasis therapy.

Durinikova E, Kozovska Z, Poturnajova M, et al.
ALDH1A3 upregulation and spontaneous metastasis formation is associated with acquired chemoresistance in colorectal cancer cells.
BMC Cancer. 2018; 18(1):848 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Efficiency of colorectal carcinoma treatment by chemotherapy is diminished as the resistance develops over time in patients. The same holds true for 5-fluorouracil, the drug used in first line chemotherapy of colorectal carcinoma.
METHODS: Chemoresistant derivative of HT-29 cells was prepared by long-term culturing in increasing concentration of 5-fluorouracil. Cells were characterized by viability assays, flow cytometry, gene expression arrays and kinetic imaging. Immunomagnetic separation was used for isolation of subpopulations positive for cancer stem cells-related surface markers. Aldehyde dehydrogenase expression was attenuated by siRNA. In vivo studies were performed on SCID/bg mice.
RESULTS: The prepared chemoresistant cell line labeled as HT-29/EGFP/FUR is assigned with different morphology, decreased proliferation rate and 135-fold increased IC
CONCLUSION: Our study demonstrated that acquired chemoresistance goes along with metastatic and migratory phenotype and can be accompanied with increased activity of aldehyde dehydrogenase. We describe here the valuable model to study molecular link between resistance to chemotherapy and metastatic dissemination.

Berg J, Halvorsen AR, Bengtson MB, et al.
Levels and prognostic impact of circulating markers of inflammation, endothelial activation and extracellular matrix remodelling in patients with lung cancer and chronic obstructive pulmonary disease.
BMC Cancer. 2018; 18(1):739 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The development of both chronic obstructive pulmonary disease (COPD) and lung cancer (LC) is influenced by smoking related chronic pulmonary inflammation caused by an excessive innate immune response to smoke exposure. In addition, the smoking induced formation of covalent bonds between the carcinogens and DNA and the accumulation of permanent somatic mutations in critical genes are important in the carcinogenic processes, and can also induce inflammatory responses. How chronic inflammation is mirrored by serum markers in COPD and LC and if these markers reflect prognosis in patients with LC is, however, largely unknown.
METHODS: Serum levels of 18 markers reflecting inflammation, endothelial activation and extracellular matrix remodelling were analysed in 207 patients with non-small lung carcinoma (NSCLC) before surgery and 42 COPD patients. 56% of the LC patients also suffered from COPD. The serum samples were analysed by enzyme immunoassays.
RESULTS: Serum levels of OPG, PTX3, AXL, ALCAM, sCD163, CD147, CatS and DLL1 were significantly higher in patients with COPD as compared to patients with LC. High sTNFR1 levels were associated with improved progression free survival (PFS) and overall survival (OS) in LC patients with (PFS hazard ratio (HR) 0.49, OS HR 0.33) and without COPD (OS HR 0.30). High levels of OPG were associated with improved PFS (HR 0.17) and OS (HR 0.14) for LC with COPD. CRP was significantly associated with overall survival regardless of COPD status.
CONCLUSION: Several markers reflecting inflammation, endothelial activation and extracellular matrix remodelling are elevated in serum from patients with COPD compared to LC patients. Presence of COPD might influence the levels of circulating biomarkers. Some of these markers are also associated with prognosis.

Satar NA, Fakiruddin KS, Lim MN, et al.
Novel triple‑positive markers identified in human non‑small cell lung cancer cell line with chemotherapy-resistant and putative cancer stem cell characteristics.
Oncol Rep. 2018; 40(2):669-681 [PubMed] Free Access to Full Article Related Publications
Through the specific identification and direct targeting of cancer stem cells (CSCs), it is believed that a better treatment efficacy of cancer may be achieved. Hence, the present study aimed to identify a CSC subpopulation from adenocarcinoma cells (A549) as a model of non‑small cell lung cancer (NSCLC). Ιnitially, we sorted two subpopulations known as the triple‑positive (EpCAM+/CD166+/CD44+) and triple‑negative (EpCAM-/CD166-/CD44-) subpopulation using fluorescence-activated cell sorting (FACS). Sorted cells were subsequently evaluated for proliferation and chemotherapy-resistance using a viability assay and were further characterized for their clonal heterogeneity, self-renewal characteristics, cellular migration, alkaline dehydrogenase (ALDH) activity and the expression of stemness-related genes. According to our findings the triple‑positive subpopulation revealed significantly higher (P<0.01) proliferation activity, exhibited better clonogenicity, was mostly comprised of holoclones and had markedly bigger (P<0.001) spheroid formation indicating a better self-renewal capacity. A relatively higher resistance to both 5‑fluouracil and cisplatin with 80% expression of ALDH was observed in the triple‑positive subpopulation, compared to only 67% detected in the triple‑negative subpopulation indicated that high ALDH activity contributed to greater chemotherapy-resistance characteristics. Higher percentage of migrated cells was observed in the triple‑positive subpopulation with 56% cellular migration being detected, compared to only 19% in the triple‑negative subpopulation on day 2. This was similarly observed on day 3 in the triple‑positive subpopulation with 36% higher cellular migration compared to the triple‑negative subpopulation. Consistently, elevated levels of the stem cell genes such as REX1 and SSEA4 were also found in the triple‑positive subpopulation indicating that the subpopulation displayed a strong characteristic of pluripotency. In conclusion, our study revealed that the triple‑positive subpopulation demonstrated similar characteristics to CSCs compared to the triple‑negative subpopulation. It also confirmed the feasibility of using the triple‑positive (EpCAM+/CD166+/CD44+) marker as a novel candidate marker that may lead to the development of novel therapies targeting CSCs of NSCLC.

Xu Y, Hu J, Zhu Q, et al.
Co-detection of ALDH1A1, ABCG2, ALCAM and CD133 in three A549 subpopulations at the single cell level by one-step digital RT-PCR.
Integr Biol (Camb). 2018; 10(6):364-369 [PubMed] Related Publications
Cancer stem-like cells (CSCs) displaying the properties of normal stem cells have become the main culprit associated with cancer transportation and recurrence. As of now, various CSC functions and marker genes have been identified due to the heterogeneity of cancer, such as aldehyde dehydrogenase (ALDH), the second member of the ABC transporter G-subfamily (ABCG2), activated leukocyte cell adhesion molecule (ALCAM) and CD133. To investigate these markers, most conventional approaches are bulk-based strategies, which may veil the disparity of single cells' gene expression. In this study, one-step digital RT-PCR at the single cell level was developed to co-determine the expression of ALDH1A1, ABCG2, ALCAM and CD133 genes in A549 cancer stem cells that perform high ALDH activities (ALDH+ A549 cells), as well as in ALDH- A549 cells and A549 cells, with 36, 20 and 20 cell samples each. The results demonstrated that, when compared to single ALDH- or A549 cells, the majority of single ALDH+ A549 cells displayed a 1.5- and 2.0-fold increase in the gene expression of ALDH1A1 and ALCAM (P < 0.001), respectively. However, for ABCG2 and CD133, there was no significant difference (P > 0.05), which means that they are not appropriate as co-indicated markers to identify ALDH+ A549 cells. Conclusively, as a single cell level approach, one-step digital RT-PCR has potential in exploring efficient co-detection markers for the classification and identification of CSCs.

Jin UH, Karki K, Kim SB, Safe S
Inhibition of pancreatic cancer Panc1 cell migration by omeprazole is dependent on aryl hydrocarbon receptor activation of JNK.
Biochem Biophys Res Commun. 2018; 501(3):751-757 [PubMed] Free Access to Full Article Related Publications
Several aryl hydrocarbon receptor (AhR)-active pharmaceuticals were screened as inhibitors of pancreatic cancer cell invasion and identified two compounds, omeprazole, that inhibited invasion. Inhibition of highly invasive Panc1 cell invasion by omeprazole involves an AhR-dependent non-genomic pathway, and omeprazole-mediated inhibition of Panc1 cell invasion was dependent on Jun-N-terminal kinase (JNK) and mitogen-activated kinase kinase 7 (MKK7). The failure of omeprazole to induce nuclear translocation of the AhR was not due to overexpression of cytosolic AhR partner proteins Hsp90 or XAP2, and results of DNA sequencing show that the AhR expressed in Panc1 cells was not mutated. Results of RNAseq studies indicate that omeprazole induced an AhR-dependent downregulation of several pro-invasion factors including activated leukocyte cell adhesion molecule (ALCAM), long chain fatty acid CoA-synthase (CSL4), stathmin 3 (STMN3) and neuropillin 2 (NRP2), and the specific functions of these genes are currently being investigated.

Leng Z, Xia Q, Chen J, et al.
Lgr5+CD44+EpCAM+ Strictly Defines Cancer Stem Cells in Human Colorectal Cancer.
Cell Physiol Biochem. 2018; 46(2):860-872 [PubMed] Related Publications
BACKGROUND/AIMS: Although EpCAM+CD44+ cells exhibit more stem-like properties than did EpCAM-CD44- cells, the specificity of EpCAM combined with CD44 in defining CSCs needs further improvement. Lgr5 is used as a biomarker to isolate cancer stem cells (CSCs) in colorectal cancer. However, it remains unclear whether Lgr5, along with EpCAM and CD44, can further identify and define CSCs in colorectal cancer.
METHODS: Lgr5+CD44+EpCAM+, Lgr5+CD44+EpCAM-, Lgr5+CD44-EpCAM+, Lgr5-CD44+EpCAM+, and Lgr5-CD44-EpCAM-cells were separately isolated using fluorescence-activated cell sorting (FACS). Colony formation, self-renewal, differentiation, and tumorigenic properties of these cells were investigated through in vitro experiments and in vivo tumor xenograft models. The expression of stemness genes and CSC- and epithelial-mesenchymal transition (EMT)-related genes, such as KLF4, Oct4, Sox2, Nanog, CD133, CD44, CD166, ALDH1, Lgr5, E-cadherin, ZO-1, Vimentin, Snail, Slug, and Twist, was examined using real-time PCR.
RESULTS: Lgr5-positive subpopulations exhibited higher capacities for colony formation, self-renewal, differentiation, and tumorigenicity as well as higher expression of stemness genes and mesenchymal genes and lower expression of epithelial genes than did Lgr5-negative subpopulations.
CONCLUSION: Our data revealed that tumorigenic cells were highly restricted to Lgr5-positive subpopulations. Most importantly, Lgr5+CD44+EpCAM+ cells exhibited more pronounced CSC-like traits than did any other subpopulation, indicating that Lgr5 combined with CD44 and EpCAM can further improve the stem-like traits of CSCs in colorectal cancer.

Jeong YJ, Oh HK, Park SH, Bong JG
Prognostic Significance of Activated Leukocyte Cell Adhesion Molecule (ALCAM) in Association with Promoter Methylation of the ALCAM Gene in Breast Cancer.
Molecules. 2018; 23(1) [PubMed] Free Access to Full Article Related Publications
Activated leukocyte cell adhesion molecule (ALCAM) has been implicated in tumorigenesis. In this study, we studied DNA methylation status of the

Owen S, Zabkiewicz C, Ye L, et al.
Key Factors in Breast Cancer Dissemination and Establishment at the Bone: Past, Present and Future Perspectives.
Adv Exp Med Biol. 2017; 1026:197-216 [PubMed] Related Publications
Bone metastases associated with breast cancer remain a clinical challenge due to their associated morbidity, limited therapeutic intervention and lack of prognostic markers. With a continually evolving understanding of bone biology and its dynamic microenvironment, many potential new targets have been proposed. In this chapter, we discuss the roles of well-established bone markers and how their targeting, in addition to tumour-targeted therapies, might help in the prevention and treatment of bone metastases. There are a vast number of bone markers, of which one of the best-known families is the bone morphogenetic proteins (BMPs). This chapter focuses on their role in breast cancer-associated bone metastases, associated signalling pathways and the possibilities for potential therapeutic intervention. In addition, this chapter provides an update on the role receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) play on breast cancer development and their subsequent influence during the homing and establishment of breast cancer-associated bone metastases. Beyond the well-established bone molecules, this chapter also explores the role of other potential factors such as activated leukocyte cell adhesion molecule (ALCAM) and its potential impact on breast cancer cells' affinity for the bone environment, which implies that ALCAM could be a promising therapeutic target.

Xu Z, Chang CC, Li M, et al.
ILT3.Fc-CD166 Interaction Induces Inactivation of p70 S6 Kinase and Inhibits Tumor Cell Growth.
J Immunol. 2018; 200(3):1207-1219 [PubMed] Related Publications
The blockade of immune checkpoints by anti-receptor and/or anti-ligand mAb is one of the most promising approaches to cancer immunotherapy. The interaction between Ig-like transcript 3 (ILT3), a marker of tolerogenic dendritic cells, also known as LILRB4/LIR5/CD85k, and its still unidentified ligand on the surface of activated human T cells is potentially important for immune checkpoint blockade. To identify the ILT3 ligand, we generated mAb by immunizing mice with Jurkat acute T cell leukemia, which binds ILT3.Fc to its membrane. Flow cytometry, mass spectrometry, and Biacore studies demonstrated that the ILT3 ligand is a CD166/activated leukocyte cell adhesion molecule. Knockdown of CD166 in primary human T cells by nucleofection abolished the capacity of ILT3.Fc to inhibit CD4

Zhang H, Shi X, Chang W, et al.
Epigenetic alterations of the Igf2 promoter and the effect of miR‑483‑5p on its target gene expression in esophageal squamous cell carcinoma.
Mol Med Rep. 2018; 17(2):2251-2256 [PubMed] Free Access to Full Article Related Publications
Esophageal squamous cell carcinoma (ESCC) is one of the most widespread malignancies in China. MicroRNAs (miRNAs/miRs) are endogenous evolutionarily‑conserved small non‑coding RNAs that are able to regulate ESCC formation and deterioration by negatively regulating specific target genes. In the present study, the expression levels of miR‑483‑5p and its associated mRNAs were measured by quantitative polymerase chain reaction (PCR) analysis, and the methylation levels of the insulin‑like growth factor 2 (Igf2) promoter were detected via the methylation‑specific PCR method in serum and tissues from patients with ESCC. The results demonstrated that the expression level of miR‑483‑5p was significantly upregulated in preoperative serum and cancer tissues from patients with ESCC (P<0.01), and the miR‑483‑5p expression levels were correlated with the tumor, node, metastasis stage (P<0.05) and lymph node metastasis (P<0.05). In addition, the mRNA levels of miR‑483‑5p target genes (Rho GDP dissociation inhibitor α, activated leukocyte cell adhesion molecule, and suppressor of cytokine signaling 3) in cancer tissues were significantly decreased compared with adjacent non‑cancerous tissues. These results indicated that miR‑483‑5p and its target genes may be involved in the developmental process of ESCC. The Igf2 levels in cancer tissues were significantly increased compared with adjacent non‑cancerous tissues (P<0.01). Additionally, the methylation levels of the Igf2 promoter region were 31.82 and 54.55% in cancer tissues and adjacent non‑cancerous tissues, respectively, suggesting that low methylation of the Igf2 gene promoter region may promote the expression of Igf2 and miR‑483‑5p; this, in turn, induces the degradation of miR‑483‑5p target genes, and leads to the upregulation of oncogenes and the downregulation of tumor suppressors, which promotes the development of ESCC.

Yu X, Mi L, Dong J, Zou J
Long intergenic non-protein-coding RNA 1567 (LINC01567) acts as a "sponge" against microRNA-93 in regulating the proliferation and tumorigenesis of human colon cancer stem cells.
BMC Cancer. 2017; 17(1):716 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cancer stem cells (CSCs) are considered to be the major factor in tumor initiation, progression, metastasis, recurrence and chemoresistance. Maintaining the stemness and promoting differentiation of these cells involve various factors. Recently, long non-coding RNAs (lncRNAs) have been identified as new regulatory factors in human cancer cells. However, the function of lncRNAs in colon CSCs is still unknown.
METHODS: Primary colon cancer cells were maintained in serum-free medium to form spheres and CD133
RESULTS: The research explored lncRNA expression and the regulatory role of novel lncRNAs in colon CSCs. Using the stem cell markers CD133, CD166 and CD44, we found a subpopulation of highly tumorigenic human colon cancer cells. They displayed some characteristics of stem cells, including the ability to proliferate and form colonies, to resist chemotherapeutic drugs, and to produce xenografts in nude mice. We also found an lncRNA, LOCCS, with obviously upregulated expression in colon CSCs. Knockdown of LOCCS reduced cell proliferation, invasion, migration, and generation of tumor xenografts. Furthermore, microRNA-93 (miR-93) and Musashi-1 mediated the tumor suppression of LOCCS knockdown.
CONCLUSIONS: There was reciprocal repression between LOCCS and miR-93. Research on mechanisms suggested direct binding, as a predicted miR-93 binding site was identified in LOCCS. This comprehensive analysis of LOCCS in colon CSCs provides insight for elucidating important roles of the lncRNA-microRNA functional network in human colon cancer.

Sumardika IW, Youyi C, Kondo E, et al.
β-1,3-Galactosyl-
Oncol Res. 2018; 26(3):431-444 [PubMed] Related Publications
We previously identified novel S100A8/A9 receptors, extracellular matrix metalloproteinase inducer (EMMPRIN), melanoma cell adhesion molecule (MCAM), activated leukocyte cell adhesion molecule (ALCAM), and neuroplastin (NPTN) β, that are critically involved in S100A8/A9-mediated cancer metastasis and inflammation when expressed at high levels. However, little is known about the presence of any cancer-specific mechanism(s) that modifies these receptors, further inducing upregulation at protein levels without any transcriptional regulation. Expression levels of glycosyltransferase-encoding genes were examined by a PCR-based profiling array followed by confirmation with quantitative real-time PCR. Cell migration and invasion were assessed using a Boyden chamber. Western blotting was used to examine the protein level, and the RNA level was examined by Northern blotting. Immunohistochemistry was used to examine the expression pattern of β-1,3-galactosyl-

Piltti J, Bygdell J, Qu C, Lammi MJ
Effects of long-term low oxygen tension in human chondrosarcoma cells.
J Cell Biochem. 2018; 119(2):2320-2332 [PubMed] Related Publications
The cell-based therapies could be potential methods to treat damaged cartilage tissues. Instead of native hyaline cartilage, the current therapies generate mainly weaker fibrocartilage-type of repair tissue. A correct microenvironment influences the cellular phenotype, and together with external factors it can be used, for example, to aid the differentiation of mesenchymal stem cells to defined types of differentiated adult cells. In this study, we investigated the effect of long-term exposure to 5% low oxygen atmosphere on human chondrosarcoma HCS-2/8 cells. This atmosphere is close to normal oxygen tension of cartilage tissue. The proteome was analyzed with label-free mass spectrometric method and further bioinformatic analysis. The qRT-PCR method was used to gene expression analysis, and ELISA and dimethylmethylene blue assays for type II collagen and sulfated glycosaminoglycan measurements. The 5% oxygen atmosphere did not influence cell proliferation, but enhanced slightly ACAN and COL2A1 gene expression. Proteomic screening revealed a number of low oxygen-induced protein level responses. Increased ones included NDUFA4L2, P4HA1, NDRG1, MIF, LDHA, PYGL, while TXNRD1, BAG2, TXN2, AQSTM1, TNFRSF1B, and EPHX1 decreased during the long-term low oxygen atmosphere. Also a number of proteins previously not related to low oxygen tension changed during the treatment. Of those S100P, RPSS26, NDUFB11, CDV3, and TUBB8 had elevated levels, while ALCAM, HLA-B, EIF1, and ACOT9 were lower in the samples cultured at low oxygen tension. In conclusion, low oxygen condition causes changes in the cellular amounts of several proteins.

Dai X, Hua T, Hong T
Integrated diagnostic network construction reveals a 4-gene panel and 5 cancer hallmarks driving breast cancer heterogeneity.
Sci Rep. 2017; 7(1):6827 [PubMed] Free Access to Full Article Related Publications
Breast cancer encompasses a group of heterogeneous diseases, each associated with distinct clinical implications. Dozens of molecular biomarkers capable of categorizing tumors into clinically relevant subgroups have been proposed which, though considerably contribute in precision medicine, complicate our understandings toward breast cancer subtyping and its clinical translation. To decipher the networking of markers with diagnostic roles on breast carcinomas, we constructed the diagnostic networks by incorporating 6 publically available gene expression datasets with protein interaction data retrieved from BioGRID on previously identified 1015 genes with breast cancer subtyping roles. The Greedy algorithm and mutual information were used to construct the integrated diagnostic network, resulting in 37 genes enclosing 43 interactions. Four genes, FAM134B, KIF2C, ALCAM, KIF1A, were identified having comparable subtyping efficacies with the initial 1015 genes evaluated by hierarchical clustering and cross validations that deploy support vector machine and k nearest neighbor algorithms. Pathway, Gene Ontology, and proliferation marker enrichment analyses collectively suggest 5 primary cancer hallmarks driving breast cancer differentiation, with those contributing to uncontrolled proliferation being the most prominent. Our results propose a 37-gene integrated diagnostic network implicating 5 cancer hallmarks that drives breast cancer heterogeneity and, in particular, a 4-gene panel with clinical diagnostic translation potential.

Zhang Y, Qian C, Jing L, et al.
Meta-analysis indicating that high ALCAM expression predicts poor prognosis in colorectal cancer.
Oncotarget. 2017; 8(29):48272-48281 [PubMed] Free Access to Full Article Related Publications
Activated leukocyte cell adhesion molecule (ALCAM) has been linked to the development and progress of colorectal cancer (CRC). In this meta-analysis, we examined whether ALCAM expression is predictive of survival outcomes in CRC patients. We included 7 studies with 2048 patients in our meta-analysis after searching the PubMed, Cochrane Library, EMBASE, OVID and Web of Science databases. High ALCAM expression was associated with poor overall survival among CRC patients (HR = 1.94, 95%CI = 1.05-3.58, P = 0.03). High ALCAM expression was also associated with aggressive clinicopathological features such as tumor stage (T3,T4/T1,T2; HR = 2.66, 95%CI = 2.01-3.51, P < 0.00001), nodal status (Positive/Negative, HR = 2.12, 95%CI = 1.61-2.82, P < 0.00001), distant metastasis (M1/M0, HR = 3.30, 95%CI = 2,21-4.91, P < 0.00001), tumor grade (grade3/grade1,2, HR = 1,28, 95% CI = 1.00-1.62, P = 0.05), and patient age (> 60/< 60, HR = 1.29, 95%CI = 1.01-1.66, P = 0.05). These findings indicate that high ALCAM expression is associated with poor prognosis and advanced clinicopathological characteristics in CRC patients.

Bhatlekar S, Viswanathan V, Fields JZ, Boman BM
Overexpression of HOXA4 and HOXA9 genes promotes self-renewal and contributes to colon cancer stem cell overpopulation.
J Cell Physiol. 2018; 233(2):727-735 [PubMed] Related Publications
Because HOX genes encode master regulatory transcription factors that regulate stem cells (SCs) during development and aberrant expression of HOX genes occurs in various cancers, our goal was to determine if dysregulation of HOX genes is involved in the SC origin of colorectal cancer (CRC). We previously reported that HOXA4 and HOXD10 are expressed in the colonic SC niche and are overexpressed in CRC. HOX gene expression was studied in SCs from human colon tissue and CRC cells (CSCs) using qPCR and immunostaining. siRNA-mediated knockdown of HOX expression was used to evaluate the role of HOX genes in modulating cancer SC (CSC) phenotype at the level of proliferation, SC marker expression, and sphere formation. All-trans-retinoic-acid (ATRA), a differentiation-inducing agent was evaluated for its effects on HOX expression and CSC growth. We found that HOXA4 and HOXA9 are up-regulated in CRC SCs. siRNA knockdown of HOXA4 and HOXA9 reduced: (i) proliferation and sphere-formation and (ii) gene expression of known SC markers (ALDH1, CD166, LGR5). These results indicate that proliferation and self-renewal ability of CRC SCs are reduced in HOXA4 and HOXA9 knockdown cells. ATRA decreased HOXA4, HOXA9, and HOXD10 expression in parallel with reduction in ALDH1 expression, self-renewal, and proliferation. Overall, our findings indicate that overexpression of HOXA4 and HOXA9 contributes to self-renewal and overpopulation of SCs in CRC. Strategies designed to modulate HOX expression may provide ways to target malignant SCs and to develop more effective therapies for CRC.

Ke X, Yuan Y, Guo C, et al.
MiR-410 induces stemness by inhibiting Gsk3β but upregulating β-catenin in non-small cells lung cancer.
Oncotarget. 2017; 8(7):11356-11371 [PubMed] Free Access to Full Article Related Publications
Our previous research indicated miR-410 played a critical role in promoting the tumorigenesis and development of NSCLC (non-small cells lung cancer). MiR-410 has been recently reported to be crucial for development and differentiation of embryonic stem cells. But it remains elusive whether miR-410 stimulates the stemness of cancer until now. Herein, we identify miR-410 induces the stemness and is associated with the progression of NSCLC. We demonstrate miR-410 increases the levels of stem cells marker Sox2, Oct4, Nanog, CXCR4 as well as lung cancer stem cells surface marker CD44 and CD166. MiR-410 promotes stem cells-like properties such as proliferation, sphere formation, metastasis and chemoresistance. Moreover, Gsk3β is directly targeted and post-transcriptionally downregulated by miR-410. Also, the expression levels of miR-410 and Gsk3β may be correlated to clinicopathological differentiation in NSCLC tumor specimens. Additionally, we demonstrate miR-410 induces stemness through inhibiting Gsk3β but increasing Sox2, Oct4, Nanog and CXCR4, which binds to β-catenin signaling. In conclusion, our findings identify the miR-410/Gsk3β/β-catenin signaling axis is a novel molecular circuit in inducing stemness of NSCLC.

Chen MJ, Cheng YM, Chen CC, et al.
MiR-148a and miR-152 reduce tamoxifen resistance in ER+ breast cancer via downregulating ALCAM.
Biochem Biophys Res Commun. 2017; 483(2):840-846 [PubMed] Related Publications
Activated leukocyte cell adhesion molecule (ALCAM), also called CD166 is a 105-kDa transmembrane glycoprotein of the immunoglobin superfamily. In this study, we studied the association between ALCAM expression and tamoxifen resistance in ER + breast cancer and further investigated how ALCAM is regulated in the cancer cells. IHC staining data showed that the tumor tissues from non-responders (N = 20) generally had significantly stronger ALCAM staining than that from tamoxifen responders (N = 16). In vitro cell assay also confirmed ALCAM upregulation in tamoxifen resistant (TamR) MCF-7 cells than in tamoxifen sensitive (TamS) MCF-7 cells. ALCAM overexpression significantly alleviated 4-Hydroxytestosterone (4-OHT) induced cell viability inhibition and cell apoptosis in TamS MCF-7 cells, while ALCAM knockdown remarkably enhanced 4-OHT induced cell viability inhibition and cell apoptosis in TamR MCF-7 cells. Demethylation reagent treatment significantly restored miR-148a and miR-152 expression in TamR MCF-7 cells. MiR-148a and miR-152 can directly target ALCAM 3'UTR and decrease ALCAM expression. MiR-148a overexpression had similar effect as ALCAM siRNA on enhancing 4-OHT induced cell viability inhibition and cell apoptosis in TamR MCF-7 cells. MiR-152 overexpression alone caused growth inhibition and increased cell apoptosis in TamR MCF-7 cells. It also enhanced the effect of 4-OHT. Simultaneous inhibition of miR-148a and miR-152 significantly protected TamS MCF-7 cells from 4-OHT induced cell viability inhibition and cell apoptosis. Based on these findings, we infer that MiR-148a and miR-152 can sensitize TamR MCF-7 cells to tamoxifen at least via downregulating ALCAM.

Kim R, Park SI, Lee CY, et al.
Alternative new mesenchymal stem cell source exerts tumor tropism through ALCAM and N-cadherin via regulation of microRNA-192 and -218.
Mol Cell Biochem. 2017; 427(1-2):177-185 [PubMed] Free Access to Full Article Related Publications
Gliomas are the most common type of malignant primary brain tumors. Some treatments of gliomas exist, but they are rarely curative. Mesenchymal stem cells (MSCs) are emerging as potential modes of targeted cancer therapy owing to their capacity for homing toward tumor sites. It has been proposed that MSCs derived from various sources, such as bone marrow, adipose tissue and umbilical cord blood, can be used as cell-based therapy for brain tumors. Here, MSCs obtained from the synovial fluid of osteoarthritis or rheumatoid arthritis patients were investigated as therapeutic candidates. Specifically, we compared migratory and adhesive abilities, as well as expression levels of related genes and microRNA in bone marrow derived-MSCs (BMMSCs), adipose derived-MSCs (ADMSCs), and synovial fluid derived-MSCs (SFMSCs) after treatment with conditioned medium from gliomas. Migration and adhesion of SFMSCs increased through upregulation of the activated lymphocyte cell adhesion molecule (ALCAM) and N-cadherin by microRNA-192 and -218 downregulation, similar to BMMSCs and ADMSCs. Migratory capacities of all types of MSCs were evaluated in vivo, and SFMSCs migrated intensively toward gliomas. These results suggest that SFMSCs have potential for use in cell-based antitumor therapies.

Arnold Egloff SA, Du L, Loomans HA, et al.
Shed urinary ALCAM is an independent prognostic biomarker of three-year overall survival after cystectomy in patients with bladder cancer.
Oncotarget. 2017; 8(1):722-741 [PubMed] Free Access to Full Article Related Publications
Proteins involved in tumor cell migration can potentially serve as markers of invasive disease. Activated Leukocyte Cell Adhesion Molecule (ALCAM) promotes adhesion, while shedding of its extracellular domain is associated with migration. We hypothesized that shed ALCAM in biofluids could be predictive of progressive disease. ALCAM expression in tumor (n = 198) and shedding in biofluids (n = 120) were measured in two separate VUMC bladder cancer cystectomy cohorts by immunofluorescence and enzyme-linked immunosorbent assay, respectively. The primary outcome measure was accuracy of predicting 3-year overall survival (OS) with shed ALCAM compared to standard clinical indicators alone, assessed by multivariable Cox regression and concordance-indices. Validation was performed by internal bootstrap, a cohort from a second institution (n = 64), and treatment of missing data with multiple-imputation. While ALCAM mRNA expression was unchanged, histological detection of ALCAM decreased with increasing stage (P = 0.004). Importantly, urine ALCAM was elevated 17.0-fold (P < 0.0001) above non-cancer controls, correlated positively with tumor stage (P = 0.018), was an independent predictor of OS after adjusting for age, tumor stage, lymph-node status, and hematuria (HR, 1.46; 95% CI, 1.03-2.06; P = 0.002), and improved prediction of OS by 3.3% (concordance-index, 78.5% vs. 75.2%). Urine ALCAM remained an independent predictor of OS after accounting for treatment with Bacillus Calmette-Guerin, carcinoma in situ, lymph-node dissection, lymphovascular invasion, urine creatinine, and adjuvant chemotherapy (HR, 1.10; 95% CI, 1.02-1.19; P = 0.011). In conclusion, shed ALCAM may be a novel prognostic biomarker in bladder cancer, although prospective validation studies are warranted. These findings demonstrate that markers reporting on cell motility can act as prognostic indicators.

Devis L, Moiola CP, Masia N, et al.
Activated leukocyte cell adhesion molecule (ALCAM) is a marker of recurrence and promotes cell migration, invasion, and metastasis in early-stage endometrioid endometrial cancer.
J Pathol. 2017; 241(4):475-487 [PubMed] Related Publications
Endometrial cancer is the most common gynaecological cancer in western countries, being the most common subtype of endometrioid tumours. Most patients are diagnosed at an early stage and present an excellent prognosis. However, a number of those continue to suffer recurrence, without means of identification by risk classification systems. Thus, finding a reliable marker to predict recurrence becomes an important unmet clinical issue. ALCAM is a cell-cell adhesion molecule and member of the immunoglobulin superfamily that has been associated with the genesis of many cancers. Here, we first determined the value of ALCAM as a marker of recurrence in endometrioid endometrial cancer by conducting a retrospective multicentre study of 174 primary tumours. In early-stage patients (N = 134), recurrence-free survival was poorer in patients with ALCAM-positive compared to ALCAM-negative tumours (HR 4.237; 95% CI 1.01-17.76). This difference was more significant in patients with early-stage moderately-poorly differentiated tumours (HR 9.259; 95% CI 2.12-53.47). In multivariate analysis, ALCAM positivity was an independent prognostic factor in early-stage disease (HR 6.027; 95% CI 1.41-25.74). Then we demonstrated in vitro a role for ALCAM in cell migration and invasion by using a loss-of-function model in two endometrial cancer cell lines. ALCAM depletion resulted in a reduced primary tumour size and reduced metastatic local spread in an orthotopic murine model. Gene expression analysis of ALCAM-depleted cell lines pointed to motility, invasiveness, cellular assembly, and organization as the most deregulated functions. Finally, we assessed some of the downstream effector genes that are involved in ALCAM-mediated cell migration; specifically FLNB, TXNRD1, and LAMC2 were validated at the mRNA and protein level. In conclusion, our results highlight the potential of ALCAM as a recurrent biomarker in early-stage endometrioid endometrial cancer and point to ALCAM as an important molecule in endometrial cancer dissemination by regulating cell migration, invasion, and metastasis. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Lettini G, Sisinni L, Condelli V, et al.
TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma.
Cell Death Differ. 2016; 23(11):1792-1803 [PubMed] Free Access to Full Article Related Publications
Colorectal carcinoma (CRC) is a common cause of cancer-related death worldwide. Indeed, treatment failures are triggered by cancer stem cells (CSCs) that give rise to tumor repopulation upon initial remission. Thus, the role of the heat shock protein TRAP1 in stemness was investigated in CRC cell lines and human specimens, based on its involvement in colorectal carcinogenesis, through regulation of apoptosis, protein homeostasis and bioenergetics. Strikingly, co-expression between TRAP1 and stem cell markers was observed in stem cells located at the bottom of intestinal crypts and in CSCs sorted from CRC cell lines. Noteworthy, TRAP1 knockdown reduced the expression of stem cell markers and impaired colony formation, being the CSC phenotype and the anchorage-independent growth conserved in TRAP1-rich cancer cells. Consistently, the gene expression profiling of HCT116 cells showed that TRAP1 silencing results in the loss of the stem-like signature with acquisition of a more-differentiated phenotype and the downregulation of genes encoding for activating ligands and target proteins of Wnt/β-catenin pathway. Mechanistically, TRAP1 maintenance of stemness is mediated by the regulation of Wnt/β-catenin signaling, through the modulation of the expression of frizzled receptor ligands and the control of β-catenin ubiquitination/phosphorylation. Remarkably, TRAP1 is associated with higher expression of β-catenin and several Wnt/β-catenin target genes in human CRCs, thus supporting the relevance of TRAP1 regulation of β-catenin in human pathology. This study is the first demonstration that TRAP1 regulates stemness and Wnt/β-catenin pathway in CRC and provides novel landmarks in cancer biology and therapeutics.

El Khoury F, Corcos L, Durand S, et al.
Acquisition of anticancer drug resistance is partially associated with cancer stemness in human colon cancer cells.
Int J Oncol. 2016; 49(6):2558-2568 [PubMed] Related Publications
Colorectal cancer (CRC) is one of the most aggressive cancers worldwide. Several anticancer agents are available to treat CRC, but eventually cancer relapse occurs. One major cause of chemotherapy failure is the emergence of drug-resistant tumor cells, suspected to originate from the stem cell compartment. The aim of this study was to ask whether drug resistance was associated with the acquisition of stem cell-like properties. We isolated drug-resistant derivatives of two human CRC cell lines, HT29 and HCT116, using two anticancer drugs with distinct modes of action, oxaliplatin and docetaxel. HT29 cells resistant to oxaliplatin and both HT29 and HCT116 cells resistant to docetaxel were characterized for their expression of genes potentially involved in drug resistance, cell growth and cell division, and by surveying stem cell-like phenotypic traits, including marker genes, the ability to repair cell-wound and to form colonospheres. Among the genes involved in platinum or taxane resistance (MDR1, ABCG2, MRP2 or ATP7B), MDR1 was uniquely overexpressed in all the resistant cells. An increase in the cyclin-dependent kinase inhibitor p21, in cyclin D1 and in CD26, CD166 cancer stem cell markers, was noted in the resistant cells, together with a higher ability to form larger and more abundant colonospheres. However, many phenotypic traits were selectively altered in either HT29- or in HCT116-resistant cells. Expression of EPHB2, ITGβ-1 or Myc was specifically increased in the HT29-resistant cells, whereas only HCT116-resistant cells efficiently repaired cell- wounds. Taken together, our results show that human CRC cells selected for their resistance to anticancer drugs displayed a few stem cell characteristics, a small fraction of which was shared between cell lines. The occurrence of marked phenotypic differences between HT29- and HCT116-drug resistant cells indicates that the acquired resistance depends mostly on the parental cell characteristics, rather than on the drug type used.

Xu L, Mohammad KS, Wu H, et al.
Cell Adhesion Molecule CD166 Drives Malignant Progression and Osteolytic Disease in Multiple Myeloma.
Cancer Res. 2016; 76(23):6901-6910 [PubMed] Free Access to Full Article Related Publications
Multiple myeloma is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here, we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in multiple myeloma cell lines and primary bone marrow cells from patients. CD166

Zhang WW, Zhan SH, Geng CX, et al.
Activated leukocyte cell adhesion molecule regulates the interaction between pancreatic cancer cells and stellate cells.
Mol Med Rep. 2016; 14(4):3627-33 [PubMed] Free Access to Full Article Related Publications
Activated leukocyte cell adhesion molecule (ALCAM/CD166) is a transmembrane glycoprotein that is involved in tumor progression and metastasis. In the present study, the expression and functional role of ALCAM in pancreatic cancer cells and pancreatic stellate cells (PSCs) was investigated. Tissue specimens were obtained from patients with pancreatic ductal adenocarcinoma (n=56) or chronic pancreatitis (CP; n=10), who underwent pancreatic resection, and from normal pancreatic tissue samples (n=10). Immunohistochemistry was used to analyze the localization and expression of ALCAM in pancreatic tissues. Subsequently, reverse transcription‑quantitative polymerase chain reaction and immunoblotting were applied to assess the expression of ALCAM in pancreatic cancer Panc‑1 and T3M4 cells, as well as in PSCs. An enzyme‑linked immunosorbent assay was used to measure ALCAM levels in cell culture medium stimulated by hypoxia, tumor necrosis factor (TNF)‑α and transforming growth factor‑β. Silencing of ALCAM was performed using ALCAM small interfering (si)RNA and immunocytochemistry was used to analyze the inhibition efficiency. An invasion assay and a cell interaction assay were performed to assess the invasive ability and co‑cultured adhesive potential of Panc‑1 and T3M4 cells, as well as PSCs. Histologically, ALCAM expression was generally weak or absent in pancreatic cancer cells, but was markedly upregulated in PSCs in pancreatic cancer tissues. ALCAM was highly expressed in PSCs from CP tissues and PSCs surrounding pancreatic intraepithelial neoplasias, as well as in pancreatic cancer cells. ALCAM mRNA was highly expressed in PSCs, with a low to moderate expression in T3M4 and Panc‑1 cells. Similar to the mRNA expression, immunoblotting demonstrated that ALCAM protein levels were high in PSCs and T3M4 cells, but low in Panc‑1 cells. The expression of TNF‑α increased, while hypoxia decreased the secretion of ALCAM in pancreatic cancer Panc‑1 and T3M4 cells, and also in PSCs. Silencing of ALCAM by siRNA revealed no significant alteration in the invasion of pancreatic cancer cells, however, it inhibited the invasive ability of PSCs, and decreased the interaction between Panc‑1 cells and PSCs. In conclusion, ALCAM is upregulated in PSCs of pancreatic cancer tissues, suggesting a potential role of ALCAM in regulating pancreatic cancer cell‑PSC interactions.

Cao H, Zhang J, Liu H, et al.
IL-13/STAT6 signaling plays a critical role in the epithelial-mesenchymal transition of colorectal cancer cells.
Oncotarget. 2016; 7(38):61183-61198 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is one of the most common causes of cancer-related death worldwide due to the distant metastases. Compelling evidence has reported that epithelial-mesenchymal transition (EMT) is involved in promoting cancer invasion and metastasis. However, the precise molecular events that initiate this complex EMT process remain poorly understood. Here, we showed that the pleiotropic cytokine interleukin-13 (IL-13) could induce an aggressive phenotype displaying EMT by enhancing the expression of EMT-promoting factor ZEB1. Importantly, STAT6 signaling inhibitor and STAT6 knockdown significantly reversed IL-13-induced EMT and ZEB1 induction in CRC cells, whereas ectopic STAT6 expression in STAT6null CRC cell line markedly promoted EMT in the present of IL-13. ChIP-PCR and Luciferase assays revealed that activated STAT6 directly bound to the promoter of ZEB1. Otherwise, we found IL-13 also up-regulated the stem cell markers (nanog, CD44, CD133 and CD166) and promoted cell migration and invasion through STAT6 pathway. We also found that siRNA-mediated knockdown of IL-13Rα1 could reverse IL-13-induced ZEB1 and EMT changes by preventing STAT6 signaling. Finally, we demonstrated positive correlation between IL-13Rα1 and ZEB1 at mRNA levels in human CRC samples. Taken together, our findings first demonstrated that IL-13/IL-13Rα1/STAT6/ZEB1 pathway plays a critical role in promoting EMT and aggressiveness of CRC.

Wachowiak R, Mayer S, Kaifi J, et al.
Prognostic Impact of Activated Leucocyte Cell Adhesion Molecule (ALCAM/CD166) in Infantile Neuroblastoma.
Anticancer Res. 2016; 36(8):3991-5 [PubMed] Related Publications
BACKGROUND/AIM: Activated leukocyte cell adhesion molecule (ALCAM/CD166) as a member of the 'immunoglobulin superfamily' is known to be involved in cancer cell proliferation and migration. The aim of this study was to investigate the expression of ALCAM in neuroblastoma tissues.
MATERIALS AND METHODS: ALCAM expression was analyzed in primary neuroblastoma specimens by immunohistochemistry on microarray sections. Histopathological and clinical data were correlated with ALCAM expression and survival analysis was performed.
RESULTS: Sixty-six children were included in the study. Strong expression of ALCAM was detected in 52 (79%) of the samples. Weak expression was significantly correlated with the International Neuroblastoma Staging System (INSS) stage (p=0.024) and positive n-MYC amplification (p=0.019). Recurrence-free survival (RFS) and overall survival (OS) were significantly shorter if ALCAM was expressed weakly (p=0.032 and p=0.001).
CONCLUSION: Weak ALCAM expression was significantly correlated with established markers for poor prognosis, as well as shorter RFS and OS. ALCAM might be considered as a prognostic marker for infantile neuroblastoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. ALCAM, Cancer Genetics Web: http://www.cancer-genetics.org/ALCAM.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999